删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

四川不同生态区高产栽培条件下的杂交籼稻的稻米品质

本站小编 Free考研考试/2021-12-26

田青兰1, 李培程1, 刘利1,2, 张强1, 任万军1,*
1四川农业大学农学院 / 农业部西南作物生理生态与耕作重点实验室, 四川温江611130

2南充市种子站, 四川南充637000

*通讯作者(Corresponding author): 任万军, E-mail: rwjun@126.com 收稿日期:2015-05-04 基金:本研究由国家粮食丰产科技工程项目(2013BAD07B13-02, 2011BAD16B05)和国家公益性行业(农业)科研专项(201303102)资助

摘要郫县、汉源、射洪、邻水是四川具代表性的4个生态区, 郫县位于成都平原区, 土壤肥沃但受弱光限制; 汉源位于攀西高海拔地区, 温光充足; 射洪位于川中丘陵区, 受地形制约而气温日差较小; 邻水则位于川东丘陵区, 水资源缺乏且受干旱等灾害制约。本文以位于这4个典型生态区实施的水稻高产示范片为研究对象, 分别对4个生态区及各生态区不同栽培方式、不同高产水平的杂交籼稻稻米碾米品质、外观品质、蛋白质含量、直链淀粉含量及淀粉RVA谱特征值进行比较研究。结果表明: (1)生态条件与稻米品质有密切关系, 受气温和土壤肥力影响较大, 郫县的稻米品质最优, 邻水相对较劣; 齐穗前后气温略高及较高的土壤全氮、全钾、速效磷含量有利于高碾米品质的形成; 土壤全磷含量的降低可显著增加米粒长宽比; 灌浆成熟期的高温会增加稻米的垩白粒率和垩白度, 而土壤速效磷含量高则有利于降低垩白粒率和垩白度; 灌浆结实期的高温也会降低稻米蛋白质含量; 直链淀粉含量随土壤有机质含量的升高而升高; 峰值黏度与土壤全钾含量显著负相关, 崩解值与土壤全钾、速效磷显著负相关, 还与齐穗前8~21 d的日最高气温显著正相关, 回复值、峰值时间与齐穗前14~21 d日最高气温、抽穗至成熟期日最高气温呈显著或极显著负相关, 与土壤碱解氮呈显著正相关。(2)各栽培方式间, 机直播的碾米品质较优, 优化定抛的直链淀粉含量较高, 而机插的峰值黏度、崩解值较高, 消减值较低, 蒸煮食味品质较好。(3)高产及超高产田块的碾米品质整体较优, 而外观品质和蒸煮食味品质相对较差。本研究可为四川杂交中籼稻高产优质栽培技术提供理论参考。

关键词:杂交籼稻; 生态区; 栽培方式; 高产; 稻米品质
Quality of Indica Hybrid Rice under the High-yield Cultivation Conditions in Different Ecological Regions of Sichuan Province, China
TIAN Qing-Lan1, LI Pei-Cheng1, LIU Li1,2, ZHANG Qiang1, REN Wan-Jun1,*
1 College of Agronomy, Sichuan Agricultural University / Key Laboratory of Crop Physiology, Ecology, and Cultivation in Southwest China, Wenjiang 611130, China

2Seed Administrative Station of Nanchong, Sichuan 637000, China


AbstractPixian, Hanyuan, Shehong, and Linshui are four ecological regions of Sichuan province representative. Pixian lies in Chengdu Plain, having plenty of fertile soil, but weak light. Hanyuan lies in the high altitude area of Panxi, with sufficient temperature and light resources. Shehong lies in the hilly area of mid Sichuan plateau, and is restricted by terrain so that the temperature difference is small. Linshui lies in the hilly area of East Sichuan, it lacking in water resources and often having drought stress. The experiment was conducted in the high-yielding rice demonstration sites in four typical ecological regions of Sichuan Province to study milling quality, apparent quality, protein content, amylose content, RVA profile characteristic values of hybrid indica rice with different yield levels under different cultivation patterns. The results were as follows: (1) There was a close relation between ecological conditions and rice grain quality. Pixian had the best milling quality among the four ecological regions, and Linshui had the worst one. The slightly higher temperature before and after full panicle stage and higher total N, total K, available P in the soil were in favor of the formation of high milling quality. Soil total P could significantly increase the rice aspect ratio. The high temperature at grain filling period increased the rice chalkiness rate and chalkiness degree, while high soil available P was of benefit to reducing the rice chalkiness rate and chalkiness degree. The high temperature in grain filling period was able to reduce the rice protein content. The rice amylose content was rising with the increase of soil organic matter. Peak viscosity had a significant negative correlation with soil total K. Breakdown viscosity had a significantly negative correlation with soil total K and available P, while a significantly positive correlation with the maximum temperature from 8 to 21 d before full heading. Consistency viscosity and peak time both had a significantly negative correlation with the maximum temperature from 14 to 21 d before full heading and the maximum temperature from heading to maturity. In addition, consistency and peak time had a significantly positive correlation with the soil available N. (2) Among cultivation patterns, mechanized direct-seeding gained the better milling quality. Optimal casttransplanting had higher amylose content, but mechanized transplanting had higher peak viscosity and breakdown viscosity, and lower setback viscosity, resulting better cooking and eating quality. (3) High-yield and super high-yield plots had better milling quality, but relatively poor cooking and eating quality and apparent quality. This study provides a theoretical reference for the high yield and high quality cultivation techniques of hybrid indica rice in Sichuan Province.

Keyword: Indica hybrid rice; Ecological regions; Cultivation patterns; High-yield; Rice quality
Show Figures
Show Figures



