摘要以长江流域大面积种植的转基因棉湘杂棉8号为材料, 在江苏省大丰市稻麦原种场(33.2°N, 120.5°E)滨海改良盐土上研究施氮量(0、150、300、375、450、600 kg N hm-2)对棉株钾素吸收、利用和分配的影响。结果表明, 增施氮肥提高不同生育阶段棉株钾的吸收量, 以盛花到见絮期的钾积累增量最大, 并改变生育期间的钾吸收比例, 使出苗到盛花期的钾吸收比例降低, 盛花到吐絮期的钾吸收比例升高; 同时, 增加施氮还降低生育后期中上部果枝钾浓度的下降速率, 但对下部果枝影响较小。随施氮量增加, 各部位果枝氮对钾吸收的边际效应(每增施1 kg氮促进钾的吸收量)呈先升高后降低趋势, 且果枝部位越高, 基于最大边际效应的施氮量越高。在300~375 kg hm-2施氮量范围内, 干物质和钾在经济器官中的分配比例提高, 钾浓度和钾累积量动态特征参数比较协调, 中部和上部果枝氮素对钾吸收的边际效应和钾的皮棉生产效率较高, 利于高产形成。高于375 kg hm-2的施氮量导致皮棉产量增幅下降, 氮素对钾吸收的边际效应和钾的皮棉生产效率较低; 低于375 kg hm-2的施氮量降低干物质和钾经济系数, 不利于高产形成。
关键词:棉花; 改良盐土; 施氮量; 钾吸收利用 Effect of Nitrogen Application Amounts on Uptake and Utilization of Potassium in Cotton Grown in Improved Coastal Saline Land Regions ZOU Fang-Gang1,2, ZHANG Guo-Wei1, WANG You-Hua1, ZHAO Wen-Qing1, ZHOU Zhi-Guo1,* 1 Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture / Nanjing Agricultural University, Nanjing 210095, China
2 Seeds Management Station of Jiangsu Province, Nanjing 210036, China
AbstractA field experiment using transgenic cotton cultivar Xiangzamian 8 with different nitrogen application amounts (0, 150, 300, 375, 450, and 600 kg N ha-1) was carried out in the coastal improved saline land region of Dafeng City in 2010 and 2012. Results showed that the nitrogen application increased potassium uptake of cotton at different growth stages, with the highest increment at the peak flowering-boll opening stage, and the percentages of potassium uptake decreased from seedling to peak flowering stages, but increased from peak flowering to boll maturing stages. In addition, nitrogen application lowered the decreasing speed of potassium concentration in middle and upper fruiting branches at later growth stages, but had less influence on lower fruiting branches. The marginal effect of potassium uptake (promoted amount of potassium uptake due to 1 kg increase of N application) showed an upward-downward trend with the increase of nitrogen application rate. The higher the position of fruiting branches grown, the more the nitrogen amount demanded to meet the highest marginal effect of potassium uptake. Under the nitrogen application of 300-375 kg ha-1, the economic coefficient of biomass and potassium was relatively high, eigenvalues of dynamic model of potassium content and potassium accumulation were relatively coordinate, and the marginal effect of potassium uptake and lint production efficiency of potassium were relatively high in middle and upper fruiting branches. Excessively high nitrogen application resulted in a relatively narrow rise of yield, and the marginal effect of potassium uptake and lint production efficiency of potassium were relatively low; excessively low nitrogen application, however, also resulted in a lower yield, as economic coefficient of biomass and potassium was relatively low.
