关键词:表型组; 表型组学; 植物; 概念; 范畴 Analysis of Concepts and Categories of Plant Phenome and Phenomics PAN Ying-Hong Institute of Crop Science, Chinese Academy of Agricultural Sciences / National Key Facility for Gene Resources and Genetic Improvement, Beijing 100081, China
AbstractPlant phenotyping is a key link in understanding gene function and environmental effects, and with development of plant function genomics and crop molecular breeding, the traditional phenotypic observation has become the main bottleneck. High-throughput plant phenome analysis technology and plant phenomics study is an effective way to solve this problem. Although plant phenome analysis is becoming a hot spot at home and abroad, relevant concepts are still relatively fuzzy, and this situation hinders the development of this emerging discipline. In this paper, the relevant concepts and categories of plant phenome and plant phenomics were analyzed, and the new concepts such as quasi-phenome, identifiable traits, mapped traits, and tolerance of plant phenotype to the changes of inheritance and environment, were introduced. And, plant phenome was defined as “all of physical, physiological and biochemical characteristics and traits which are decided or influenced by genome and environments, and can reflect the plant structures and compositions, or reflect the processes and results of plant growth and development”, and plant phenomics as “the comprehensive controls, complete collections and systematic analyses of plant phenome informations and related environmental parameters”. The scopes, directions, and top design principles of plant phenomics research, were also discussed.
作为基因组研究重要补充的复杂疾病性状研究新学科。 A new discipline of studying of complex diseases traits that would complement genomic research.
[1]
Schilling et al.
1999
从基因组数据中分析、解释和预测基因型与表型的关系。 To analyze, interpret, and predict the genotype-phenotype relationship from genomic data.
[9]
Niculescu and Kelsoe
2002
以理解基因对表型的映射为目的的、在生物学上有区别的内在表型(结构和功能)的测量。 The measurement of biologically distinct endophenotypes for understanding of the mapping of genes to phenotypes.
[10]
Bader et al.
2003
大规模基因删除和RNA介导干扰的全表型分析。 Analysis of all phenotypes under large-scale gene deletion and RNA-mediated interference.
[11]
Sauer
2004
以理解细胞内基因和较高组织层次相互关系为目的的、基于基因组信息或突变体库的 所有表型分析。 Any form of phenotypic analysis of genomic information or entire mutant collections with the goal of understanding the relationship between genes and higher levels of organization in the cell.
[12]
Joy and Hegele
2008
对表型和环境暴露的综合表征。 The comprehensive characterization of phenotype and environmental exposure.
[13]
Whiteley et al.
2008
有关表型的本质特征和决定因素、特别是表型与基因和蛋白关系的研究。 The study of the nature of phenotypes and how they are determined, particularly when studied in relation to the set of all genes or all proteins.
[14]
Bilderv et al.
2009
在全基因组水平上针对表型特征的系统研究。 The systematic study of phenotypes on a genome-wide scale.
[15]
Lanktree et al.
2010
利用临床、生化和图像等方法, 通过系统测量和分析质量和数量性状, 对表型进行细化和表征。 The systematic measurement and analysis of qualitative and quantitative traits, including clinical, biochemical, and imaging methods, for the refinement and characterization of a phenotype.
[16]
Houle et al.
2010
开发和应用高维表型数据的研究。 The development and adoption of high-throughput and high-dimensional phenotyping.
[17]
Maddatu et al.
2012
整合其他组学数据的综合表型研究。 The comprehensive study of phenotypes, complements advances in knowledge from genomics, pharmacogenomics and other -omics approaches.
[18]
Yang et al.
2013
研究表型组本身, 及其受环境和基因组、转录组、蛋白质组等其他组学参数的决定与影响。 The study of the phenome as well as how it is determined or affected by, aside from the environment, the other omics data including but not limited to the genome, transcriptome, and proteome.
[19]
Weckwerth and Kahl
2013
解释产生一个表型(表型组)的所有分子进程的整个技术系统。 The whole repertoire of techniques to decipher all molecular processes leading to a phenotype (phenome).