随着人民生活水平的提高, 稻米品质越来越受到人们的重视, 对稻米品质的研究也越来越多。稻米品质受品种遗传特性和环境条件综合影响[1]。我国的稻米品质区划可分为4个一级区、10个二级亚区和48个三级次亚区。4个一级区中, I区为华南食用籼稻区(含台湾粳稻), II区为华中多用籼、粳稻区, Ⅲ 区为西南高原食用、多用籼、粳、糯稻区, IV区为北方食用粳稻区[2]。可以看出, 生态条件对稻米的品质有较大影响, 前人研究表明, 灌浆结实期高温会导致稻米垩白增加, 透明度变差, 整精米率下降, 蒸煮食味品质变劣[3, 4, 5, 6, 7]。稻米蛋白质含量与海拔高度呈显著正相关, 与灌浆结实期日均温度和日照时数呈负相关, 海拔高度和稻米淀粉峰值黏度、回复值和糊化温度显著负相关[8]。在水稻生育中后期遮阴(弱光)对稻米糊化特性的影响大于生育前期遮阴, 且不同品种对遮阴的反应明显不同[9]。栽培措施的改变对稻米品质也有一定影响, 随施氮量的增加, 稻米蒸煮食味品质变差[10], 米饭黏性有变劣的趋势[11], 加大氮肥用量和中后期氮肥比例可以显著提高水稻蛋白质含量[12, 13, 14]。栽插密度过大或过小均影响米饭的黏性, 从而使稻米的品质变劣[9]。直播较手栽和机插的外观品质略优, 加工品质、蒸煮食味品质和营养品质变劣[15]。此外, 土壤水分[1]及稻米加工贮藏方式[16]等对米质均有影响。现阶段基于高产示范片的研究较多, 但大多注重的是高产栽培技术[17, 18, 19, 20]和群体质量[21]等, 而关于稻米品质的研究主要以小区试验为主, 对于不同生态区较大面积的高产栽培条件下稻米品质的研究报道较少。本文研究四川郫县、汉源、射洪、邻水4个典型生态区的高产示范田结合不同栽培方式及高产水平等条件下的杂交籼稻稻米品质, 以期确定影响杂交籼稻稻米品质的主要生态因素, 并探明栽培方式和产量等对稻米品质的影响, 为杂交籼稻优质稻米的生产、推广提供依据, 为四川稻米品质区划提供参考。
1 材料与方法1.1 供试品种F优498是三系杂交中籼迟熟品种(FS3A× 蜀恢498), 由四川农业大学水稻研究所、四川省江油市川江水稻研究所和湖南川农高科种业有限责任公司选育; 宜香优2115是宜宾市农业科学院选育的不育系宜香1A与四川农业大学农学院选育的恢复系雅恢2115组配而成的中籼迟熟优质杂交水稻; II优602是四川省农业科学院水稻高粱研究所用II-32A与泸恢602配组育成的一个中籼迟熟杂交稻组合。
1.2 数据来源2013年在四川成都市郫县、雅安市汉源县、遂宁市射洪县、广安市邻水县4个生态区进行大面积高产攻关试验, 成熟期对重点田块取样测定稻米品质并进行比较分析。试验地及取样田种植品种、栽培方式、面积、施肥方案见表1, 土壤理化性状见表2, 生育进程见表3, 4个生态区地理及气象条件(2013年)见表4
1.3 测定内容及方法1.3.1 产量测定 于成熟期从每块代表田选取6~8个点, 每个点调查40穴的有效穗数, 据求出的平均穗数取样, 每个点取5穴, 装袋并标记田块编号。晾干后室内人工考种, 考察穗长、空瘪粒数、千粒重、总重, 计算每穗总粒数、结实率及理论产量。
1.3.2 稻米品质测定 将考种后的样本置于室温保存3个月, 用于籽粒品质测定。按照中华人民共和国国家标准《GB/T17891-1999优质稻谷》测定碾米品质(糙米率、精米率、整精米率)、外观品质(垩白粒率、垩白度、粒长、粒宽)。将精米使用CT410旋风式粉样机粉碎, 过60目筛, 消煮后采用FOSS8400全自动凯式定氮仪测定样品含氮量, 再折算成蛋白质含量。采用简易法(改良碘比色法)[24]测定稻米直链淀粉含量。采用澳大利亚Newport Scientific仪器公司生产的3-D型黏度速测仪测定稻米淀粉RVA谱特征值, 用TCW (Thermal Cycle for Windows)配套软件进行分析。
表1
Table 1
表1(Table 1)
表1 4个生态区试验地概况 Table 1 General situation of the four experimental locations
地点
Location
组合
Combinations
田块编号
Code of the test field
栽培方式
Cultivation pattern
面积
Area
(667 m2)
施肥Fertilization
纯N
Pure N (kg hm-2)
N:P2O5:K2O
郫县
Pixian
F优498 F you 498P1, P2优化定抛[22]OCT5.002252:1:1.8
P3手插TBH2.502252:1:1.6
P4机直播MD1.902102:1:1.8
P5机插秧MT3.402252:1:1.8
宜香优2115
Yixiangyou 2115
P6优化定抛OCT2.502252:1:1.8
P7手插TBH1.702252:1:1.6
P8机插秧MT2.602252:1:1.8
汉源
Hanyuan
F优498 F you 498H1手插TBH1.212552:1:2
H2手插TBH0.402552:1:2
H3手插TBH1.102552:1:2
H4传统手插TTBH0.402102:1:1.8
H5传统手插TTBH0.302102:1:1.8
H6优化定抛OCT1.022552:1:2
邻水
Linshui
F优498 F you 498L1宽窄行垄作WRRP1.202102:1:2
II优602 II you 602L2宽窄行垄作WRRP1.132102:1:2
L3等行平作ERCP4.502102:1:2
射洪
Shehong
F优498 F you 498S1手插TBH1.602102:1:2
S2手插TBH1.202102:1:2
S3手插TBH1.812102:1:2
S4手插TBH1.162102:1:2
MD: mechanized direct-seeding; MT: mechanized transplanting; TBH: transplanting by hand; TTBH: traditional transplanting by hand; OCT: optimal cast transplanting; ERCP: equidistant row convention planting; WRRP: wide-narrow row ridge planting. Transplanting by hand denotes that according to precise and quantitative cultivation calculating for basic seedlings and spacing of row and hole. The traditional transplanting by hand denotes that according to farmer’ s habit.
手插指按精确定量方式[23]计算基本苗和行穴距进行手工栽插, 传统手插指按农民习惯手工栽插。

表1 4个生态区试验地概况 Table 1 General situation of the four experimental locations

表2
Table 2
表2(Table 2)
表2 4个生态区试验田土壤理化性状 Table 2 Soil conditions of the test fields in four experimental locations
地点
Location
田块编号
Code of the test field
pH有机质
Organic matter
(g kg-1)
全氮
Total N
content
(g kg-1)
全磷
Total P content
(g kg-1)
全钾
Total K content
(g kg-1)
碱解氮
Available N
(mg kg-1)
速效磷
Available P
(mg kg-1)
速效钾
Available K
(mg kg-1)
郫县
Pixian
P26.6227.411.670.7818.9279.61207.66138.97
P36.6025.711.670.7419.7374.09184.3998.49
P96.9031.291.640.7919.3772.84158.92167.00
平均值Average6.7128.141.660.7719.3475.51183.66134.82
汉源
Hanyuan
H17.4426.031.410.8713.5754.32157.72186.00
H27.5827.811.650.9613.4148.2091.99193.50
H47.6227.031.260.9314.8261.69130.80220.48
平均值Average7.5526.961.440.9213.9354.74126.84199.99
邻水
Linshui
L17.5131.571.270.189.1259.6629.87130.50
L36.8127.271.430.2410.1455.6251.60160.48
平均值Average7.1629.421.350.219.6357.6440.74145.49
射洪
Shehong
S17.4827.381.300.5612.0747.9591.88118.50
S37.5019.681.600.5610.7664.12124.7395.99
平均值Average7.4923.531.450.5611.4256.04108.31107.25

表2 4个生态区试验田土壤理化性状 Table 2 Soil conditions of the test fields in four experimental locations

表3
Table 3
表3(Table 3)
表3 4个生态区杂交籼稻生长发育进程 Table 3 The whole growth stage for the indica hybrid rice in four experimental locations (month/day)
地点
Location
组合
Combination
栽培方式
Cultivation pattern
播种期
Sowing
移栽期
Transplanting
拔节期
Jointing
齐穗期
Full-heading
成熟期
Maturity
郫县
Pixian
F优498
F you 498
优化定抛OCT3/225/26/107/238/20
手插TBH3/225/26/107/238/19
机直播MD4/156/137/269/3
机插秧MT3/214/256/97/258/23
宜香优2115
Yixiangyou 2115
优化定抛OCT3/225/36/217/318/26
手插TBH3/225/36/217/298/27
机插秧MT3/214/256/197/318/29
汉源
Hanyuan
F优498
F you 498
手插TBH3/224/236/67/208/27
优化定抛OCT3/224/236/67/208/27
邻水
Linshui
F优498
Fyou 498
宽窄行垄作WRRP3/14/25/177/18/5
II优602
II you 602
宽窄行垄作WRRP3/14/25/247/18/5
等行平作ERCP3/14/25/247/18/5
射洪
Shehong
F优498
F you 498
手插TBH3/254/256/57/178/24
MD: mechanized direct-seeding; MT: mechanized transplanting; TBH: transplanting by hand; OCT: optimal cast transplanting; ERCP: equidistant row convention planting; WRRP: wide-narrow row ridge planting.

表3 4个生态区杂交籼稻生长发育进程 Table 3 The whole growth stage for the indica hybrid rice in four experimental locations (month/day)

表4
Table 4
表4(Table 4)
表4 4个生态区地理及气象条件(2013年) Table 4 Geography and meteorological conditions of the four experimental locations in 2013
地点
Location
海拔
Altitude
(m)
经度
Longitude
(E)
纬度
Latitude
(N)
3-9月总降水量
Total rainfall from Mar. to Sep. (mm)
3-9月日平均温度
Average diurnal temperature from Mar. to Sep. (℃)
地理分区
Geographical regions
郫县
Pixian
555103° 55′ 30° 52′ 1278.022.09四川盆地西平原区
Plain of Western Sichuan basin
汉源
Hanyuan
1009102° 37′ 29° 29′ 545.121.03攀西高海拔地区
High altitude area of Panxi
邻水
Linshui
364107° 00′ 36° 56′ 976.022.00川东丘陵区
Hilly area of East Sichuan
射洪
Shehong
375105° 32′ 30° 52′ 1133.021.71四川盆地中部丘陵区
Hilly area of mid Sichuan plateau

表4 4个生态区地理及气象条件(2013年) Table 4 Geography and meteorological conditions of the four experimental locations in 2013

1.4 统计分析应用Microsoft Excel进行数据的整理及分析, DPS 7.5软件进行方差分析, 用LSD (least significant difference tests)比较样本平均数的差异显著性, 用SPSS 18软件进行相关性分析。