Keyword:Cotton; Improved saline land; Nitrogen amounts; Potassium uptake and utilization Show Figures Show Figures
2 结果与分析2.1 施氮量对棉花产量的影响由图1可见, 随施氮量增加, 总皮棉产量及上、中和下部皮棉产量均呈先上升后降低的趋势。用二次曲线拟合后可知, 2010年和2012年总皮棉产量、上部皮棉产量、中部皮棉产量和下部皮棉产量分别在397.6 kg N hm-2和379.7 kg N hm-2、456.5 kg N hm-2和419.2 kg N hm-2、417.6 kg N hm-2和424.8 kg N hm-2、276.4 kg N hm-2和246.9 kg N hm-2时最高。 图1 Fig. 1
2.2 施氮量对生物量累积分配的影响由表1可见, 施氮量显著影响棉花生物量累积分配。对于棉株生物量, 整株及中部果枝生物量在450 kg N hm-2(2010)和375 kg N hm-2(2012)处理下最高, 下部果枝在375 kg N hm-2处理下最高, 上部果枝在450 kg N hm-2处理下最高, 且达到峰值后随施氮量的增加各部位生物量降低不显著(P> 0.05)。对于生殖器官生物量, 整株、中部和下部果枝在375 kg N hm-2(2010)和300 kg N hm-2(2012)处理下最高, 上部果枝则在450 kg N hm-2处理下最高。对于生物量经济系数, 下部果枝表现为随施氮量的增加而降低, 中部果枝呈先升高后降低的趋势, 并在375 kg N hm-2(2010)和300 kg N hm-2(2012)处理下最高, 上部果枝则随施氮量的增加而增大。 表1 Table 1 表1(Table 1)
表1 施氮量对生物量累积和分配的影响 Table 1 Effects of nitrogen amounts on biomass accumulation and distribution of cotton plant
施氮量 Nitrogen amount (kg N hm-2)
生物量 Biomass per plant (g)
生殖器官生物量 Biomass of reproductive organ per plant (g)
生物量经济系数 Economic coefficient of biomass
TP
L
M
U
TP
L
M
U
TP
L
M
U
2010
0
222.1 d
70.0 d
62.5 d
90.1 d
100.8 d
35.7 c
29.1 d
36.0 d
0.45 ab
0.51 a
0.47 bc
0.40 b
150
308.3 c
82.2 c
96.9 c
130.3 c
138.9 c
38.5 bc
47.0 c
53.3 c
0.45 ab
0.47 b
0.49 b
0.41 b
300
385.2 b
104.7 b
115.8 b
166.7 b
181.2 b
47.8 ab
58.7 b
74.7 b
0.46 a
0.46 b
0.51 ab
0.45 a
375
438.7 a
120.2 a
133.4 a
185.5 a
203.5 a
49.2 a
69.2 a
85.1 a
0.46 a
0.41 c
0.52 a
0.46 a
450
444.5 a
115.6 ab
140.7 a
189.8 a
193.6 ab
42.6 b
65.8 ab
85.2 a
0.44 ab
0.37 d
0.47 bc
0.45 a
600
432.9 a
111.1 b
135.2 a
186.8 a
185.8 b
40.0 b
62.1 b
83.7 a
0.43 b
0.36 d
0.46 c
0.45 a
2012
0
217.6 c
62.4 c
66.8 d
88.4 d
96.7 c
30.6 c
32.0 d
34.0 c
0.44 c
0.49 a
0.48 c
0.38 c
150
262.6 b
69.6 b
79.6 c
113.4 c
124.3 b
34.1 b
41.4 c
48.8 b
0.47 b
0.49 a
0.52 b
0.43 b
300
361.1 a
96.2 a
109.4 a
155.5 b
181.1 a
45.2 a
61.3 a
74.6 a
0.50 a
0.47 a
0.56 a
0.48 a
375
374.3 a
96.3 a
114.0 a
164.0 a
180.9 a
42.4 a
58.1 a
80.4 a
0.48 ab
0.44 b
0.51 b
0.49 a
450
373.2 a
95.3 a
110.9 a
167.0 a
171.2 ab
36.8 b
52.1 b
82.3 a
0.46 bc
0.39 c
0.47 c
0.49 a
600
365.0 a
94.2 a
108.0 a
162.8 ab
167.3 b
36.7 b
50.8 b
79.8 a
0.46 bc
0.39 c
0.47 c
0.49 a
TP: total plant; L: lower fruiting branches; M: middle fruiting branches; U: upper fruiting branches. Values followed by different letters within the same column are significantly different at the 0.05 probability level. TP: 整株; L: 下部果枝; M: 中部果枝; U: 上部果枝。同一列中标以不同字母的值在0.05水平上差异显著。
