关键词:棉花; 栽培管理方式; 产量; 资源利用效率 Effects of Different Cultivation Patterns on Cotton Field Resources Use Efficiency in Yangtze River Valley ZHANG Chang-He, DAI Yan-Jiao, YANG Hong-Kun, ZHANG Xin-Yue, DU Xiang-Bei, CHEN Bing-Lin, ZHOU Zhi-Guo* Key Laboratory of Crop Physiology & Ecology, Ministry of Agriculture / Nanjing Agricultural University, Nanjing 210095, China
AbstractThe agricultural production in China is mainly dependent on nature environment. But the use efficiency of field resources in China is lower than those in developed countries, and the current crop cultivation theory and technology need to be innovated and improved continuously. The efficiency field stationary experiments using cotton cultivate Siza 3 with different cultivation patterns were carried out in high and low soil fertility levels in Dafeng, Jiangsu province. The cultivation patterns included super high cultivation patterns (SH), farmers practice cultivation (FP), high yield and high efficiency cultivation (HH). The result showed that lint yield of cotton was significantly affected by cultivation patterns and soil fertility levels. Lint yield difference was correlated with the differences of temperature production efficiency (TPE), radiation use efficiency (RUE) and nitrogen partial factor productivity (NPFP) under different cultivation patterns. Our results suggested that the key factor limited cotton production is the lower resources use efficiency. The lint yield, temperature and radiation use efficiency and nitrogen partial factor productivity of HH were 27.5%, 27.7%, 23.4%, and 10.1% higher than there of FP. Therefore, HH should be encouraged to extend in the Yangtze River Valley, and field resources use efficiency in wheat-cotton double cropping system should be further improved in the future for increasing cotton productivity.
表2 棉花生育期间气象条件 Table 2 Meteorological factors of cotton growth period in 2012 and 2013
月份 Month
2012
2013
平均温度 MDT (℃)
降雨量 Rainfall (mm)
有效辐射 PAR (MJ m-2)
平均温 MDT (℃)
降雨量 Rainfall (mm)
有效辐射 PAR (MJ m-2)
4月April
15.3
77.5
7.0
12.3
21.2
9.8
5月May
20.4
28.8
7.7
18.9
96.0
8.3
6月June
22.8
21.0
5.5
22.2
77.3
7.8
7月July
27.3
260.2
7.0
29.8
207.5
9.0
8月August
27.5
68.8
6.8
29.5
68.6
9.1
9月September
21.5
94.7
6.4
22.6
57.8
6.9
10月October
16.9
28.8
6.9
17.3
45.2
6.6
MDT and PAR stand for mean daily temperature and photosynthetically active radiation. Rainfall amounts are monthly total, other values represent monthly average of daily values. MDT、PAR分别为日平均温度和有效辐射; 降雨量为每月累加值, 其他指标为平均值。
表2 棉花生育期间气象条件 Table 2 Meteorological factors of cotton growth period in 2012 and 2013
表3 不同栽培管理方式对棉花产量及产量构成的影响 Table 3 Influence of different cultivation patterns on cotton yield and yield components
地力水平 Fertility level
栽培管理方式 Cultivation pattern
铃数 Boll No. (× 104 hm-2)
铃重 Boll weight (g)
衣分 Lint percentage (%)
皮棉产量 Lint yield (kg hm-2)
2012
低地力Low
零氮肥对照区N0
65.0 d
5.63 a
36.8 c
1347 d
高产高效栽培管理方式HH
79.6 b
5.91 a
41.8 a
1966 b
常规栽培管理方式FP