2 结果与分析2.1 生态条件对杂交籼稻稻米品质的影响由表5可以看出, F优498在4个生态区间的稻米品质有较大差异。郫县、汉源、邻水生态区间的稻米糙米率、精米率、整精米率、垩白粒率、蛋白质含量差异均达极显著, 垩白度差异显著或极显著。其中, 碾米品质在郫县表现最优, 邻水最劣。糙米率、精米率、整精米率均为郫县> 射洪、汉源> 邻水; 郫县的糙米率较汉源、邻水分别高出1.83%和3.53%, 且精米率较射洪、汉源、邻水分别高出2.53%、2.62%和4.16%, 整精米率郫县较汉源、射洪、邻水分别高出6.71%、10.67%和13.89%。外观品质中, 米粒长宽比以邻水最大, 射洪、汉源、郫县依次减小; 而垩白粒率和垩白度则在郫县最低, 邻水最高, 汉源和射洪介于二者之间, 其中, 垩白粒率汉源、射洪、邻水较郫县分别高出47.25%、58.43%和106.06%, 垩白度汉源、射洪、邻水较郫县分别高出36.25%、44.63%和123.75%, 故外观品质在郫县最优, 邻水最劣。蛋白质含量在4个生态区间差异均达到显著或极显著, 含量介于5.61%~7.76%之间, 郫县表现出较优的营养品质, 趋势为郫县> 汉源> 射洪> 邻水; 直链淀粉含量为射洪显著高于郫县和邻水, 但4个生态区的直链淀粉含量均较高, 介于26.53%~28.96%之间, 因直链淀粉含量高的稻米蒸煮时米饭蓬松、硬、黏性差, 米粒的延伸性不好, 糊化温度较高, 米饭冷却后会显得更硬, 适口性差[25]。故各生态区稻米的蒸煮食味品质均需改善。
表6中淀粉RVA谱特征值的方差分析表明, 4个生态区间峰值黏度差异极显著, 郫县、汉源、邻水的崩解值、消减值差异显著或极显著, 其中, 崩解值最高、消减值最低的是邻水; 热浆黏度及冷胶黏度在郫县、汉源两地显著低于邻水、射洪两地; 郫县回复值显著高于其他3个生态区, 峰值时间也显著高于邻水、射洪; 汉源糊化温度显著低于其他3个生态区。一般峰值黏度大、崩解值大、冷胶黏度小、消减值小(且为负值)则食味好, 具有这种特性的米饭可能具有较好的柔软性、黏散性、滋味、馨香味, 食味品质较好[26, 27, 28, 29]。邻水、射洪的峰值黏度、崩解值较高, 消减值较低, 食味较好, 而郫县的峰值黏度、崩解值最低, 消减值最高, 食味较差, 这与直链淀粉含量代表的食味品质结论有出入, 可能与直链淀粉含量并非对米饭质地具有完全的决定作用有关[16]
表5
Table 5
表5(Table 5)
表5 生态条件对杂交籼稻稻米主要品质性状的影响 Table 5 Effects of ecological conditions on the main rice quality characters of indica hybrid rice
生态区
Location
糙米率
BR (%)
精米率
MR (%)
整精米率
HMR (%)
长宽比
AR
垩白粒率
CR (%)
垩白度
CD (%)
蛋白质含量
PC (%)
直链淀粉含量
AC (%)
郫县Pixian81.62 Aa75.32 Aa72.33 Aa2.91 b42.22 Cc19.45 Cc7.76 Aa26.70 b
汉源Hanyuan80.15 Bb73.40 Bb67.78 Bb2.92 b62.17 Bb26.50 BCb7.03 Bb27.45 ab
邻水Linshui78.84 Cc72.31 Cc63.51 Cc3.10 a87.00 Aa43.52 Aa5.61 Cd26.53 b
射洪Shehong81.16 Aa73.46 Bb65.36 BCc3.00 ab66.89 Bb28.13 Bb6.83 Bc28.96 a
The data of main rice quality traits of indica hybrid rice variety F you 498 with artificial transplanting (precise and quantitative cultivation) in the four experimental locations. BR: brown rice rate; MR: milled rice rate; HMR: head milled rice rate; AR: aspect ratio; CR: chalkiness rate; CD: chalkiness degree; PC: protein content; AC: amylose content.
数据来源为4个生态区杂交籼稻F优498手插(精确定量栽培)的稻米品质性状。

表5 生态条件对杂交籼稻稻米主要品质性状的影响 Table 5 Effects of ecological conditions on the main rice quality characters of indica hybrid rice

表6
Table 6
表6(Table 6)
表6 生态条件对杂交籼稻淀粉RVA谱特征值的影响 Table 6 Effects of ecological conditions on the RVA profile characteristic values of indica hybrid rice
生态区
Location
峰值黏度
PKV (RVU)
热浆黏度
HTV (RVU)
冷胶黏度
CPV (RVU)
崩解值
BDV (RVU)
消减值
SBV (RVU)
回复值
CSV (RVU)
峰值时间
PeT (min)
糊化温度
PaT (℃)
郫县Pixian216.53 Dd143.42 Bb278.53 Bb73.11 Bc62.00 Aa135.11 Aa6.07 a80.03 Aa
汉源Hanyuan239.74 Cc151.38 Bb272.60 Bb88.37 Bb29.94 Bb122.83 Bb5.94 ab76.59 Bb
邻水Linshui291.17 Aa177.17 Aa300.00 Aa114.00 Aa8.83 Cc121.60 Bb5.92 b79.77 Aa
射洪Shehong282.74 Bb177.35 Aa298.94 Aa105.39 Aa16.21 BCc121.22 Bb5.91 b79.53 Aa
The data of main rice quality traits of indica hybrid rice variety F you 498 with artificial transplanting (precise and quantitative cultivation) in the four experimental locations. PKV: peak viscosity; HTV: hot paste viscosity; CPV: cool paste viscosity; BDV: breakdown viscosity; SBV: setback viscosity; CSV: consistency; PeT: peak time; PaT: pasting temperature.
数据来源为4个生态区杂交籼稻F优498手插(精确定量栽培)的稻米品质性状。

表6 生态条件对杂交籼稻淀粉RVA谱特征值的影响 Table 6 Effects of ecological conditions on the RVA profile characteristic values of indica hybrid rice

结合4个生态区的水稻各生育时期气温、土壤肥力与稻米品质性状进行相关分析, 由表7可知, 影响稻米品质的主要生态因子为齐穗前后20 d气温、抽穗至成熟期高温及土壤肥力。其中, 精米率与糙米率分别与齐穗前和齐穗后20 d日平均气温显著正相关, 精米率、整精米率与土壤全氮、全钾、速效磷呈显著或极显著正相关; 米粒长宽比与土壤全磷显著负相关; 垩白粒率、垩白度与齐穗前14~21 d、抽穗至成熟期日最高气温均呈显著正相关, 此外, 垩白粒率还与土壤全氮、全钾、速效磷呈显著或极显著负相关, 垩白度与速效磷显著负相关; 蛋白质含量与抽穗至成熟期最高气温呈显著负相关, 与速效磷极显著正相关; 直链淀粉含量与土壤有机质呈显著正相关。由表8可以看出, 峰值黏度与土壤全钾呈显著负相关; 崩解值与齐穗前8~21 d日最高气温呈显著正相关, 与土壤全钾、速效磷显著负相关; 回复值、峰值时间与齐穗前14~21 d日最高气温、抽穗至成熟期日最高气温呈显著或极显著负相关, 与土壤碱解氮呈显著正相关。此外, 对4个生态区海拔、经度、纬度、降雨量与稻米品质性状的相关分析均未达显著水平, 结果未列出。综合以上分析可知, 生态条件对杂交籼稻稻米品质的影响较大, 郫县的稻米品质为最优, 邻水相对较劣。
表7
Table 7
表7(Table 7)
表7 稻米主要品质性状与生态因子的相关系数 Table 7 Correlation coefficients of the main rice quality characteristics with ecological factors (n=4)
指标
Index
齐穗前20 d
日均温a
ATDBFH a
齐穗后20 d
日均温a
ATDAFH a
齐穗前14-21 d
日最高温a
MTFBFH a
抽穗-成熟
日最高温a
MTFHM a
有机质
Organic matter
全氮
Total N content
全磷
Total P content
全钾
Total K content
速效磷
Available P
糙米率 BR0.7890.999* -0.663-0.629-0.5360.8460.6180.7340.880
精米率 MR0.999* 0.736-0.991-0.983-0.0710.996* * 0.6380.962* 0.962*
整精米率HMR0.9110.436-0.971-0.9810.1130.956* 0.7290.999* * 0.957*
长宽比AR-0.5590.1020.7020.7330.217-0.772-0.965* -0.851-0.942
垩白粒率CR-0.967-0.5800.997* 1.000* 0.149-0.955* -0.790-0.958* -0.998* *
垩白度CD-0.968-0.5830.998* 1.000* 0.355-0.870-0.863-0.866-0.981*
蛋白质含量PC0.9610.560-0.995-0.999* -0.2800.9030.8480.9050.994* *
直链淀粉含量AC-0.703-0.0850.8220.847-0.989* -0.1410.169-0.2810.034
* , * * Denote significance different at the 0.05 and 0.01 probability levels, respectively. a Denotes the data of ecological factors are from Pixian and Shehong and Hanyuan. BR: brown rice rate; MR: milled rice rate; HMR: head milled rice rate; AR: aspect ratio; CR: chalkiness rate; CD: chalkiness degree; PC: protein content; AC: amylose content. ATDBFH: average temperature during 20 d before full heading; ATDAFH: average temperature during 20 d after full heading; MTFBFH: maximum temperature from 14 d to 21 d before full heading; MTFHM: maximum temperature from heading to maturity.
* * * 分别表示达到0.05和0.01显著水平, a表示用于分析的生态因子数据来自郫县、射洪、汉源3地。

