关键词:甘蔗; 产量; 基因型×环境交互作用; HA-GGE双标图; 生态区划分 Evaluation of Sugarcane Test Environments and Ecological Zone Division in China Based on HA-GGE Biplot LUO Jun1, XU Li-Ping1, QIU Jun2, ZHANG Hua1, YUAN Zhao-Nian1, DENG Zu-Hu1, CHEN Ru-Kai1, QUE You-Xiong1,* 1Fujian Agriculture and Forestry University / Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture / Sugarcane Research & Development Center of China Agriculture Research System, Fuzhou 350002, China
2National Agricultural Technology Extension and Service Center, Beijing 100125, China
AbstractThe yield data of 24 sugarcane cultivars grown at 14 locations were analyzed in combination of analysis of variance and heritability-adjusted GGE (HA-GGE) biplot to study the genotype (G), environment (E), and genotype×environment (GE) effects on yield variation. Besides, the 14 test locations were evaluated for their discriminating ability, representative ability and desirability index, and grouped into ecological zones based on the GGE biplot patterns. The results showed that the effect of environments on yield was higher than that of G and GE, and the genotype by location interaction was the greatest while genotype by year interaction the least within GE. The GGE biplot analysis revealed that Suixi of Guangdong Province and Chongzuo of Guangxi Province were the two most ideal test locations for developing and/or recommending cultivars for the whole region. In contrast, Laibin and Liuzhou of Guangxi Province were undesirable for selection and variety recommendation for the whole region. The other relatively desirable test locations included Fuzhou and Zhangzhou of Fujian Province, Zhanjiang of Guangdong Province, Baoshan, Lincang, and Ruili of Yunnan Province, followed by the four less desirable test environments, Baise and Hechi of Guangxi Province, Lingao of Hainan Province and Kaiyuan of Yunnan Province. According to the results from HA-GGE analysis, the sugarcane ecological zones in China could be divided into three subregions, the first is the ecological zone of southern China inland, represented by Baise, Hechi, Laibin and Liuzhou of Guangxi Province, the second one is the ecological zone of southwest plateau, represented by Baoshan, Kaiyuan, Lincang and Ruili of Yunnan Province, and the third one is the ecological zone of coastal southern China, represented by Fuzhou and Zhangzhou of Fujian Province, Zhanjiang and Suixi of Guangdong Province, and Chongzuo of Guangxi Province. The present study fully displayed the successful application of HA-GGE biplot in trial environment evaluation and also provided the theoretical basis for the decision-making in ecological zone division.
Keyword:Sugarcane; Yield; Genotype×environment (GE) interaction; Heritability adjusted GGE; Ecological zone division Show Figures Show Figures
表4 基于产量选择的甘蔗区域试验环境标准化评价参数(平均值± 标准差) Table 4 Standardized test location evaluation parameters based on yield selection in sugarcane trials (mean± SD)
试验点 Trial location
鉴别力 Discriminating ability
代表性 Representativeness
理想指数 Desirability index
E1
1.093± 0.246 abcd
0.791± 0.274 a
0.859± 0.371 a
E2
1.007± 0.241 bcd
0.717± 0.333 a
0.742± 0.446 a
E3
1.054± 0.282 abcd
0.904± 0.057 a
0.947± 0.242 a
E4
0.887± 0.391 d
0.775± 0.242 a
0.706± 0.418 a
E5
1.393± 0.046 a
0.419± 0.828 a
0.581± 1.164 a
E6
1.259± 0.223 ab
0.807± 0.322 a
0.994± 0.422 a
E7
1.251± 0.140 abc
0.360± 0.914 a
0.428± 1.171 a
E8
1.017± 0.149 bcd
0.368± 0.772 a
0.315± 0.832 a
E9
1.204± 0.161 abcd
0.286± 0.910 a
0.336± 1.082 a
E10
1.111± 0.209 abcd
0.306± 0.887 a
0.435± 0.937 a
E11
0.860± 0.276 d
0.824± 0.285 a
0.676± 0.299 a
E12
0.907± 0.392 cd
0.626± 0.426 a
0.560± 0.527 a
E13
1.099± 0.346 abcd
0.642± 0.238 a
0.679± 0.315 a