表1 施氮量对生物量累积和分配的影响 Table 1 Effects of nitrogen amounts on biomass accumulation and distribution of cotton plant
2.3 施氮量对钾素累积分配的影响由表2可见, 随施氮量的增加, 下部果枝钾累积量呈先升高后降低的趋势, 并在450 kg N hm-2(2010)和375 kg N hm-2(2012)处理下下最高; 棉株整株、中部及上部果枝钾累积量则呈升高趋势, 并在升高到一定量后趋于稳定。对于生殖器官钾累积量, 随施氮量的增加, 下部和中部果枝呈先升高后降低的趋势, 分别在300 kg N hm-2和375 kg N hm-2处理下最高, 而整株和上部果枝则持续升高, 且在升高到一定量后趋于稳定。对于钾的经济系数, 随施氮量的增加, 下部和中部果枝呈先升高后降低趋势, 分别在150 kg N hm-2和300 kg N hm-2处理下最高, 上部则表现为升高到一定量后趋于稳定。 表2 Table 2 表2(Table 2)
表2 施氮量对钾累积分配的影响 Table 2 Effects of nitrogen amounts on potassium accumulation and distribution of cotton plant
施氮量 Nitrogen amount (kg N hm-2)
钾累积量 Potassium accumulation (kg hm-2)
生殖器官钾累积量 Potassium accumulation amount of reproductive organ (kg hm-2)
钾的经济系数 Economic coefficient of potassium
TP
L
M
U
TP
L
M
U
TP
L
M
U
2010
0
78.3 d
18.4 c
22.3 d
37.6 d
34.8 d
13.1 d
11.6 d
11.3 e
0.44 c
0.71 a
0.52 bc
0.30 d
150
107.2 c
21.7 c
31.2 c
54.3 c
54.4 c
15.1 c
16.7 c
21.5 d
0.51 b
0.70 a
0.54 ab
0.41 c
300
161.3 b
33.8 b
48.8 b
78.7 b
84.6 b
20.7 a
27.1 b
34.8 c
0.52 ab
0.64 b
0.55 ab
0.46 b
375
171.4 ab
37.1 ab
55.3 a
79.0 b
93.8 a
20.0 a
31.4 a
41.4 b
0.55 a
0.57 c
0.57 a
0.52 a
450
197.3 a
41.3 a
60.4 a
95.6 a
102.4 a
19.6 a
30.4 a
50.4 a
0.52 ab
0.50 d
0.50 c
0.54 a
600
192.4 a
38.2 b
60.0 a
94.2 a
96.7 a
17.5 b
26.9 b
50.2 a
0.50 b
0.48 d
0.45 d
0.54 a
2012
0
77.9 d
17.0 d
23.1 e
37.4 d
40.7 c
12.5 e
13.6 d
12.8 e
0.48 c
0.73 a
0.59 b
0.34 d
150
102.0 c
22.5 c
29.2 d
50.3 c
56.3 b
16.9 d
18.2 c
21.8 d
0.55 b
0.72 a
0.62 ab
0.43 c
300
158.6 b
36.8 b
47.2 c
74.6 b
93.0 a
25.1 a
31.2 b
36.7 c
0.59 a
0.68 b
0.66 a
0.49 b
375
185.1 ab
41.3 a
56.1 b
87.7 ab
103.6 a
23.3 b
36.0 a
43.3 b
0.56 ab
0.56 c
0.65 a
0.51 ab
450
201.9 a
40.9 a
63.8 a
97.2 a
106.7 a
21.7 b
33.1 b
46.9 a
0.53 bc
0.53 d
0.52 c
0.53 a
600
201.0 a
38.1 b
64.8 a
98.1 a
99.6 a
18.3 c
31.4 b
47.9 a
0.50 c
0.48 e
0.49 c
0.51 ab
TP: total plant; L: lower fruiting branches; M: middle fruiting branches; U: upper fruiting branches. Values followed by different letters within the same column are significantly different at the 0.05 probability level. TP: 整株; L: 下部果枝; M: 中部果枝; U: 上部果枝。同一列中标以不同字母的值在0.05水平上差异显著。
表2 施氮量对钾累积分配的影响 Table 2 Effects of nitrogen amounts on potassium accumulation and distribution of cotton plant
图2 施氮量对棉花不同部位钾浓度的影响(2010年)L: 下部果枝; M: 中部果枝; U: 上部果枝。Fig. 2 Effects of nitrogen amounts on potassium content of cotton plant in 2010L: lower fruiting branches; M: middle fruiting branches; U: upper fruiting branches.