表7 稻米主要品质性状与生态因子的相关系数 Table 7 Correlation coefficients of the main rice quality characteristics with ecological factors (n=4)

2.2 栽培方式对杂交籼稻稻米品质的影响对郫县F优498的4种栽培方式、宜香优2115的3种栽培方式和邻水II优602的2种栽培方式下的稻米各品质性状分别进行方差分析, 由表9可知, 除精米率、米粒长宽比和垩白度外, 其他稻米品质指标在不同栽培方式间有显著或极显著差异。碾米品质以机直播较优, 手插、机插、优化定抛在品种间有差异, 其中, F优498整精米率机直播极显著高于手插、机插, 且显著高于优化定抛; 蛋白质含量优化定抛和机插低于机直播和手插, F优498表现为机直播显著高于机插, 含量介于7.62%~7.89%, 宜香优2115为手插极显著高于机插和优化定抛, 含量在8.10%~8.96%之间, 已知蛋白质含量超过9%则食味变差[16], 因而2个品种在各栽培方式下的蛋白质含量均有利于食味与营养品质的协调; 直链淀粉含量F优498为优化定抛显著高于手插和机直播, 宜香优2115表现为优化定抛显著高于机插, 但两品种在几种栽培方式下的直链淀粉含量均高于20%, 而中等直链淀粉含量(15%~20%)的稻米食味较好[16], 故优化定抛不利于食味品质的提高; 精确定量等行平作(简称等行平作)与精确定量宽窄行垄作(简称宽窄行垄作)的糙米率、垩白粒率、蛋白质含量有显著或极显著差异, 表现为糙米率、垩白粒率等行平作高于宽窄行垄作, 蛋白质含量宽窄行垄作高于等行平作。
通过对不同栽培方式间杂交籼稻淀粉RVA谱特征值的方差分析(表10)可知, 除峰值时间外, 淀粉RVA谱特征值各项指标在各栽培方式间基本表现出显著或极显著差异, 机插的峰值黏度、崩解值显著或极显著高于其他栽培方式, 且消减值低于其他栽培方式, 有利于食味品质的改善, 两品种表现一致。等行平作与宽窄行垄作峰值黏度、冷胶黏度有极显著差异, 热浆黏度差异显著, 均表现为等行平作高于宽窄行垄作。
表9表10可知, 宜香优2115各品质性状均明显优于F优498, 而两品种就以淀粉RVA谱特征值为代表的蒸煮食味品质而言, 均表现为机插优于其他栽培方式。综上可知, 栽培方式及遗传因素(品种)均对稻米品质有影响, 故生产实践中应合理选择合适的栽培方式和品种以改善稻米品质性状, 实现高产优质。
表8
Table 8
表8(Table 8)
表8 稻米淀粉RVA谱特征值与生态因子的相关系数 Table 8 Correlation coefficients of RVA profile characteristic values with ecological factors (n=4)
指标
Index
齐穗前8-21 d
日最高温a
MTFBFHI a
齐穗前14-21 d
日最高温a
MTFBFH2 a
抽穗-成熟
日最高温a
MTFHM a
全氮
Total N content
全钾
Total K content
碱解氮
Available N
速效磷
Available P
峰值黏度PKV0.9950.8340.858-0.846-0.957* -0.696-0.909
热浆黏度HTV0.9750.7570.786-0.774-0.916-0.643-0.848
冷胶黏度CPV0.7860.4050.446-0.541-0.737-0.330-0.725
崩解值BDV0.999* 0.9020.921-0.901-0.980* -0.736-0.953*
消减值SBV-0.955-0.983-0.9900.962* 0.998* * 0.8770.928
回复值CSV-0.882-1.000* * -0.999* 0.9420.9380.979* 0.805
峰值时间PeT-0.913-0.998* -1.000* 0.9320.9470.966* 0.808
糊化温度PaT-0.062-0.522-0.4830.2610.0440.528-0.065
* , * * Denote significance different at the 0.05 and 0.01 probability levels respectively. a Denotes the data of ecological factors are from Pixian and Shehong and Hanyuan. PKV: peak viscosity; HTV: hot paste viscosity; CPV: cool paste viscosity; BDV: breakdown viscosity; SBV: setback viscosity; CSV: consistency; PeT: peak time; PaT: pasting temperature. MTFBFH1: maximum temperature from 8 to 21 d before full heading; MTFBFH2: maximum temperature from 14 to 21 d before full heading; MTFHM: maximum temperature from heading to maturity.
* * * 分别表示达到0.05和0.01显著水平, a 表示用于分析的生态数据来自郫县、射洪、汉源3地。

表8 稻米淀粉RVA谱特征值与生态因子的相关系数 Table 8 Correlation coefficients of RVA profile characteristic values with ecological factors (n=4)

表9
Table 9
表9(Table 9)
表9 栽培方式对杂交籼稻稻米主要品质性状的影响 Table 9 Effects of cultivation pattern on the main rice quality characteristics of indica hybrid rice
生态区
Location
组合
Combination
栽培方式
Cultivation pattern
糙米率
BR (%)
精米率
MR (%)
整精米率
HMR (%)
长宽比
AR
垩白粒率
CR (%)
垩白度
CD (%)
蛋白质含量
PC (%)
直链淀粉含量
AC (%)
郫县
Pixian
F优498
F you 498
手插TBH81.62 a75.32 a72.33 Bb2.91 a42.22 a19.45 a7.76 ab26.70 b
机插MT81.74 a74.77 a71.90 Bb2.99 a45.28 a19.61 a7.62 b27.69 ab
优化定抛OCT81.92 a75.50 a72.88 ABb2.96 a44.78 a19.42 a7.75 ab29.28 a
机直播MD81.99 a75.57 a74.14 Aa2.90 a47.33 a15.59 a7.89 a26.96 b
宜香优2115
Yixiangyou 2115
手插TBH81.29 a75.15 a73.36 a3.07 a19.78 a6.89 a8.96 Aa22.89 ab
机插MT81.20 a74.78 a73.19 a3.05 a18.11 a4.86 a8.20 Bb21.94 b
优化定抛OCT81.40 a75.11 a72.68 a3.01 a27.56 a10.55 a8.10 Bb24.21 a
邻水
Linshui
II优602
II you 602
等行平作ERCP78.79 a72.24 a65.87 a2.33 a89.89 a47.43 a7.21 Bb27.86 a
宽窄行垄作WRRP78.40 b72.19 a67.00 a2.45 a76.89 b42.41 a8.05 Aa27.87 a
MD: mechanized direct-seeding; MT: mechanized transplanting; TBH: transplanting by hand; OCT: optimal cast transplanting; ERCP: equidistant row convention planting; WRRP: wide-narrow row ridge planting. BR: brown rice rate; MR: milled rice rate; HMR: head milled rice rate; AR: aspect ratio; CR: chalkiness rate; CD: chalkiness degree; PC: protein content; AC: amylose content. Values within a column followed by the same letter are not significantly different at P< 0.01 (capital) and P< 0.05 (lowercase), respectively.