[20]
Wikipedia
2014
与表型组测定相关的生物学领域, 研究生物响应基因突变和环境影响而产生的物理和生化 特性的改变。 An area of biology concerned with the measurement of phenomes, the physical and biochemical traits of organisms, as they change in response to genetic mutation and environmental influences.
http://en.wikipedia.org/wiki/ Phenomics
Hancock
2014
系统分析模式生物受遗传变化的影响, 以及分析生物对特殊环境、化学等因素的表型反应的 实验方法。 An experimental approach applied to systematically assay the effects of genetic changes in model organisms, and assay the phenomic responses in most organisms whereby specific questions are asked, for example, specific environmental or chemical challenges are applied.
图1 植物表型研究和疾病诊断的方法与内容比较如图所示, 在未来植物表型研究中, 需要引进新的技术方法对植物内部和外部的全部物理、生理和生化特征进行规范化的表征。Fig. 1 Comparison of methods and contents between plant phenotyping and disease diagnosisFrom the comparison shown above, it is obvious that in prospective plant phenotyping, new measurement methods must be employed for normalized representation of all of physical, physiological and biochemical characteristics and traits of interior and exterior of plant.
表2 植物表型的层次和范畴 Table 2 Levels and categories of plant phenotype
植物表型的层次 Levels of plant phenotype
植物表型层次的范畴 Categories of levels of plant phenotype
基因水平 Gene level
SNP、分子标记等DNA或RNA特征。 Characteristics of DNA or RNA such as SNP and molecular marker.
转录水平 Transcriptional level
DNA甲基化、组蛋白修饰等染色质或转录子特征。 Characteristics of chromatin or transcripton such as DNA methylation and histone modification.
生化水平 Biochemistry level
代谢调控、蛋白质标志、功能成分等蛋白质或代谢物特征。 Characteristics of protein or metabolin such as metabolism regulation, protein marker, and functional component.
生理发育水平 Physiology and development level
光周期、光合效率、生长动态等生理发育特征。 Development or physiology characteristics such as photoperiod, photosynthetic efficiency and growth dynamic.
形态解剖水平 Morphology and anatomy level
株型、叶面积、感病指数、粒重等器官、组织、细胞、亚细胞水平上的形态解剖特征。 Morphology or anatomy characteristics of organ, tissue, cell, and subcell, such as plant type, leaf area, index of decease infection and grain weight.
终极特性水平 Ultimate trait level
抗逆性、丰产性等植物性状功能特征。 Property or function of plant such as drought resistance, disease resistance, and high yielding ability.
As shown above, plant phenotype could be defined as part or all of identifiable physical, physiological and biochemical characteristics and traits that are decided and influenced by a genotype and environment, and can reflect the plant structures and compositions, or reflect the processes and results of plant growth and development. These characteristics and traits could be used to distinguish the genotype decision or environment influence on a plant individual or a group from any other ones. 如上所示, 植物表型可被更完整精确地定义。
表2 植物表型的层次和范畴 Table 2 Levels and categories of plant phenotype
表3 植物表型组相关概念定义表 Table 3 Definition of related concepts of plant phenome
概念1) Concept 1)
定义 Definition
A. 植物表型组 Plant phenome
受基因组和环境因素决定或影响, 并能反映植物结构及组成、植物生长发育过程及结果的全部物理、生理、生化特征和性状。 All of physical, physiological and biochemical characteristics and traits that are decided or influenced by genome and environments, and can reflect the plant structures and compositions, or reflect the processes and results of plant growth and development.
B. 可辨识性状/准表型组 Identifiable traits/quasi-phenome
可人工或机器检测的全部植物性状, 即现有技术方法可以检测分析的全部特征和特性。 All plant traits that could be detected or measured by hand or machines, or, all of the identifiable characteristics and traits.
C. 映射性状 Mapped traits
可与特定基因或环境映射的植物性状。 The plant traits that could be mapped with specific genes or environments.
D. 目标性状 Target traits
在植物研究中需要重点关注的性状。 The plant traits that do need attention in plant study.
D. 非目标性状 Non-target traits
一般研究中无需重点关注的性状。 The plant traits that do not need attention in plant study.
C. 无映射性状 Unmapped traits
尚未与基因或环境映射的植物性状, 即未实现与基因及环境关系的映射。 The plant traits that have not been mapped with specific genes or environments.
B. 不可辨识性状 Unidentifiable traits
当前尚未实现有效的人工或仪器检测的植物性状。 The plant traits that have not been detected or measured by hand or machines.