表3 Table 3 表3(Table 3)
表3 不同氮素处理下棉花不同果枝部位钾浓度拟合方程参数(2010年) Table 3 Parameters of equations for potassium content of different fruiting branches in cotton under different nitrogen amounts in 2010
施氮量 Nitrogen amount (kg N hm-2)
L
M
U
a
b
R2
a
b
R2
a
b
R2
0
5.86
0.0084
0.9671* *
6.38
0.0085
0.9948* *
6.91
0.0084
0.9832
150
6.14
0.0085
0.9406* *
7.14
0.0087
0.9743* *
7.05
0.0083
0.9620
300
6.36
0.0082
0.9722* *
7.13
0.0083
0.9691* *
7.62
0.0080
0.9238
375
6.95
0.0082
0.9795* *
7.28
0.0076
0.9788* *
7.79
0.0075
0.9258
450
7.11
0.0082
0.9887* *
7.27
0.0074
0.9862* *
7.87
0.0074
0.9865
600
7.55
0.0084
0.9829* *
7.39
0.0073
0.9398* *
8.31
0.0069
0.9653
L: lower fruiting branches; M: middle fruiting branches; U: upper fruiting branches. a: initial value of attenuation equation of potassium content; b: decreasing rate of attenuation equation of potassium content. Values followed by different letters within the same column are significantly different at the 0.05 probability level. L: 下部果枝; M: 中部果枝; U: 上部果枝。a: 钾浓度衰减方程初始值; b: 钾浓度衰减方程下降速率。同一列中标以不同字母的值在0.05水平上差异显著。
表3 不同氮素处理下棉花不同果枝部位钾浓度拟合方程参数(2010年) Table 3 Parameters of equations for potassium content of different fruiting branches in cotton under different nitrogen amounts in 2010
2.5 施氮量对不同部位钾累积动态的影响随着生育进程, 棉株各部位钾累积量的变化符合Logistic生长曲线(图3)。对图3数据拟合分析可得到钾累积动态模型的特征值(表4), 棉株各部位钾最大累积速率和最大累积速率出现时间变化一致, 下部果枝以375 kg N hm-2施氮量最高, 中部和上部果枝则随施氮量的增加而增加; 下部果枝钾快速累积期持续时间随施氮量的增加而延长, 中部果枝以300 kg N hm-2施氮量最短, 上部果枝则随施氮量的增加而缩短。 图3 Fig. 3
表5 不同部位生物量和钾经济系数与钾累积特征参数的关系(2010年) Table 5 Correlation coefficients of economic coefficient of biomass and potassium with eigenvalue of potassium accumulation in cotton in 2010
参数 Parameter
生物量经济系数 Economic coefficient of biomass
钾经济系数 Economic coefficient of potassium
L
M
U
L
M
U
a
-0.950* *
0.078
0.891*
-0.990* *
-0.211
0.869*
b
0.373
0.534
-0.813*
0.371
0.615
-0.815*
Vmax
-0.741
-0.096
0.908*
-0.833*
-0.292
0.888*
tmax
-0.646
-0.155
0.870*
-0.733
-0.454
0.979*
T
-0.905*
-0.821*
-0.893*
-0.925* *
-0.984* *
-0.872*
L: lower fruiting branches; M: middle fruiting branches; U: upper fruiting branches. a: initial value of attenuation equation of potassium content; b: decreasing rate of attenuation equation of potassium content; Vmax: the maximal speed of accumulation; tmax: time reached maximal rate of accumulation; T: duration of fleetly accumulation. * and * * indicate significant difference at the 0.05 and 0.01 probability levels, respectively (n = 6, r0.05= 0.811, r0.01= 0.917) L: 下部果枝; M: 中部果枝; U: 上部果枝。a: 钾浓度衰减方程初始值; b: 钾浓度衰减方程下降速率; Vmax: 最大累积速率; tmax: 最大累积速率出现时间; T: 快速累积持续期。* 和* * 分别表示在0.05和0.01水平上显著相关。