表9 栽培方式对杂交籼稻稻米主要品质性状的影响 Table 9 Effects of cultivation pattern on the main rice quality characteristics of indica hybrid rice

2.3 不同产量水平杂交籼稻稻米品质比较将郫县、汉源、射洪、邻水4个生态区F优498的田块按产量划分为5个水平(表11), 即I类田> 14.5 t hm-2; II类田 11.5~14.5 t hm-2; III类田 9.5~10.5 t hm-2; IV类田 8.6~9.5 t hm-2; V类田< 8.6 t hm-2, 并将其品质性状分别取平均值后进行方差分析。由表12可以看出, 5个产量水平的田块碾米品质整体均较优, 糙米率均接近或超过80%, 精米率在72%~ 74%之间, 整精米率均达66%以上, 米粒长宽比均大于2.90, 达到优质稻米一级或二级标准[30]。其中, 糙米率II类田极显著低于其他4类田, 精米率IV、V类田和I、III类田及II类田达极显著差异, 表现为IV、V> I、III> II, 整精米率IV类田和I、V类田及II、III类田有极显著差异, 表现为IV> I、V> II、III; 但产量较高田块的垩白粒率及垩白度较大, 外观品质较劣, 其中, 垩白粒率表现为IV、V< II< I、III, 且差异达极显著; 垩白度II、IV、V类田极显著低于I类田; 此外, 蛋白质含量在5个产量类型田间均达极显著差异, 表现为II< III< I< IV< V; 直链淀粉含量II、III、IV类田极显著高于I类田, 但含量均高于20%。
表10
Table 10
表10(Table 10)
表10 栽培方式对稻米淀粉RVA谱特性的影响 Table 10 Effects of cultivation pattern on RVA profile characteristic values
生态区
Location
组合
Combination
栽培方式
Cultivation pattern
峰值黏度
PKV
(RVU)
热浆黏度
HTV
(RVU)
冷胶黏度
CPV
(RVU)
崩解值
BDV
(RVU)
消减值
SBV
(RVU)
回复值
CSV
(RVU)
峰值时间
PeT
(min)
糊化温度
PaT
(℃)
郫县
Pixian
F优498
F you 498
手插TBH216.53 Cc143.42 a278.53 Bb73.11 b62.00 Aa135.11 a6.07 a80.03 a
机插MT237.46 Aa152.64 a288.61 Aa84.82 a51.15 Bc135.97 a6.10 a79.18 a
优化定抛OCT227.50 Bb152.21 a282.28 Bb75.29 b54.78 Bb130.07 a6.09 a79.16 a
机直播MD224.39 Bb153.08 a288.75 Aa71.31 b64.36 Aa135.67 a6.16 a79.18 a
宜香优2115
Yixiangyou 2115
手插TBH222.50 Cc109.67 Bb193.39 Cc112.83 Bb-29.11 Bb83.72 Bb5.80 a74.43 Bb
机插MT263.68 Aa131.60 Aa214.13 Bb132.08 Aa-49.56 Cc82.53 Bb5.79 a73.63 Bb
优化定抛OCT238.78 Bb127.94 Aa221.56 Aa110.83 Bb-17.22 Aa93.61 Aa5.84 a77.55 Aa
邻水
Linshui
II优602
II you 602
等行平作ERCP269.14 Aa177.83 a308.36 Aa91.31 a39.22 a130.53 a6.09 a78.66 a
宽窄行垄WRRP248.50 Bb159.56 b289.31 Bb88.94 a40.81 a129.75 a5.95 a80.15 a
MD: mechanized direct-seeding; MT: mechanized transplanting; TBH: transplanting by hand; OCT: optimal cast transplanting; ERCP: equidistant row convention planting; WRRP: wide-narrow row ridge planting. PKV: peak viscosity; HTV: hot paste viscosity; CPV: cool paste viscosity; BDV: breakdown viscosity; SBV: setback viscosity; CSV: consistency; PeT: peak time; PaT: pasting temperature. Values within a column followed by the same letter are not significantly different at P< 0.01 (capital) and P< 0.05 (lowercase), respectively.

表10 栽培方式对稻米淀粉RVA谱特性的影响 Table 10 Effects of cultivation pattern on RVA profile characteristic values

表11
Table 11
表11(Table 11)
表11 F优498在4个生态区的产量 Table 11 Yield of F you 498 in four experimental locations
产量水平
Yield level
田块编号
Code of the test field
理论产量
Theoretical yield
(t hm-2)
I (> 14.5 t hm-2)H116.33
H315.44
H214.86
II (11.5-14.5 t hm-2)H613.86
H513.83
H411.62
III (9.5-10.5 t hm-2)S110.44
S210.44
P610.04
S39.78
IV (8.6-9.5 t hm-2)P59.46
P29.26
P39.14
L19.12
V (< 8.6 t hm-2)P48.50
P18.49
S48.21

表11 F优498在4个生态区的产量 Table 11 Yield of F you 498 in four experimental locations

表12
Table 12
表12(Table 12)
表12 杂交籼稻F优498不同产量水平的稻米品质比较 Table 12 Comparison of the rice quality of indica hybrid rice F you 498 with different yield levels
产量水平
Yield level
糙米率
BR (%)
精米率
MR (%)
整精米率
HMR (%)
长宽比
AR
垩白粒率
CR (%)
垩白度
CD (%)
蛋白质含量
PC (%)
直链淀粉含量
AC (%)
I80.43 ABb73.92 Bc68.37 BCbc2.91 Bb63.44 Aa28.12 Aa7.24 Cc26.83 Bb
II78.90 Bc72.34 Cd66.03 Cd2.93 Bb56.56 Bb21.74 Bbc6.51 Ee28.90 Aa
III81.94 Aab73.87 Bc67.40 Ccd3.02 Aa61.25 ABa25.01 ABab7.05 Dd28.57 Aa
IV81.34 Aa75.30 Aa72.75 Aa2.96 ABb43.63 Cd19.75 Bc7.69 Bb28.46 Aa
V80.96 Aab74.58 ABb70.04 Bb2.93 Bb49.19 Cc20.10 Bc7.85 Aa27.92 ABab
The meaning of I, II, III, IV, V are showed in Table 11. BR: brown rice rate; MR: milled rice rate; HMR: head milled rice rate; AR: aspect ratio; CR: chalkiness rate; CD: chalkiness degree; PC: protein content; AC: amylose content.
I、II、III、IV和V代表的意义见表11。

表12 杂交籼稻F优498不同产量水平的稻米品质比较 Table 12 Comparison of the rice quality of indica hybrid rice F you 498 with different yield levels

表13
Table 13
表13(Table 13)
表13 F优498不同产量水平淀粉RVA谱特性比较 Table 13 Comparison of RVA profile characteristic values of F you 498 with different yield levels
产量水平
Yield level
峰值黏度
PKV (RVU)
热浆黏度
HTV (RVU)
冷胶黏度
CPV (RVU)
崩解值
BDV (RVU)
消减值
SBV (RVU)
回复值
CSV (RVU)
峰值时间
PeT (min)
糊化温度
PaT (℃)
I229.94 Cc143.62 Cc263.80 Dd86.32 BCbc29.97 Bb120.18 Bb5.90 Bb76.57 Bb
II263.21 Aa172.92 Aa295.68 Aa90.30 ABab32.46 Bb122.76 Bb6.07 Aa76.54 Bb
III266.80 Aa172.01 Aa296.96 Aa94.78 Aa30.16 Bb124.94 Bb6.01 ABa79.35 Aa
IV228.92 Cc147.70 Cc283.75 Cc81.21 Ccd54.83 Aa146.00 Aa6.07 Aa79.41 Aa
V236.51 Bb156.63 Bb288.79 Bb79.88 Cd52.28 Aa82.68 Cc6.08 Aa78.88 Aa
The meaning of I, II, III, IV, V are showed in Table 11. PKV: peak viscosity; HTV: hot paste viscosity; CPV: cool paste viscosity; BDV: breakdown viscosity; SBV: setback viscosity; CSV: consistency; PeT: peak time; PaT: pasting temperature.
I、II、III、IV和V代表的意义见表11。

表13 F优498不同产量水平淀粉RVA谱特性比较 Table 13 Comparison of RVA profile characteristic values of F you 498 with different yield levels

对5个产量水平田块的杂交籼稻稻米淀粉RVA谱特征值进行方差分析(表13)得出, 超高产的I类田表征淀粉黏度特性的峰值黏度、热浆黏度较低, 崩解值较小, 消减值较高, 不利于食味的提高; 相对低产的V类田虽加工品质和外观品质较优, 但峰值黏度、热浆黏度较低, 冷胶黏度较高, 崩解值低、消减值高, 也不利于食味的提高。以上分析表明, 不同产量水平类型田块品质性状差异较大, 超高产的I、II类田品质并非最劣。