69.4 c
5.74 a
39.2 b
1562 c
超高产栽培管理方式SH
90.2 a
5.70 a
42.1 a
2165 a
高地力High
零氮肥对照区N0
67.8 d
5.76 a
37.1 b
1449 d
高产高效栽培管理方式HH
85.6 b
5.94 a
41.8 a
2125 b
常规栽培管理方式FP
73.9 c
5.76 a
38.7 b
1647 c
超高产栽培管理方式SH
96.0 a
5.96 a
41.6 a
2380 a
方差分析Analysis of variance
地力水平 Fertility level (FL)
*
ns
ns
*
栽培管理方式 Cultivation pattern (CP)
* *
ns
* *
* *
FL× CP
ns
ns
ns
ns
2013
低地力 Low
零氮肥对照区N0
66.5 d
5.21 a
37.4 c
1296 d
高产高效栽培管理方式HH
98.7 b
5.30 a
41.9 a
2192 b
常规栽培管理方式FP
82.3 c
5.22 a
39.3 b
1688 c
超高产栽培管理方式SH
112.4 a
5.31 a
41.6 a
2483 a
高地力 High
零氮肥对照区N0
66.8 d
5.32 a
37.7 c
1341 d
高产高效栽培管理方式HH
104.0 b
5.38 a
41.7 a
2333 b
常规栽培管理方式FP
89.2 c
5.31 a
39.3 b
1861 c
超高产栽培管理方式SH
119.9 a
5.26 a
41.2 a
2601 a
方差分析Analysis of variance
地力水平 Fertility level (FL)
*
ns
ns
*
栽培管理方式 Cultivation pattern (CP)
* *
ns
* *
* *
FL× CP
ns
ns
ns
ns
N0: cultivation without nitrogen as control; HH: high yield and high efficiency cultivation; FP: farmers practice cultivation; SH: super high cultivation patterns. Values followed by different letters within a column are significantly different at the 0.05 probability level. * and * * : significant differences at the 0.05 and 0.01 probability levels, respectively; ns: no significant difference (P< 0.05). 表中同一列中不同字母表示0.05水平差异显著。* 和* * 分别表示在0.05、0.01水平上显著, ns表示差异不显著。
表3 不同栽培管理方式对棉花产量及产量构成的影响 Table 3 Influence of different cultivation patterns on cotton yield and yield components
表4 麦棉两熟栽培管理方式对棉田温光资源利用效率的影响 Table 4 Influence of cultivation patterns on cotton temperature production efficiency and radiation use efficiency
地力水平 Fertility level
栽培管理方式 Cultivation pattern
生物量 Biomass (kg hm-2)
有效积温 GDD (℃ d)
温度生产效率 TPE (kg hm-2℃ d)
辐射截获量 Intercepted PAR (MJ hm-2)
辐射利用效率 RUE (g MJ-1)
2012
低地力Lower
零氮肥对照区N0
6365 d
1093 d
5.82 c
544 c
1.17 b
高产高效栽培管理方式HH
8438 b
1188 c
7.10 a
640 b
1.32 a
常规栽培管理方式FP
6904 c
1211 b
5.70 d
639 b
1.08 c
超高产栽培管理方式SH
9302 a
1343 a
6.93 b
769 a
1.21 d
高地力Higher
零氮肥对照区N0
7253 d
1074 d
6.75 c
576 c
1.26 b
高产高效栽培管理方式HH
9686 b
1160 c
8.35 a
687 b
1.41 a
常规栽培管理方式FP
8215 c
1213 b
6.77 c
684 b
1.20 c
超高产栽培管理方式SH
9974 a
1300 a
7.67 b
804 a
1.24 b
方差分析Analysis of variance
地力水平 Fertility level (FL)
* *
ns
* *
*
* *
栽培管理方式 Cultivation pattern (CP)
* *
*
* *
* *
*
FL× CP
ns
ns
ns
ns
ns
2013
低地力Lower
零氮肥对照区N0
7177 d
1263 b
5.68 b
536 c
1.34 b
高产高效栽培管理方式HH
10280 b
1259 b
8.16 a
584 b
1.76 a
常规栽培管理方式FP
7489 c
1316 a
5.69 b
590 b
1.27 b
超高产栽培管理方式SH
10952 a
1322 a
8.28 a
637 a
1.72 a
高地力Higher
零氮肥对照区N0
8778 d
1288 c
6.81 d
578 c
1.52 d
高产高效栽培管理方式HH
13211 b
1350 b
9.78 b
654 b
2.02 b
常规栽培管理方式FP
11429 c
1395 a
8.19 c
653 b
1.75 c
超高产栽培管理方式SH
15020 a
1430 a
10.50 a
702 a
2.14 a
方差分析Analysis of variance
地力水平 Fertility level (FL)
* *
ns
* *
*
* *
栽培管理方式 Cultivation pattern (CP)
* *
*
* *
* *
*
FL× CP
ns
ns
ns
ns
ns