表5 不同部位生物量和钾经济系数与钾累积特征参数的关系(2010年) Table 5 Correlation coefficients of economic coefficient of biomass and potassium with eigenvalue of potassium accumulation in cotton in 2010
2.7 施氮对棉株不同生育阶段钾的吸收量和吸收比例的影响分析表6可知, 不同生育时期间钾的吸收比例以盛花到见絮最高, 初花到盛花次之, 出苗到初花和吐絮期最低。随着施氮量的升高, 钾吸收量在吐絮期逐渐增加, 其余时期均呈先升高后降低趋势, 且均在450 kg N hm-2时最高; 钾吸收比例变化规律差异较大, 在出苗到初花期和初花到盛花期呈降低趋势, 在盛花到见絮期表现为升高到一定程度后趋于稳定, 在吐絮期则表现为升高趋势。 表6 Table 6 表6(Table 6)
表6 施氮对棉株不同生育阶段钾吸收量和吸收比例的影响 Table 6 Effect of nitrogen amount on potassium uptake and percentages of uptake at growth stages in cotton
施氮量 Nitrogen amount (kg N hm-2)
出苗-初花 Seedling-initial flowering
初花-盛花 Initial flowering-peak flowering
盛花-见絮期 Peak flowering-boll opening
吐絮期 Boll maturing
K吸收量 K uptake (kg hm-2)
K吸收比例Percentage of K uptake (%)
K吸收量 K uptake (kg hm-2)
K吸收比例Percentage of K uptake (%)
K吸收量 K uptake (kg hm-2)
K吸收比例Percentage of K uptake (%)
K吸收量 K uptake (kg hm-2)
K吸收比例Percentage of K uptake (%)
2010
0
6.6 d
8.4 a
31.9 e
40.8 a
38.4 d
49.0 b
1.4 f
1.8 e
150
8.7 c
8.1 b
37.5 d
35.0 b
53.5 c
49.9 b
7.5 e
7.0 d
300
8.9 bc
5.5 c
43.1 c
26.7 c
97.3 b
60.3 a
12.1 d
7.5 cd
375
9.1 b
5.3 cd
45.2 bc
26.4 c
103.9 b
60.6 a
13.2 c
7.7 bc
450
10.1 a
5.1 de
49.1 a
24.9 d
122.1 a
61.9 a
16.0 b
8.1 b
600
9.9 a
5.0 e
47.1 ab
24.5 d
115.8 a
60.2 a
19.5 a
10.3 a
2012
0
6.4 e
8.2 a
31.3 e
40.2 a
38.4 e
49.3 b
1.8 f
2.3 e
150
8.0 d
7.8 b
37.1 d
36.4 b
51.2 d
50.2 b
5.7 e
5.6 d
300
9.5 c
6.0 c
44.7 c
28.2 c
93.9 c
59.2 a
10.5 d
6.6 c
375
10.7 b
5.8 c
47.9 b
25.9 d
111.2 b
60.1 a
15.2 c
8.2 b
450
11.1 a
5.5 d
52.5 a
26.0 d
122.4 a
60.6 a
16.2 b
8.0 b
600
10.7 b
5.3 d
49.2 b
24.5 d
121.4 a
60.4 a
19.8 a
9.8 a
表6 施氮对棉株不同生育阶段钾吸收量和吸收比例的影响 Table 6 Effect of nitrogen amount on potassium uptake and percentages of uptake at growth stages in cotton
2.8 施氮量对棉株钾吸收量和钾吸收边际效应的影响随施氮量增加, 棉株钾吸收量变化规律可用Logistic方程拟合[13], 对表2中棉株不同部位钾吸收量随施氮量的变化采用Logistic曲线拟合, 拟合方程如图4。通过对方程求导, 可以得出氮对钾吸收的边际效应(每增施1 kg氮促进钾的吸收量)。可以看出, 随着施氮量的增加, 钾吸收的边际效应呈先升高后降低趋势, 上、中、下部果枝和整株钾吸收的边际效应分别在363.3、210.5、88.0和146.9 kg N hm-2时达到最大。 图4 Fig. 4
图5 钾吸收量与皮棉产量及钾皮棉生产效率的关系(2010年)TP: 整株; L: 下部果枝; M: 中部果枝; U: 上部果枝。Fig. 5 Relationship between potassium accumulation and lint yield and lint production efficiency of potassium in 2010TP: total plant; L: lower fruiting branches; M: middle fruiting branches; U: upper fruiting branches.