3 讨论3.1 影响杂交籼稻稻米品质的主要生态因子稻米品质不仅受遗传基因的控制, 还受到环境条件等的影响[1]。郫县、汉源、邻水、射洪是4个典型生态区, 郫县位于四川盆地西平原区, 汉源位于光照较好的攀西地区, 邻水位于川东丘陵区, 射洪位于四川盆地中部丘陵区, 4个生态区间温光条件差异较大。本研究表明4个生态区气温及土壤肥力水平的差异与稻米品质差异有一定关系, 郫县的稻米品质性状整体最优, 而邻水最劣, 汉源和射洪介于两者之间。四川的稻米品质区划分布在4个三级次亚区, 即川渝丘陵高温伏旱食用中籼再生稻、多用双季籼稻次亚区, 四川盆地中部丘陵多旱夏热多用中籼次亚区, 四川盆地西部平原春夏旱微热食用中籼稻次亚区和川、渝盆地周围山地冷凉食用早中籼稻次亚区[2]。邻水、射洪、郫县和汉源分别属于以上4个三级次亚区, 可知以郫县为代表的四川盆地西部平原春夏旱微热食用中籼稻次亚区的稻米品质较好。
郫县的稻米碾米品质优于其他3个生态区, 主要是由于其齐穗前后气温相对较适宜(齐穗前20 d日均温为25.42℃, 齐穗后20 d日均温为26.43℃), 促进光合产物的积累、运输, 利于籽粒的充实, 以形成较高的糙米率和精米率; 而较高的土壤全氮、全钾、速效磷含量利于提高精米率、整精米率; 灌浆成熟期的高温会增加稻米的垩白粒率和垩白度, 可能是高温引起细胞分裂快, 致细胞小而多, 淀粉粒贮存疏松, 折光反应明显[31], 高温还会使籽粒灌浆加速, 消耗养分增多, 致使籽粒充实度差, 垩白度增加[32]。此外, 邻水的土壤速效磷含量仅为40.74 mg kg-1, 远低于郫县(183.66 mg kg-1), 而其垩白粒率和垩白度极显著高于郫县, 说明土壤速效磷含量高则有利于降低垩白粒率和垩白度, 改善稻米外观品质, 土壤速效磷含量的增加还会提高稻米的蛋白质含量。常二华等[33]认为磷素营养水平可以改变根系分泌物的含量和组成, 从而影响稻米品质的形成。灌浆结实期的高温也会降低稻米蛋白质含量, 与邓飞等[8]的研究结论相同。直链淀粉含量主要受品种遗传因素影响[34], 也受灌浆结实期温度[35]等的影响, 而本试验表明直链淀粉含量随土壤有机质含量的升高而显著升高。
从淀粉RVA谱特征值看, 邻水、射洪的峰值黏度、崩解值较高, 消减值较低, 利于食味的改善, 而郫县的峰值黏度、崩解值最低, 消减值最高, 不利于食味的改善。本研究表明峰值黏度与土壤全钾含量显著负相关, 崩解值与土壤全钾、速效磷显著负相关, 还与齐穗前8~21 d的日最高温显著正相关, 故要改善稻米食味品质, 应据当地土壤肥力适量施用磷肥和钾肥, 在齐穗前遇极端高温时可采取降温措施如人工降雨等, 提供适宜品质形成的环境条件或合理选择前茬并适当调整播期避开灌浆结实期高温以获得优质稻米; 此外, 选择对生态环境条件适应性好的品种才能将生态条件的潜力发挥到最大。
3.2 高产栽培条件下优质稻米生产的栽培方式选择目前我国水稻主要的栽培方式有手插、机插、抛秧、人工撒直播及机直播等, 各栽培方式下水稻的产量及品质有较大差异。从本试验结果来看, 机直播的碾米品质较优, 可能是各栽培方式下生育进程不同导致灌浆结实期所处的环境条件不同, 已有研究[16]也表明, 整精米率与灌浆结实期日均温度、日最高温度、日最低温度呈负相关, 与日均温差和日均光照时数呈正相关; 而蛋白质含量随光强的降低极显著增加[36], 与灌浆结实期日均温度和日照时数呈极显著负相关[8], 而出穗后30 d内平均气温与直链淀粉含量呈显著负相关[37]; 优化定抛和机插的蛋白质含量低于机直播和手插, 优化定抛的直链淀粉含量显著高于其他栽培方式, 与其生育进程不同致灌浆结实期温光条件差异有关; 淀粉RVA谱特征值中, 机插的峰值黏度、崩解值高于其他栽培方式, 且冷胶黏度和消减值低于机直播和优化定抛, 利于食味品质的改善, 有研究认为, 随灌浆结实期日均温和日照时数的降低, 峰值黏度、热浆黏度和冷胶黏度均显著降低[8]。故各栽培方式间稻米品质差异形成的重要时期为灌浆结实期, 各栽培方式的生育进程及田间植株分布差异等致灌浆结实期温光条件不同, 最终形成品质间的差异。本研究中, 郫县F优498和宜香优2115配合机插均表现出较优的蒸煮食味品质。故在生产实践中, 应该结合当地近年气候条件合理安排前茬作物和选择适宜生育期及优质品种, 适期播种及选择适宜的栽培方式, 以获得较好的稻米品质。
宽窄行垄作属半旱式栽培, 是将水稻栽于垄面, 实行浸润灌溉的一种栽培方式。本试验结果表明, 宽窄行垄作的主要稻米品质较等行平作没有太大的优势。故在降雨不多且常有伏旱的水稻种植区应尽量选择平作以在获得较优的稻米品质的前提下减少投入。
3.3 高产及超高产水平下的稻米品质水稻在高产及超高产水平下的稻米品质与中低产相比并非最劣, 说明高产和优质是可以兼得的。王学红等[38]研究认为, 超高产栽培可以显著改善稻米碾米品质、外观品质和营养品质。本研究中, 高产及超高产的田块(I、II类田)碾米品质整体较优, 而外观品质较劣, 直链淀粉含量较高; 对淀粉RVA谱特征值的分析也表明超高产的I类田蒸煮食味品质相对较差, 故今后对高产田品质的研究要注重蒸煮食味品质的改善。此外, 在本研究中, 高产及超高产田(I、II类田)集中在汉源, 而低产田(V类田)主要在郫县、射洪和邻水, 汉源日照充足, 昼夜温差大, 利于高产, 而郫县日照偏少, 射洪则受浅丘地形制约, 散热慢, 气温日差较小, 邻水受地理因素影响水资源缺乏及灾害性天气时有发生, 不利于高产; 故生态条件的差异对杂交籼稻产量及品质均有较大影响, 在选择高产创建区时应该充分了解生态点的气候条件。现阶段大众对稻米品质的要求越来越高, 故应在高产及超高产栽培下提高稻米品质性状, 而本研究也表明高产及超高产可改善稻米的碾米品质, 而蒸煮食味品质的改善还有待继续研究。

4 结论生态条件对稻米品质有较大影响, 4个生态区中郫县的稻米品质性状整体最优, 邻水相对较劣, 汉源和射洪介于两者之间。影响稻米品质的主要生态因子为齐穗前后20 d气温、抽穗至成熟期高温及土壤肥力。机直播的碾米品质较优, F优498和宜香优2115配合机插均表现出较优的蒸煮食味品质; 高产及超高产的田块碾米品质整体较优, 而外观品质和蒸煮食味品质相对较差, 需进一步探究改善的措施。针对4个生态区的不同特点, 建议郫县加大对机插及其配套栽培技术的推广, 同时加大对优质稻米品种的推广; 汉源水稻产量较高则更应选择米质好的品种试验和推广以获得高产与优质的结合; 射洪虽处丘陵区但仍可以尝试推广机插, 而邻水最重要的是合理分配及管理稻田用水, 在施肥方面适量增加磷肥和钾肥以补足土壤磷钾的缺口, 提高水稻的产量和品质。
The authors have declared that no competing interests exist.