C. 未鉴定性状 Unidentified traits
有相关分析检测手段, 尚未有效地定性或定量检测的性状, 如蛋白质和代谢物水平, 以及元素吸收、细胞结构等。 The plant traits that have not been identified, even though the qualitative or quantitative methods have been developed, such as the level of some proteins and metabolites, and the absorption of some elements, the structure of some cells, etc.
C. 未知性状 Undetected traits
尚无有效的分析检测手段, 无法准确认知其存在, 有待进一步借鉴其他学科的知识和技术方法进行研究, 如某些未知的波谱性质、分子识别和互作、植物响应内部或外部环境因素的变化等。 The plant traits that have not been detected, because of the qualitative or quantitative methods have not been developed, such as some unknown spectral properties, molecular recognition and interactions, and response to the change of internal and external environmental factors.
B. 隐性性状 Recessive traits
因各种原因丧失的或过去从未出现的性状。 The plant traits that lost for some reasons or never appeared in past.
1)In this table, capital letters A-D on front of concepts show different levels and relationships of these concepts. These levels and relationships are clearly displayed in Fig. 2. 1) 本表中, 各概念前的大写字母A~D表示这些概念的不同层次和关系, 这些层次和关系在图2中得到了更清晰的呈现。
表3 植物表型组相关概念定义表 Table 3 Definition of related concepts of plant phenome
图2 植物表型组的构成如表3和本图所示, 严格意义上的植物表型组由不同含义的特征和特性构成, 这些特征和特性应该能够将植物个体或群体所受任何基因型的决定作用或环境因素影响区分开。Fig. 2 The compositions of plant phenomeAs shown in Table 3 and this Figure, the strict sense of the plant phenome may be composed of some types of characteristics and traits that have different meanings, and these characteristics and traits could be used to distinguish the gentype decision or environment influence on a plant individual or a group from any other ones.
图3 基因组、环境与植物表型组的关系由于环境因素可影响表型组性状的产生, 环境参数的采集和分析应该成为植物表型组研究不可分割的一部分。Fig. 3 Relationship among genome, environment and plant phenomeJust as environmental factors affect the phenome traits, the collection and analysis of environmental parameters should be a comprehensive part of the plant phenome study.
3.1.2 环境监控(environmental detecting and control) 表型是基因功能的表现形式, 同时表型的形成也会受到诸多环境因素的影响, 因此表型组学研究实质上以特定的基因组和环境因素为始发点。特别在植物学领域, 特定植物的基因组以个体或同质群体为客观稳定的载体, 基因组学研究和表型组学研究可以独立进行并随后进行映射分析, 而植物生长的环境因素具有非恒定性和易消失特性, 研究中必须提前或同步控制和采集环境参数, 以保证植物表型组数据的可比性[39], 同时, 只有在严格可控条件下的精确表型分析才可能快速(即无需多次重复实验)确定基因型和环境与表型的确切关系。目前自动化表型分析及环境监测控制技术均有长足发展, 整合表型和环境数据的采集在技术上并无大的障碍, 将系统的环境监控列入植物表型组学范畴是合理的, 也是可行的。 3.1.3 植物表型的遗传和环境包容性(tolerance of plant phenotype to the changes of inheritance and environment, CIE) 各种表型性状间可能存在复杂的协同或制约关系, 它们共同决定或影响终极目标性状的产生, 因此植物表型组学研究应该有助于表型性状组合的选择。为了明晰植物表型组学研究与育种的深层次关系, 可引入植物表型的遗传包容性(tolerance to the change of inheritance, TCI)和环境包容性(tolerance to the change of environment, TCE)概念, 同时限定在一定的范围内改变遗传构成和环境因素后, 植物表型的TCI和TCE与主要目标性状的可接受性成正比。