3 讨论本研究中随施氮量升高, 总皮棉产量及上、中和下部皮棉产量均呈先上升后降低趋势, 在达到理论最大值时, 整株需氮量(370~400 kg N hm-2)低于中部和上部需氮量(400~430 kg N hm-2和410~460 kg N hm-2), 高于下部需氮量(240~280 kg N hm-2), 表明在滨海盐碱改良土上, 基于产量最高时的施氮量促进了中、上部果枝产量形成, 却限制了下部果枝产量形成。这可能与高氮处理下棉花群体叶面积过大、冠层通风透光差、下部荫蔽影响下部果枝光合作用有关[14]。同时, 薛晓萍等[15, 16]研究认为, 长江下游棉区适宜的施氮量水平是240 kg N hm-2, 远低于本研究的结果, 其原因可能是本试验地区为沙性土壤, 保肥能力较差, 养分流失较重, 并且已脱盐改良的土壤含盐量虽较低, 但其中盐离子可能仍影响棉株对养分的吸收, 鲁雪林等[17]的研究则表明冀东滨海盐碱地的适宜施氮量为337.5 kg N hm-2, 远高于非盐碱棉区, 这与本研究结果相似。 棉花具有无限生长习性, 受所处环境条件和自身生理年龄的影响, 施氮量对不同部位钾累积及向生殖器官转运的影响存在差异, 进而影响不同部位生长发育和产量器官形成[18, 19]。用于生殖器官发育并形成碳水化合物的钾的减少是导致棉花早衰和品质变劣的主要因素之一[7]。本研究表明, 尽管棉株各部位及其生殖器官钾吸收量变化趋势一致, 但是钾的经济系数变化差异较大。对于下部和中部果枝, 钾的经济系数随施氮量的增加呈先上升后降低趋势, 分别在150和300 kg N hm-2处理下达到最大, 而上部果枝则表现为升高到一定量后趋于稳定, 这说明低于150和300 kg N hm-2处理分别促进了钾向下部和中部生殖器官分配, 高于此水平则倾向于向营养器官分配, 导致下部和中部营养生长过旺, 生殖器官生物量和产量降低; 对于上部果枝, 施氮则促进了钾向生殖器官分配, 这与产量和生物量变化趋势基本一致, 也导致上部果枝产量占总产比例的增加。 植物体内钾参与众多生理代谢过程, 棉株中钾浓度的变化与碳水化合物的形成和养分向生殖器官的运输密切相关[20]。本研究表明, 随生育进程, 棉株各部位的钾浓度变化可用负指数函数方程拟合, 对于下部果枝, 钾浓度衰减方程a值(初始值)与生物量和钾经济系数显著负相关, 对于中部果枝, 钾浓度的变化对生物量和钾的生殖分配影响不显著; 对于上部果枝, 生物量的生殖分配与初始钾含量(a值)显著正相关, 而与钾含量下降速率(b值)显著负相关, 说明钾含量的变化过程可以通过影响下部和上部生物量和钾的生殖分配而影响棉花产量。进一步分析表明, 随着棉花果枝部位的上升, 钾吸收峰值出现时间推迟, 钾累积速率峰值增加, 快速累积期持续时间缩短, 说明果枝部位越高, 其钾的吸收越集中。对于下部和中部果枝, 较短的快速累积期持续时间有利于光合产物和钾向生殖器官转运; 对于上部果枝, 较高的最大累积速率、较迟的最大累积速率出现时间和较短的快速累积持续时间利于光合产物和钾向生殖器官的转运。 棉株钾的吸收随施氮量的动态变化可用Logistic曲线描述[13], 对其求导可以得到氮对钾吸收的边际效应。本研究中, 随施氮量增加, 各部位氮对钾吸收的边际效应均呈先升高后降低趋势, 且果枝部位越高, 基于氮对钾吸收的最大边际效应的施氮量越高。通过比较基于皮棉产量理论最大值时施氮量(379.7 kg N hm-2)和基于上、中和下部氮对钾吸收的最大边际效应的施氮量(363.3、210.5和88.0 kg N hm-2)可知, 滨海改良盐碱土高产的形成与上部果枝氮对钾吸收的边际效应关系最为密切。 棉花生育前期吸收的钾主要是促进棉株营养器官发育, 后期吸收的钾则对产量形成至关重要[21]。施氮量过低增加了盛花期之前钾的吸收比例, 降低了盛花期之后的钾吸收比例, 导致后期钾供应不足; 过量施氮虽然增加了棉花吐絮期钾的吸收比例, 使吐絮期钾的浓度和吸收量显著增加, 但是过高钾浓度反馈促进了氮的吸收[22], 导致棉花贪青晚熟, 品质下降, 这可能是过量施氮导致棉花产量降低的原因之一。 4 结论施氮量通过调控棉花不同果枝部位钾含量和钾累积量的动态影响钾和生物量的累积和转运, 进而影响棉花产量。在300~375 kg hm-2施氮量范围内, 干物质和钾在生殖器官中的分配比例提高, 钾浓度和钾累积量动态特征参数比较协调, 中部和上部果枝氮素对钾吸收的边际效应和钾的皮棉生产效率较高, 利于高产形成。高于375 kg hm-2的施氮量导致皮棉产量增幅下降, 氮素对钾吸收的边际效应和钾的皮棉生产效率较低; 低于375 kg hm-2的施氮量降低干物质和钾经济系数, 不利于高产形成。 The authors have declared that no competing interests exist.