E14
1.193± 0.253 abcd
0.703± 0.166 a
0.856± 0.314 a
The values followed by common letters in the same column for locations are not significantly different at the 0.05 probability leve1. SD stands for standard deviations of the corresponding location evaluation parameters among trials. 同一列中标有相同小写字母的数据在0.05水平上差异不显著。标准差为相应评价指数的试验组间。
表4 基于产量选择的甘蔗区域试验环境标准化评价参数(平均值± 标准差) Table 4 Standardized test location evaluation parameters based on yield selection in sugarcane trials (mean± SD)
罗俊, 张华, 邓祖湖, 阙友雄. 用GGE双标图分析甘蔗品种性状稳定性及试点代表性. , 2012, 23: 1319-1325LuoJ, ZhangH, Deng ZH, Que YX. Trait stability and test site representativeness of sugarcane cultivars based on GGE-biplot analysis. , 2012, 23: 1319-1325[本文引用:3][CJCR: 1.742]
[2]
罗俊, 张华, 邓祖湖, 许莉萍, 徐良年, 袁照年, 阙友雄. 应用GGE双标图分析甘蔗品种(系)的产量和品质性状, , 2013, 39: 142-152LuoJ, ZhangH, Deng ZH, Xu LP, Xu LN, Yuan ZN, Que YX. Analysis of yield and quality traits in sugarcane cultivars (lines) with GGE-biplot. , 2013 39: 142-152 (in Chinese with English abstract)[本文引用:3][CJCR: 1.667]
[3]
GiauffretC, LothropJ, DorvillezD, GouesnardB, DerieuxM. Genotype × environment interactions in maize from temperate or high land tropical origin. , 2000, 40: 1004-1012[本文引用:2][JCR: 1.513]
[4]
Haussmann BI, Hess DE, Reddy BV, Mukuru SZ, KayentaoM, Welz HG, Geiger HH. Pattern analysis of genotype × environment interaction for striga resistance and grain yield in African sorghum trials. , 2001, 122: 297-308[本文引用:1]
[5]
许乃银, 张国伟, 李健, 周治国. 基于GGE双标图的棉花品种生态区划分. , 2013, 24: 771-776Xu NY, Zhang GW, LiJ, Zhou ZG. Ecological regionalization of cotton varieties based on GGE biplot. , 2013, 24: 771-776 (in Chinese with English abstract)[本文引用:1][CJCR: 1.742]
许乃银, 张国伟, 李健, 周治国. 基于HA-GGE 双标图的长江流域棉花区域试验环境评价. , 2012, 38: 2229-2236Xu NY, Zhang GW, LiJ, Zhou ZG. Evaluation of cotton regional trial environments based on HA-GGE biplot in the Yangtze river valley. , 2012, 38: 2229-2236 (in Chinese with English abstract)[本文引用:9][CJCR: 1.667]
[11]
Yan WK, Hant LA. Biplot analysis of diallel data. , 2002, 42: 21-30[本文引用:2][JCR: 1.513]
[12]
严威凯. 双标图分析在农作物品种多点试验中的应用. , 2010, 36: 1-16Yan WK. Optimal use of biplots in the analysis of multi-environment variety trial data. , 2010, 36: 1-16 (in Chinese with English abstract)[本文引用:12][CJCR: 1.667]
[13]
de Oliveira RL, Von Pinho RG, Ferreira DF, Pires L PM, Melo W MC. Selection index in the study of adaptability and stability in maize. Sci World J, 2014, http://dx.doi.org/10.1155/2014/360570[本文引用:2]
[14]
YanW, Frégeau-ReidJ A, PageauD, MartinR, Mitchell-FetchJ, EtienneM, RowsellJ, ScottP, PriceM, de HaanB, CummiskeyA, LajeunesseJ, Durand J, SparryE. Identifying essential test locations for oat breeding in eastern Canada. , 2010, 50: 504-515[本文引用:5][JCR: 1.513]
[15]
CrossaJ, Fox PN, Pfeiffer WH, RajaramS, Gauch JrH G. AMMI adjustment for statistical analysis of an internal wheat yield trial. , 1991, 81: 27-37[本文引用:1][JCR: 3.658]
[16]
常磊, 柴守玺. AMMI模型在旱地春小麦稳定性分析中的应用. , 2006, 26: 3677-3684ChangL, Chai SX. Application of AMM I model in the stability analysis of spring wheat in rainfed area. , 2006, 26: 3677-3684 (in Chinese with English abstract)[本文引用:1]
[17]
刘文江, 李浩杰, 汪旭东, 周开达. 用AMMI模型分析杂交水稻基本性状的稳定性. , 2002, 28: 569-573Liu WJ, Li HJ, Wang XD, Zhou KD. Stability analysis for elementary characters of hybrid rice by AMMI model. , 2002, 28: 569-573 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[18]
刘旭云, 谢永俊, 杨德, 张锡顺. AMMI模型应用于油菜区域试验的分析研究. , 2001, 14(2): 27-30Liu XY, Xie YJ, YangD, Zhang XS. Analysis and research of AMMI model for rape varieties regional trials. , 2001, 14(2): 27-30 (in Chinese with English abstract)[本文引用:1][CJCR: 0.525]
[19]