特定植物表型的遗传和环境包容性(TCIE)可反映该表型受相关基因和生长条件影响的程度, 育种的目的即是获得表型的遗传包容性和环境包容性高的品种, 也即获得具有多种优良农艺性状和适应性广的品种。这种表型的遗传和环境包容性研究涉及海量数据的采集和分析, 应该成为植物表型组学的一个重要方面。 3.2 植物表型组学3.2.1 基本目标(basic goal of plant phenomics) 植物表型组学是直接服务于植物功能基因组学和作物分子育种的新学科, 其研究工作兼具基础性和实用性。当前, 大量的基因分子标记已用于指示与有价值性状相关的染色体区域, 这些DNA或RNA等标记均可视为基因水平的表型特征(表2)。现代育种工作中, 常结合使用外观表型选择和分子标记辅助选择(marker-assisted selection, MAS), 前者能确切反映基因和环境的某些实际作用, 但时效性较差, 后者的优势是可以预测最终表型, 但仍有一定的不确定性。使用全基因组选择(genomic selection, GS), 即在基因组水平上分析计算等位基因效应和全部分子标记, 利用所获得的育种值(derive genomic estimated breeding values, GEBV)指导和辅助育种选择, 也存在不确定性问题。通过植物表型组学研究, 有望获得从基因水平到终极特性水平的各种植物表型信息, 其中生理生化水平上的表型信息应能更好地满足对时效性和确定性的要求。 3.2.2 植物表型组学(plant phenomics) 一项完整的植物表型组学研究, 首先涉及对植物表型组信息及相关环境参数产生条件的综合控制(comprehensive controls), 即为获取有效的表型信息和环境参数, 首先需要精确设计和控制一组实验, 包括基因的操作和组合、植物的繁种和栽培、环境的设置和保障等; 其次涉及对植物表型组及相关环境数据的完整采集(complete collections), 即需要使用一整套技术手段采集各种不同类型的表型及环境信息, 包括不同表型层次的准表型组数据, 光温水气肥等环境数据; 最后, 最重要的环节是对海量的表型及环境数据的系统分析(system analyses), 即需要分析处理海量数据以获得有关表型特征和性状之间的关联(correlation)、基因和环境与表型之间的映射等知识, 包括预先进行海量数据的汇集、储存、整理和呈现, 以及整合其他组学资料特别是基因组资料等。因此, 本文将植物表型组学简洁地定义为对植物表型组信息及相关环境参数的综合控制、完整采集和系统分析(plant phenomics could be concisely defined as the comprehensive controls, complete collections and system analyses of plant phenome informations and related environmental parameters)。 3.3 研究方向植物表型组学是获取和利用植物表型组信息的综合学科, 从研究目标、手段和层次等方面考虑, 至少可以划分为以下3个方向, 其中构建植物表型组学本体具有十分重要的意义。 3.3.1 检测表型组学(detected phenomics) 包括为实现表型组和环境数据检测开展的相关研究, 以及检测植物的各种基因型或突变型在不同环境条件下的表型组, 即该植物的全部(或部分)发育、生理、生化、形态、结构、品质等特征和性状, 以及对应的环境参数, 可为植物功能基因组分析和环境影响研究提供完整的基础数据。事实上, 目前国际上的植物表型组学研究主要集中在检测大量植物样本中的有限的目标性状(target traits)方面, 而并非进行全表型组性状分析[24, 25, 26]。 3.3.2 定向表型组学(targeted phenomics) 有针对性地分析特定的基因或基因族群在设定的环境中与植物表型特征和特性的关系, 最终比较可靠地实现表型(组)和基因(组)及环境数据之间隐含关系的映射(mapping), 同时分析不同表型层次和范畴之间的关系, 最大限度地实现特定的表型特征和性状之间的关联(correlation)。在整体上考虑不同的表型层次和类别的形成关系, 以及基因组和环境的决定作用或影响程度, 是有效进行植物功能基因组研究和分子育种的关键所在, 也是近年植物表型组学研究的核心[40, 41, 42]。 3.3.3 本体表型组学(ontology-based phenomics) 目前学术界已经使用表型本体(phenotype ontologies, PO)这一术语来表示对种内或种间的基因型和表型关系的明确的、概念化的、规范的说明[43, 44, 45], 但从划分研究层面来考虑, 使用本体表型组学能更恰当地反映构建和应用PO与检测表型组学和定向表型组学的区别。Ontology (本体论)本是一个哲学概念, 一般指通过认识论而得到认识的一切实在的最终本性, 即研究存在的最终本性。随着信息技术的发展, ontology被赋予了一系列新含义, 总结起来, 可以将该术语定义为相关概念及其关系的规范化表述。在生物学领域, 可以将其具体定义为利用计算机技术收集和整理公开发表的生物学数据及知识, 构建和呈现这些可用信息之间相互关系的概念化模型(本体), 以揭示这些数据和知识所能反映出的生物体或生命现象的本质特征。植物本体表型组学研究的最终目是构建和应用具有查询和预测功能的、能反映种内或种间基因组、环境因素和表型组之间系统关系的植物表型组学本体(plant phenomics ontologies, PPOs)。 3.4 顶层设计原则尽管植物表型组学研究已有长足的发展, 理论基础缺乏和研究的系统性、有效性、共享性差仍是客观现实。笔者认为, 欲实现系统的、有效的、全球信息共享的植物表型组学研究, 需要从如下三方面开展顶层设计: (1) 确定特定物种的表型特征特性及环境参数的术语类别、检测方案和技术标准, 即构建植物表型的统一术语库和检测标准, 前者属本体表型组学范畴, 后者属检测表型组学范畴。 (2) 确定表型组学数据采集、储存、整理及呈现的技术方法和运行模式, 即综合工程、仪表、计算机、信息学和生物学技术, 构建具有高效率、高效力和经济的数据采集和处理系统, 属检测表型组学和本体表型组学范畴。 (3) 确定各表型信息之间、表型组与基因组及环境之间关系的表示形式和验证程序, 即构建植物表型组学本体和验证模式, 属于本体表型组学和定向表型组学范畴。