黄增荣, 隆小华, 李洪燕, 辛本荣, 李青, 刘玲, 刘兆普. 江苏北部滨海盐土盐肥耦合对菊芋生长和产量的影响. , 2010, 47: 709-714Huang ZR, Long XH, Li HY, Xin BR, LiQ, LiuL, Liu ZP. Coupling effect of salt and fertilizer application on Helianthus tuberosus in soils of North Jiangsu coastal mudflat different in salt concentration. , 2010, 47: 709-714 (in Chinese with English abstract)[本文引用:1][CJCR: 1.979]
[2]
Zhang FS, Niu JF, Zhang WF, Chen XP, Li CJ, Yuan LX, Xie JC. Potassium nutrition of crops under varied regimes of nitrogen supply. , 2010, 335: 21-34[本文引用:1][JCR: 2.638]
[3]
陈波浪, 吴海华, 曹公利, 郝丽娜, 盛建东. 不同肥力水平下立架栽培甜瓜干物质累积和氮、磷、钾养分吸收特性. , 2013, 19: 142-149Chen BL, Wu HH, Cao GL, Hao LN, Sheng JD. Characteristics of dry matter accumulation and N, P and K assimilations of trellis-cultivated melon under different fertility rates. , 2013, 19: 142-149 (in Chinese with English abstract)[本文引用:1][CJCR: 1.883]
[4]
Jin SH, Huang JQ, Li XQ, Zheng BS, Wu JS, Wang ZJ, Liu GH, ChenM. Effects of potassium supply on limitations of photosynthesis by mesophyll diffusion conductance in Caryacathayensis. , 2011, 31: 1142-1151[本文引用:1][JCR: 2.853]
[5]
Zhao DL, Oosterhuis DM, Bednarz CW. Influence of potassium deficiency on photosynthesis, chorophyll content, and chloroplast ultrastructure of cotton plant. , 2001, 39: 103-109[本文引用:2][JCR: 0.862]
[6]
王旭东, 于振文, 王东. 钾对小麦旗叶蔗糖和籽粒淀粉积累的影响. , 2003, 27: 196-201Wang XD, Yu ZW, WangD. Effect of potassium on sucrose content of flag leaves and starch accumulation of kernels in wheat. , 2003, 27: 196-201 (in Chinese with English abstract)[本文引用:1]
[7]
Pettigrew WT. Potassium deficiency increase specific leaf weight and leaf glucose levels of field-grown cotton. , 1999, 91: 962-968[本文引用:2][JCR: 1.518]
[8]
Yang GZ, Tang HY, Nie YC, Zhang XL. Responses of cotton growth, yield, and biomass to nitrogen split application ratio. , 2011, 35: 164-170[本文引用:1][JCR: 2.8]
[9]
WiedenfeldB, Wallace BW, HonsF. Foliar application of urea and triazone nitrogen to cotton. , 2009, 32: 274-286[本文引用:1][JCR: 0.526]
[10]
娄善伟, 高云光, 郭松仁, 赵强, 张巨松. 不同栽培密度对棉花植株养分特征及产量的影响. , 2010. 16: 953-958Lou SW, Gao YG, Guo RS, ZhaoQ, Zhang JS. Effects of planting density on nutrition characteristics and yield of cotton. , 2010, 16: 953-958 (in Chinese with English abstract)[本文引用:1][CJCR: 1.883]
[11]
Dong HZ, KongW, LiW, TangW, Zhang DM. Effects of plant density and nitrogen and potassium fertilization on cotton yield and uptake of major nutrients in two field with varying fertility. , 2010, 119: 106-113[本文引用:1][JCR: 2.474]
[12]
Zheng YH, Wang ZL, Sun XZ, Jia AJ, Jiang GM, Li ZJ. Higher salinity tolerance cultivars of winter wheat relieved senescence at reproductive stage. , 2008, 62: 129-138[本文引用:1][JCR: 2.578]
[13]