N0: cultivation without nitrogen as control; HH: high yield and high efficiency cultivation; FP: farmers practice cultivation; SH: super high cultivation patterns. Values followed by different letters within a column are significantly different at 5% probability level. * and * * : significant differences at the 0.05 and 0.01 probability levels, respectively; ns: no significant difference (P< 0.05). 表中同一列中不同字母表示5%水平差异显著。* 和* * 分别表示在0.05、0.01水平上显著, ns表示差异不显著。
表4 麦棉两熟栽培管理方式对棉田温光资源利用效率的影响 Table 4 Influence of cultivation patterns on cotton temperature production efficiency and radiation use efficiency
表5 棉花产量与资源截获和利用效率的相关分析 Table 5 Correlation coefficients among lint yield, biomass, growth degree day (GDD), maximum leaf area index (LAImax), light interception (LI) and cumulative intercepted PAR (IPAR)
Lint yield
Biomass
GDD
LAImax
LI
IPAR
皮棉产量Lint yield
1.000
生物量Biomass
0.819* *
1.000
累积积温GDD
0.569*
0.740* *
1.000
最大LAI LAImax
0.570*
0.837* *
0.582*
1.000
光能截获率 LI
0.401
0.652* *
0.680* *
0.577*
1.000
截获PAR IPAR
0.604*
0.550*
0.410
0.492
0.146
1.000
相关系数临界值: n=16, r0.05=0.497, r0.01=0.623. The critical value of correlation coefficients: n=16, r0.05=0.497, r0.01=0.623.
表5 棉花产量与资源截获和利用效率的相关分析 Table 5 Correlation coefficients among lint yield, biomass, growth degree day (GDD), maximum leaf area index (LAImax), light interception (LI) and cumulative intercepted PAR (IPAR)
4 结论不同栽培管理方式下棉花产量的差异主要由温光、氮肥资源利用效率的差异造成, SH由于氮肥大量施用导致偏生产力下降, HH较FP提高产量27.5%, 温光、氮肥资源利用效率分别提高27.7%、23.4%和10.1%, 满足高产高效栽培要求。不同地力水平棉田资源利用效率差异显著。高地力田块比低地力田块拥有更高的资源截获率和利用效率, 生产力较高。在生产中需要针对不同地力水平在棉花栽培管理方式上做出调整, 如以合理密植、调整移栽期、增施有机肥等措施来缩小地力水平间的产量差。高产高效栽培管理方式拥有较高的资源利用效率, 产量较高, 是较为适宜的栽培管理方式。 The authors have declared that no competing interests exist.
作者已声明无竞争性利益关系。The authors have declared that no competing interests exist.
AliH, Afzal MN, MuhammadD. Effect of sowing dates and plant spacing on growth and dry matter partitioning in cotton (Gossypium hirsutum L. ). , 2009, 41: 2145-2155[本文引用:1][JCR: 0.872]
[2]
Ali MA, Tatla YH, AslamM. Response of cotton (Gossypium hirsutum L. ) to potassium fertilization in arid environment. , 2007, 45: 191-198[本文引用:1]
[3]
RuizR, BerteroH. Light interception and radiation use efficiency in temperate quinoa (Chenopodium quinoa Willd. ) cultivars. , 2008, 29: 144-152[本文引用:1][JCR: 2.8]
[4]
ZhangL, Van der Werf W , Bastiaans L, Zhang S, Li B, Spiertz J H J. Light interception and utilization in relay intercrops of wheat and cotton. , 2008, 107: 29-42[本文引用:2][JCR: 2.474]
[5]
Dong HZ, Kong XQ, Li WJ, TangW, Zhang DM. Effects of plant density and nitrogen and potassium fertilization on cotton yield and uptake of major nutrients in two fields with varying fertility. , 2010, 119: 106-113[本文引用:3][JCR: 2.474]
[6]
Kaggwa-AsiimweR, Andrade-SanchezP, Wang GY. Plant architecture influences growth and yield response of upland cotton to population density. , 2013, 145: 52-59[本文引用:2][JCR: 2.474]
[7]
BraunackM, BangeM, JohnstonD. Can planting date and cultivar selection improve resource use efficiency of cotton systems?, 2012, 137: 1-11[本文引用:3][JCR: 2.474]
[8]