表4 开展植物表型组分析的主要机构和组织 Table 4 Main institutions and organizations in the field of plant phenome analysis
4.3 主要学术会议和出版物目前国际上知名度较高的植物表型组学学术会议和活动主要有International Plant Phenotyping Symposium (IPPS, http://www.plant-phenotyping.org/); PhenoDays和PhenoDays USA (http://www.pheno-days.com/), International Workshop on Image Analysis Methods for the Plant Sciences和Image Analysis for Biologists (http://www.cpib.ac.uk/outreach/); Plant Phenotyping Workshop (http://www.plant-phenotyping- network.eu/), UK Plant Phenomics Network Meeting, Photo-Physiology Phenotyping Workshop和Image Analysis Methods in the Plant Sciences (http://www. ukppn.org.uk/); European Plant Phenotyping Network Workshop (http://www.epsoweb.org/)。 迄今为止, 植物表型组学研究论文主要发表在一些传统的植物学、遗传学和综合性的期刊上, 未见本学科的专业期刊创刊, 但近几年已有几本相关的重要专著、专辑和学位论文出版, 即High-Throughput Phenotyping in Plants: Methods and Protocols (Normanly主编, 2012), High Throughput Automated Seedling Phenotyping System (Subramanian, 博士学位论文, 2012), Phenomics: A New Tool in the Prediction of Host-specificity in Classical Biological Control of Weeds? (Rapo, 博士学位论文, 2012), Phenotyping for Plant Breeding: Applications of Phenotyping Methods for Crop Improvement (Panguluri和Kumar主编, 2013), OMICS Applications in Crop Science (Barh主编, 2013), The Handbook of Plant Metabolomics (Weckwerth和Kahl主编, 2013), Phenotyping for Plant Breeding-Applications of Phenotyping Methods for Crop Improvement (Saeed和Panguluri主编, 2013)和Phenomics (Hancock主编, 2014)。
5 结语植物表型组学是一门正迅速发展的新兴交叉学科, 对相关概念与研究范畴的分析讨论有助于学科的建设和发展。通过对表型组学的起源及其各种定义的了解, 以及对植物表型组和表型组学相关概念间的关系、概念的含义和范畴等方面的分析讨论, 能够初步勾勒出支撑植物表型组学研究的理论框架。首先, 植物表型组应该包括从分子到群体的全部物理、生理、生化特征和性状。其次, 在植物表型组研究中可引入准表型组、可辨识性状、映射性状、目标性状等概念。第三, 精确的环境监控应成为植物表型组学研究的一部分, 可引入植物表型的遗传和环境包容性概念。第四, 植物表型组学可定义为对植物表型组信息及相关环境参数的综合控制、完整采集和系统分析, 进一步可区分为检测表型组学、定向表型组学和本体表型组学, 其基本目标是获得从基因水平到终极特性水平的各种植物表型信息。最后, 尚需仔细考虑植物表型组分析技术和植物表型组学研究的顶层设计原则, 包括相关的术语类别、检测方案和技术标准, 获取和使用相关数据的技术方法和模式, 以及各种信息之间关系的表示形式和验证程序等。 当前植物表型组学领域的热点之一是建设分析技术平台, 但简单地依赖商品化的设备难以完成系统复杂的植物表型组研究。作为一门新兴的交叉学科, 植物表型组学尚有较大的发展空间, 有必要在把握植物表型组和植物表型组学的概念和研究范畴的基础上, 整合植物学、信息学、仪表学、光电子学、自动化学、机械学、环境学、工程学等多领域的研究和技术力量并加大创新资金投入, 建立满足实验室、温室和大田中不同作物表型性状检测和环境监控的模块式集成分析系统。此外, 还有必要注重定向表型组学和本体表型组学的理论研究与实践, 加强植物表型组学人才的培养和引进工作。 表型组信息客观存在于植物中, 有待被系统地发现、定义、分析和应用。深入的植物表型组学研究, 必将极大地促进植物功能基因组学和作物分子育种与高效栽培的进程。 The authors have declared that no competing interests exist.