作者已声明无竞争性利益关系。


参考文献View Option
原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

[1]贺浩华, 彭小松, 刘宜柏. 环境条件对稻米品质的影响. 江西农业学报, 1997, 9(4): 66-72
He S H, Peng X S, Liu Y B. Effect of environmental conditions on rice quality. Acta Agric Jiangxi, 1997, 9(4): 66-72 (in Chinese with English abstract)[本文引用:3][CJCR: 0.663]
[2]蔡洪法. 农业部种植业管理司. 中国稻米品质区划及优质栽培. 北京: 中国农业出版社, 2002. pp 63-74, 206-207
Cai H F. Management Division of the Ministry of Agriculture Planting Industry. Chinese Quality Regionalization of Rice and High Quality Cultivation. Beijing: China Agriculture Press, 2002. pp 63-74, 206-207(in Chinese)[本文引用:2]
[3]金正勋, 杨静, 钱春荣, 李海英, 金学泳, 秋太权. 灌浆成熟期温度对水稻籽粒淀粉合成关键酶活性及品质的影响. 中国水稻科学, 2005, 19: 377-380
Jin Z X, Yang J, Qian C R, Li H Y, Jin X Y, Qiu T Q. Effects of temperature during grain filling period on activities of key enzymes for starch synthesis and grain quality. Chin J Rice Sci, 2005, 19: 377-380 (in Chinese with English abstract)[本文引用:1][CJCR: 1.394]
[4]盛靖, 陶红娟, 陈留根. 灌浆结实期不同时段温度对水稻结实与稻米品质的影响. 中国水稻科学, 2007, 21: 396-402
Sheng J, Tao H J, Chen L G. Response of seed and grain quality of rice to temperature at different time during grain filling period. Chin J Rice Sci, 2007, 21: 396-402 (in Chinese with English abstract)[本文引用:1][CJCR: 1.394]
[5]Dong M H, Chen P F, Qiao Z Y, Wu X Z, Zhao B H, Jiang Y Y, Yang J C. Quality response of grains in different spikelet positions to temperature stress during grain filling of rice. Acta Agron Sin, 2011, 37(3): 506-513[本文引用:1][CJCR: 1.681]
[6]张国发, 王绍华, 尤娟, 王强盛, 丁艳锋, 吉志军. 结实期不同时段高温对稻米品质的影响. 作物学报, 2006, 32: 283-287
Zhang G F, Wang S H, You J, Wang Q S, Ding Y F, Ji Z J. Effect of temperature in different filling stages on rice qualities. Acta Agron Sin, 2006, 32: 283-287 (in Chinese with English abstract)[本文引用:1][CJCR: 1.681]
[7]陶龙兴, 王熹, 廖西元, 沈波, 谈惠娟, 黄世文. 灌浆期气温与源库强度对稻米品质的影响及其生理分析. 应用生态学报, 2006, 17: 647-652
Tao L X, Wang X, Liao X Y, Shen B, Tan H J, Huang S W. Physiological effects of air temperature and sink-source volume at milk-filling stage of rice on its grain quality. Chin J Appl Ecol, 2006, 17: 647-652 (in Chinese with English abstract)[本文引用:1][CJCR: 1.904]
[8]邓飞, 王丽, 叶德成, 任万军, 杨文钰. 生态条件及栽培方式对稻米RVA谱特性及蛋白质含量的影响. 作物学报, 2012, 38: 717-724
Deng F, Wang L, Ye D C, Ren W J, Yang W Y. Effects of ecological conditions and cultivation methods on rice starch RVA profile characteristics and protein content. Acta Agron Sin, 2012, 38: 717-724 (in Chinese with English abstract)[本文引用:4][CJCR: 1.681]
[9]Wang L, Deng F, Ren W J, Yang W Y. Effects of shading on starch pasting characteristics of indica hybrid rice (Oryza sativa L. ). PLoS One, 2013, 8(7): e68220[本文引用:2][JCR: 3.534]
[10]陈莹莹, 胡星星, 陈京都, 杨雄, 马群, 陈乔, 葛梦婕, 戴其根. 氮肥水平对江苏早熟晚粳稻食味品质的影响及其品种间差异. 作物学报, 2012, 38: 2086-2092
Chen Y Y, Hu X X, Chen J D, Yang X, Ma Q, Chen Q, Ge M J, Dai Q G. Effect of nitrogen fertilizer application on quality of early-maturing late japonica rice in Jiangsu and its difference among varieties. Acta Agron Sin, 2012, 38: 2086-2092 (in Chinese with English abstract)[本文引用:1][CJCR: 1.681]
[11]叶全宝, 张洪程, 李华, 霍中洋, 魏海燕, 夏科, 戴其根, 许轲. 施氮水平和栽插密度对粳稻淀粉RVA谱特性的影响. 作物学报, 2005, 31: 124-130
Ye Q B, Zhang H C, Li H, Huo Z Y, Wei H Y, Xia K, Dai Q G, Xu K. Effects of amount of nitrogen applied and planting density on RVA profiles characteristic of japonica rice. Acta Agron Sin, 2005, 31: 124-130 (in Chinese with English abstract)[本文引用:1][CJCR: 1.681]
[12]金正勋, 秋太权, 孙艳丽, 赵久明, 金学泳. 氮肥对稻米垩白及蒸煮食味品质特性的影响. 植物营养与肥料学报, 2001, 7: 31-35
Jin Z X, Qiu T Q, Sun Y L, Zhao J M, Jin X Y. Effects of nitrogen fertilizer on chalkness ratio and cooking and eating quality properties of rice grain. Plant Nutr Fert Sci, 2001, 7: 31-35 (in Chinese with English abstract)[本文引用:1][CJCR: 1.707]
[13]潘圣刚, 翟晶, 曹凑贵, 蔡明历, 王若涵, 黄胜奇, 李进山. 氮肥运筹对水稻养分吸收特性及稻米品质的影响. 植物营养与肥料学报, 2010, 16: 522-527
Pan S G, Zhai J, Cao C G, Cai M L, Wang R H, Huang S Q, Li J S. Effects of nitrogen management practices on nutrition uptake and grain qualities of rice. Plant Nutr Fert Sci, 2010, 16: 522-527 (in Chinese with English abstract)[本文引用:1][CJCR: 1.707]
[14]Ning H F, Liu Z H, Wang Q S, Lin Z M, Chen S J, Li G H, Wang S H, Ding Y F. Effect of nitrogen fertilizer application on grain phytic acid and protein concentrations in japonica rice and its variations with genotypes. J Cereal Sci, 2009, 50: 49-55[本文引用:1][JCR: 1.943]
[15]霍中洋, 李杰, 许轲, 戴其根, 魏海燕, 龚金龙, 张洪程. 高产栽培条件下种植方式对不同生育类型粳稻米质的影响. 中国农业科学, 2012, 45: 3932-3945
Huo Z Y, Li J, Xu K, Dai Q G, Wei H Y, Gong J L, Zhang H C. Effect of planting methods on quality of different growth and development types of japonica rice under high-yielding cultivation condition. Sci Agric Sin, 2012, 45: 3932-3945 (in Chinese with English abstract)[本文引用:1][CJCR: 1.4]
[16]王忠, 顾蕴洁, 陈刚, 熊飞, 李运祥. 稻米的品质和影响因素. 分子植物育种, 2003, 1: 231-241
Wang Z, Gu Y J, Chen G, Xiong F, Li Y X. Rice quality and its affecting factors. Mol Plant Breed, 2003, 1: 231-241 (in Chinese with English abstract)[本文引用:5][CJCR: 0.805]
[17]杨祥田, 曾孝元, 林采舜, 王旭辉, 何贤彪. 双季连作稻机插产量900 kg/667 m2以上栽培技术. 中国稻米, 2013, 19(4): 111-113
Yang X T, Zeng X Y, Lin C S, Wang X H, He X B. Cultivation technology of yield more than 900 kg/667 m2 of the double cropping rice mechanized transplanting. China Rice, 2013, 19(4): 111-113 (in Chinese with English abstract)[本文引用:1][CJCR: 0.71]
[18]苏柏元, 朱德峰. 超级稻甬优12机插单产1000 kg/667 m2的产量结构与配套栽培技术. 中国稻米, 2013, 19(4): 97-100
Su B Y, Zhu D F. Yield structure and cultivation technology of yield more than 1000 kg/667 m2 of the super hybrid rice Yongyou 12 of mechanized transplanting. China Rice, 2013, 19(4): 97-100 (in Chinese with English abstract)[本文引用:1][CJCR: 0.71]
[19]熊绍军, 李尚书, 李绍前. 杂交中稻尚优518示范表现及高产栽培技术. 杂交水稻, 2012, 27(4): 48-49