李伶俐, 房卫平, 谢德意, 马宗斌, 杜远仿, 张东林. 施氮量对杂交棉干物质积累、分配和氮磷钾吸收、分配与利用的影响. , 2010, 22: 347-353Li LL, Fang WP, Xie DY, Ma ZB, Du YF, Zhang DL. Effects of nitrogen application rate on dry matter accumulation and N, P, K uptake and distribution in different organs and utilization of hybrid cotton under high-yield cultivated condition. , 2010, 22: 347-353 (in Chinese with English abstract)[本文引用:2][CJCR: 1.462]
[14]
徐娇, 孟亚利, 睢宁, 宋为超, 周治国. 种植密度对转基因棉氮、磷、钾吸收和利用的影响. , 2013, 19: 174-181XuJ, Meng YL, SuiN, Song WC, Zhou ZG. Effects of planting density on uptake and utilization of N, P and K of transgenic cotton. , 2013, 19: 174-181 (in Chinese with English abstract)[本文引用:1][CJCR: 1.883]
[15]
薛晓萍, 王建国, 郭文琦, 陈兵林, 尤军, 周治国. 氮素水平对初花后棉株生物量、氮素累积特征及氮素利率动态变化的影响. , 2006, 26: 3631-3640Xue XP, Wang JG, Guo WQ, Chen BL, YouJ, Zhou ZG. Effect of nitrogen applied levels on the dynamics of biomass, nitrogen accumulation and nitrogen fertilization recovery rate of cotton after initial flowering. , 2006, 26: 3631-3640 (in Chinese with English abstract)[本文引用:1]
[16]
薛晓萍, 陈兵林, 郭文琦, 周治国, 张丽娟, 王以琳. 棉花临界需氮量动态定量模型. , 2006, 17: 2363-2370Xue XP, Chen BL, Guo WQ, Zhou ZG, Zhang LJ, Wang YL. Dynamic quantitative model of critical nitrogen demand of cotton. , 2006, 17: 2363-2370 (in Chinese with English abstract)[本文引用:1][CJCR: 1.742]
[17]
鲁雪林, 王秀萍, 张国新, 刘雅辉. 施氮对滨海盐碱地棉花生长发育及产量的影响. , 2012, 40: 12408-12409Lu XL, Wang XP, Zhang GX, Liu YH. Study on the effects of different nitrogen amount on the growth and development and yield of cotton (Gossypium hirsutum L. ) in saline fields. , 2012, 40: 12408-12409 (in Chinese with English abstract)[本文引用:1][CJCR: 0.687]
[18]
刘连涛, 李村东, 孙红春, 路文静, 冯丽肖. 氮素营养水平对棉花不同部位叶片衰老的生理效应. , 2007, 13: 910-914Liu LT, Li CD, Sun HC, Lu WJ, Feng LX. Physiological effects of nitrogen nutrition on the senescence of cotton leaves at different positions. , 2007, 13: 910-914 (in Chinese with English abstract)[本文引用:1][CJCR: 1.883]
[19]
杨志彬, 陈兵林, 周治国. 施氮量对花铃期棉花果枝生物量累积时空变异特征的影响. , 2008, 19: 2215-2220Yang ZB, Chen BL, Zhou ZG. Effects of nitrogen application rate on spatiotemporal variability of biomass accumulation of cotton’s fruiting branch at flower and boll stage. , 2008, 19: 2215-2220 (in Chinese with English abstract)[本文引用:1][CJCR: 1.742]
[20]
Bednarz CW, Oosterhuis DM, Evans RD. Leaf photosynthesis and carbon isotope discrimination of cotton in response to potassium deficiency. , 1998, 39: 131-139[本文引用:1][JCR: 2.578]
[21]
夏颖, 姜存仓, 陈防, 陈防, 鲁剑巍, 李小坤, 郝艳淑. 棉花钾营养与钾肥施用的研究进展. , 2010, 29: 658-663XiaY, Jiang CC, ChenF, Lu JW, Li XK, Hao YS. Review on potassium nutrient and potassium fertilizer application of cotton. , 2010, 29: 658-663 (in Chinese with English abstract)[本文引用:1][CJCR: 0.849]
[22]
Szczerba MW, Britto DT, Kronzucker HJ. K+ transport in plants: physiology and molecular biology. , 2009, 166: 447-466[本文引用:1][JCR: 2.699]