AliH, Afzal MN, AhmadS, MuhammadD. Effect of cultivars and sowing dates on yield and quality of (Gossypium hirsutum L. ) cotton. , 2009, 7: 244-247[本文引用:3][JCR: 0.435]
[9]
Milroy SP, Bange MP. Nitrogen and light responses of cotton photosynthesis and implications for crop growth. , 2003, 43: 904-913[本文引用:2][JCR: 1.513]
[10]
Boquet DJ, Breitenbeck GA. Nitrogen rate effect on partitioning of nitrogen and dry matter by cotton. , 2000, 40: 1685-1693[本文引用:3][JCR: 1.513]
[11]
O’Connell MG, O’Leary GJ, Whitfield DM, Connor DJ. Interception of photosynthetically active radiation and radiation-use efficiency of wheat, field pea and mustard in a semi-arid environment. , 2004, 85: 111-124[本文引用:2][JCR: 2.474]
[12]
StedutoP, AlbrizioR. Resource use efficiency of field-grown sunflower, sorghum, wheat and chickpea: II. Water use efficiency and comparison with radiation use efficiency. , 2005, 130: 269-281[本文引用:2]
SmitB, Skinner MW. Adaptation options in agriculture to climate change: a typology. , 2002, 7: 85-114[本文引用:1]
[15]
Du XB, Chen BL, Shen TY, Zhang YX, Zhou ZG. Effect of cropping system on radiation use efficiency in double-cropped wheat-cotton. , 2015, 170: 21-31[本文引用:3][JCR: 2.474]
[16]
Van Opstal NV, Caviglia OP, Melchiori R JM. Water and solar radiation productivity of double-crops in a humid temperature area. , 2011, 5: 1760-1766[本文引用:1][JCR: 1.632]
[17]
Caviglia OP, Sadras VO, Andrade FH. Intensification of agriculture in the south-eastern Pampas: I. Capture and efficiency in the use of water and radiation in double-cropped wheat-soybean. , 2004, 87: 117-129[本文引用:1][JCR: 2.474]
[18]
FerriseR, TriossiA, StratonovitchP, BindiM, MartreP. Sowing date and nitrogen fertilization effects on dry matter and nitrogen dynamics for durum wheat: an experimental and simulation study. , 2010, 117: 245-257[本文引用:1][JCR: 2.474]
[19]
Willey RW. Resource use in intercropping systems. , 1990, 17: 215-231[本文引用:1]
[20]
Read JJ, Reddy KR, Jenkins JN. Yield and fiber quality of upland cotton as influenced by nitrogen and potassium nutrition. , 2006, 24: 282-290[本文引用:1][JCR: 2.8]
[21]
Kaggwa-AsiimweR, Andrade-SanchezP, WangG. Plant architecture influences growth and yield response of upland cotton to population density. , 2013, 145: 52-59[本文引用:1][JCR: 2.474]
[22]
TsuboM, WalkerS. A model of radiation interception and use by a maize-bean intercrop canopy. , 2002, 110: 203-215[本文引用:1]
[23]
Hou ZA, Li PF, Li BG, GongJ, Wang YN. Effects of fertigation scheme on N uptake and N use efficiency in cotton. , 2007, 290: 115-126[本文引用:1][JCR: 2.638]
[24]
McConnell JS, Baker WH, Miller DM, Frizzell BS, Varvil JJ. Nitrogen fertilization of cotton cultivars of differing maturity. , 1993, 85: 1151-1156[本文引用:1][JCR: 1.518]
[25]
Yang GZ, Tang HY, TongJ, Nie YC, Zhang XL. Effect of fertilization frequency on cotton yield and biomass accumulation. , 2012, 125: 161-166[本文引用:1][JCR: 2.474]
[26]
YanX, Jin JY, HeP, Liang MZ. Recent advances on the technologies to increase fertilizer use efficiency. , 2008, 7: 469-479[本文引用:1][CJCR: 1.0251]