Xiong S J, Li S S, Li S Q. Demonstrative performance and high-yielding cultural techniques of medium hybrid rice Shangyou 518. Hybrid Rice, 2012, 27(4): 48-49 (in Chinese with English abstract)[本文引用:1][CJCR: 0.481]
[20]杨培忠, 刘丕庆, 黄理寿, 农志昭, 王显勇, 范辉林, 廖汝昌. 特优679在广西陆川县示范高产栽培技术. 杂交水稻, 2012, 27(4): 55-56
Yang P Z, Liu P Q, Huang L S, Nong Z Z, Wang X Y, Fan H L, Liao R C. High-yield cultural techniques of Teyou 679 in the demonstration at Luchuan county, Guangxi. Hybrid Rice, 2012, 27(4): 55-56 (in Chinese with English abstract)[本文引用:1][CJCR: 0.481]
[21]于林惠, 李刚华, 徐晶晶, 凌启鸿, 丁艳锋. 基于高产示范方的机插水稻群体特征研究. 中国水稻科学, 2012, 26: 451-456
Yu L H, Li G H, Xu J J, Ling Q H, Ding Y F. Population characteristics of machine-transplanted japonica rice based on high-yield demonstration fields. Chin J Rice Sci, 2012, 26: 451-456 (in Chinese with English abstract)[本文引用:1][CJCR: 1.394]
[22]任万军, 胡晓玲, 杨万全, 邓玲, 刘代银, 曾必荣, 杨文钰. 水稻优化定抛的增产机理与关键技术. 中国稻米, 2008, (3): 54-56
Ren W J, Hu X L, Yang W Q, Deng L, Liu D Y, Zeng B R, Yang W Y. Increasing production of mechanism and key techniques of opstimal cast transplanting of rice. China Rice, 2008, (3): 54-56 (in Chinese with English abstract)[本文引用:1][CJCR: 0.71]
[23]凌启鸿, 张洪程, 丁艳锋, 张益彬. 水稻高产技术的新发展——精确定量栽培. 中国稻米, 2005, (1): 3-7
Ling Q H, Zhang H C, Ding Y F, Zhang Y B. The new development of rice high yield technology—the precise and quantitative cultivation. China Rice, 2005, (1): 3-7 (in Chinese with English abstract)[本文引用:1][CJCR: 0.71]
[24]焦桂爱, 胡培松, 唐绍清, 罗炬, 邵高能. 稻米直链淀粉含量的简易测定方法. 中国稻米, 2009, (3): 23-24
Jiao G A, Hu P S, Tang S Q, Luo J, Shao G N. A simple method for the determination of amylose content of rice. China Rice, 2009, (3): 23-24 (in Chinese with English abstract)[本文引用:1][CJCR: 0.71]
[25]王志东, 赖穗春, 李宏, 黄道强, 卢德城, 周德贵, 王重荣, 周少川. 稻米食味品质评价方法的研究进展与展望. 广东农业科学, 2011, (13): 18-20
Wang Z D, Lai S C, Li H, Huang D Q, Lu D C, Zhou D G, Wang C R, Zhou S C. Research progress and prospect of eating quality evaluation method. Guangdong Agric Sci, 2011, (13): 18-20 (in Chinese)[本文引用:1][CJCR: 0.512]
[26]舒庆尧, 吴殿星, 夏英武, 高明尉. 稻米淀粉RVA谱特征与食用品质的关系. 中国农业科学, 1998, 31(3): 1-4
Shu Q R, Wu D X, Xia Y W, Gao M W. Relationship between RVA profile character and eating quality in Oryza sativa L. Sci Agric Sin, 1998, 31(3): 1-4 (in Chinese with English abstract)[本文引用:1][CJCR: 1.4]
[27]张小明, 石春海, 富田桂. 粳稻米淀粉特性与食味间的相关性分析. 中国水稻科学, 2002, 16: 157-161
Zhang X M, Shi C H, Katsura T. Correlation analysis between starch characteristics and taste quality in japonica rice. Chin J Rice Sci, 2002, 16: 157-161 (in Chinese with English abstract)[本文引用:1][CJCR: 1.394]
[28]吴殿星, 舒庆尧, 夏英武. RVA分析辅助选择食用优质早籼稻的研究. 作物学报, 2001, 27: 165-172
Wu D X, Shu Q Y, Xia Y W, Assisted-selection for early indica rice with good eating quality by RVA profile. Acta Agron Sin, 2001, 27: 165-172 (in Chinese with English abstract)[本文引用:1][CJCR: 1.681]
[29]吴殿星, 舒庆尧, 夏英武. 利用RVA谱快速鉴别不同表观直链淀粉含量早籼稻的淀粉粘滞特性. 中国水稻科学, 2001, 15: 57-59
Wu D X, Shu Q Y, Xia Y W. Rapid identification of starch viscosity property of early indica rice varieties with different apparent amylose content by RVA profile. Chin J Rice Sci, 2001, 15: 57-59 (in Chinese with English abstract)[本文引用:1][CJCR: 1.394]
[30]GB/T 17891-1999. 优质稻谷. 国家标准: B/T 17891-1999. ,
GB/T 17891-1999. High Quality Paddy. National Stand ard of China: B/T 17891-1999. (in Chinese)[本文引用:1]
[31]范燕萍, 周美兰, 唐启源. 稻米胚乳淀粉细胞结构与米质关系的研究: II. 不同生态条件对稻米胚乳淀粉细胞的影响. 作物研究, 1989, 3(2): 19-23
Fan Y M, Zhou M L, Tang Q Y. Study on the relationship of structure of grain quality and endosperm cells of rice starch: II. Effect of different ecological conditions on rice endosperm starch cells. Crop Res, 1989, 3(2): 19-23 (in Chinese with English abstract)[本文引用:1][CJCR: 0.671]
[32]孟亚利, 周治国. 结实期温度与稻米品质的关系. 中国水稻科学, 1997, 11: 51-54
Meng Y L, Zhou Z G. Relationship between rice grain quality and temperature during seed setting period. Chin J Rice Sci, 1997, 11: 51-54 (in Chinese with English abstract)[本文引用:1][CJCR: 1.394]
[33]常二华, 张耗, 张慎凤, 王志琴, 杨建昌. 结实期氮磷营养水平对水稻根系分泌物的影响及其与稻米品质的关系. 作物学报, 2007, 33: 1949-1959
Chang E H, Zhang H, Zhang S F, Wang Z Q, Yang J C. Effects of nitrogen and phosphorus on the root exudates during grain filling and their relations with grain quality of rice. Acta Agron Sin, 2007, 33: 1949-1959 (in Chinese with English abstract)[本文引用:1][CJCR: 1.681]
[34]张运锋, 谭学林. 水稻直链淀粉的影响因素、直链淀粉对加工品质的影响及遗传. 福建稻麦科技, 2004, 22(3): 9-11
Zhang Y F, Tan X L. Factors rice amylose content, amylose content on processing quality and amylose content genetics. Fujian Sci Technol Rice & Wheat, 2004, 22(3): 9-11 (in Chinese with English abstract)[本文引用:1]
[35]程方民, 丁元树, 朱碧岩. 稻米直链淀粉含量的形成及其与灌浆结实期温度的关系. 生态学报, 2000, 20: 646-651
Cheng F M, Ding Y S, Zhu B Y. The formation of amylose content in rice grain and its relation with field temperature. Acta Ecol Sin, 2000, 20: 646-651 (in Chinese with English abstract)[本文引用:1]
[36]任万军, 杨文钰, 徐精文, 樊高琼, 马周华. 弱光对水稻籽粒生长及品质的影响. 作物学报, 2003, 29: 785-790
Ren W J, Yang W Y, Xu J W, Fan G Q, Ma Z H. Effect of light on grain growth and quality in rice. Acta Agron Sin, 2003, 29: 785-790 (in Chinese with English abstract)[本文引用:1][CJCR: 1.681]
[37]冯卫东, 杨生龙, 张俊杰, 张仲军, 闫宏. 日本水稻品质研究的理论与实践综述——关于米的食味. 宁夏农林科技, 2005, (4): 54-56
Feng W D, Yang S L, Zhang J J, Zhang Z J, Yan H. Overview on the theory and practice of Japanese rice quality research-about the eating quality of rice. Ningxia J Agric For Sci & Technol, 2005, (4): 54-56 (in Chinese)[本文引用:1]
[38]王学红, 杨波, 杜永, 刘群松, 朱道荣. 水稻超高产栽培的品质效应研究. 山东农业科学, 2011, (2): 42-44
Wang X H, Yang B, Du Y, Liu Q S, Zhu D R. Study on the quality effect of super high yield cultivation of rice. Shand ong Agric Sci, 2011, (2): 42-44 (in Chinese with English abstract)[本文引用:1][CJCR: 0.593]
相关话题/生态 土壤 优化 四川 作物