罗俊, 袁照年, 张华, 陈由强, 陈如凯. 宿根甘蔗产量性状的稳定性分析. , 2009, 15: 488-494LuoJ, Yuan ZN, ZhangH, Chen YQ, Chen RK. Stability analysis on yield characters of sugarcane ratoon. , 2009, 15: 488-494 (in Chinese with English abstract)[本文引用:1][CJCR: 0.867]
[20]
Gauch H GJr, Piepho HP, AnnicchiaricoP. Statistical analysis of yield trials by AMMI and GGE: further considerations. , 2008, 48: 866-889[本文引用:1][JCR: 1.513]
[21]
YanW, Kang MS, Ma BL, WoodsS, Cornelius PL. GGE biplot vs. AMMI analysis of genotype-by-environment data. , 2007, 47: 643-655[本文引用:1][JCR: 1.513]
[22]
严威凯, 盛庆来, 胡跃高, Hun LA. GGE叠图法-分析品种×环境互作模式的理想方法. , 2001, 27: 21-27Yan WK, Sheng QL, Hu YG, Hun LA. GGE biplot: all ideal tool for studying genotype by environment interaction of regional yield trial data. , 2001, 27: 21-27 (in Chinese with English abstract)[本文引用:2][CJCR: 1.667]
[23]
YanW, Hunt LA, Sheng QL, SzlavnicsZ. Cultivar evaluation and mega-environment investigation based on GGE biplot. , 2000, 40: 596-605[本文引用:2][JCR: 1.513]
[24]
YanW, Holland JB. A heritability-adjusted GGE biplot for test environment evaluation. , 2010, 171: 355-369[本文引用:5][JCR: 1.643]
[25]
张志芬, 付晓峰, 刘俊青, 杨海顺. 用GGE双标图分析燕麦区域试验品系产量稳定性及试点代表性. , 2010, 36: 1377-1385Zhang ZF, Fu XF, Liu JQ, Yang HS. Yield stability and testing-site representativeness in national regional trials for oat variety based on GGE-biplot analysis. , 2010, 36: 1377-1385 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[26]
陈四龙, 李玉荣, 程增书, 刘吉生. 用GGE双标图分析种植密度对高油花生生长和产量的影响. 作物学报, 2009, 35: 1328-1335Chen SL, Li YR, Cheng ZS, Liu JS. GGE-biplot analysis of effects of planting density n growth and yield components of high oil peanut. , 2009, 35: 1328-1335 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[27]
尚毅, 李少钦, 李殿荣. 用双标图分析油菜双列杂交试验. , 2006, 32: 243-248ShangY, Li SQ, Li DR. GGE biplot analysis of diallelcross of B. napus L. , 2006, 32: 243-248 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[28]
周长军, 田中艳, 李建英. 双标图法分析大豆多点试验中品系产量稳定性及试点代表性. , 2011, 30: 318-322Zhou CJ, Tian ZY, Li JY. GGE-biplot analysis on yield stability and testing-site representativeness of soybean lines in multi- environment trials. , 2011, 30: 318-322 (in Chinese with English abstract)[本文引用:1][CJCR: 0.886]
[29]
常磊, 柴守玺. GGE双标图在我国旱地春小麦稳产性分析中的应用. , 2010, 18: 988-994ChangL, Chai SX. Application of GGE biplot in spring wheat yield stability analysis in rainfed areas of China. , 2010, 18: 988-994 (in Chinese with English abstract)[本文引用:1][CJCR: 0.795]
[30]
许乃银, 金石桥. 应用GGE双标图筛选理想棉花区域试验点. , 2010, 32(3): 7-12Xu NY, Jin SQ. Identifying discriminating and representative locations in cotton regional trials using GGE biplot. , 2010, 32(3): 7-12 (in Chinese with English abstract)[本文引用:1][CJCR: 0.209]
[31]
孙敏, 蒋文敏, 李慧英, 刘壮. 应用GGE双标图进行向日葵杂交种产量稳定性分析. , 2010, (9): 11-13SunM, Jiang WM, Li HY, LiuZ. Analysis of stable-production character by GGE biplot on sunflower hybrids. , 2010, (9): 11-13 (in Chinese with English abstract)[本文引用:1][CJCR: 0.3268]
[32]
Tang QY, Zhang CX, Data Processing System (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research. , 2013, 20: 254-260[本文引用:1][CJCR: 0.2185]
金石桥, 许乃银. GGE双标图在中国农作物品种试验中应用的必要性探讨. , 2012, 31(12): 89-92Jin SQ, Xu NY. The discuss of necessity about GGE double labeling chart applied in crop variety experiment in China. , 2012, 31(12): 89-92 (in Chinese with English abstract)[本文引用:2][CJCR: 0.445]
[35]
LuoJ, Pan YB, Xu LP, ZhangH, Yuan ZN, Deng ZH, Chen RK, Que YX. Cultivar evaluation and essential test locations identification for sugarcane breeding in China. , 2014, http://dx.doi.org/10.1155/2014/302753[本文引用:1]
[36]
LuoJ, Que YX, ZhangH, Xu LP. Seasonal variation of the canopy structure parameters and its correlation with yield-related traits in sugarcane. , 2013, http://dx.doi.org/10.1155/2013/801486[本文引用:1]