Schork NJ. Genetics of complex disease—Approaches, problems, and solutions. , 1997, 156: S103-S109[本文引用:1][JCR: 11.041]
[2]
Davis BD. The isolation of biochemically deficient mutants of bacteria by means of Penicillin. , 1949, 35: 1-10[本文引用:1][JCR: 9.737]
[3]
SouleM. Phenetics of natural populations I. Phenetic relationships of insular populations of the side-blotched lizard. , 1967, 21: 584-591[本文引用:1]
[4]
ConradM, Rizki MM. The artificial worlds approach to emergent evolution. , 1989, 23: 247-258[本文引用:1][JCR: 1.581]
[5]
MahnerM, KaryM. What exactly are genomes, genotypes and phenotypes? And what about phenomes?, 1997, 186: 55-63[本文引用:1][JCR: 2.351]
[6]
VarkiA, WillsC, PerlmutterD, WoodruffD, GageF, MooreJ, SemendeferiK, BernirschkeK, KatzmanR, DoolittleR. Great ape phenome project?, 1998, 282: 239-240[本文引用:1]
[7]
Strohman RC. Linear genetics, non-linear epigenetics: complementary approaches to understand ing complex diseases. , 1995, 30: 273-282[本文引用:1][JCR: 2.429]
[8]
DulbeccoR. A turning point in cancer research: sequencing the human genome. , 1986, 231: 1055-1056[本文引用:1]
[9]
Schilling CH, Edwards JS, Palsson BO. Toward metabolic phenomics: analysis of genomic data using flux balances. , 1999, 15: 288-295[本文引用:1]
[10]
Kelsoe JR, Niculescu AB. Finding genes for bipolar disorder in the functional genomics era: from convergent functional genomics to phenomics and back. , 2002, 7: 215-226[本文引用:1][JCR: 1.727]
[11]
Bader GD, HeilbutA, AndrewsB, TyersM, HughesT, BooneC. Functional genomics and proteomics: charting a multidimensional map of the yeast cell. , 2003, 13: 344-356[本文引用:1][JCR: 11.721]
JoyT, Hegele RA. Genetics of metabolic syndrome: is there a role for phenomics?, 2008, 10: 201-208[本文引用:1][JCR: 2.923]
[14]
Whiteley AR, DeromeN, Rogers SM, St-CyrJ, LarocheJ, LabbeA, NolteA, RenautS, JeukensJ, BernatchezL. The phenomics and expression quantitative trait locus mapping of brain transcriptomes regulating adaptive divergence in lake whitefish species pairs (Coregonus sp. ). , 2008, 180: 147-164[本文引用:1][JCR: 4.389]
[15]
Bilder RM, Sabb FW, Cannon TD, London ED, Jentsch JD, Parker DS, Poldrack RA, Evans CFreimerN B. Phenomics: the systematic study of phenotypes on a genome-wide scale. , 2009, 164: 30-42[本文引用:1][JCR: 3.122]
[16]
Lanktree MB, Hassell RG, LahiryP, Hegele RA. Phenomics: expand ing the role of clinical evaluation in genomic studies. , 2010, 58: 700-706[本文引用:1][JCR: 1.746]
[17]
HouleD, Govindaraju DR, OmholtS. Phenomics: the next challenge. , 2010, 11: 855-866[本文引用:1][JCR: 41.063]
YangL, WeiG, TangK, NardiniC, Han JD. Understand ing human diseases with high-throughput quantitative measurement and analysis of molecular signatures. , 2013, 56: 213-219[本文引用:1][JCR: 2.024][CJCR: 1.3012]
DhondtS, WuytsN, InzeD. Cell to whole-plant phenotyping: the best is yet to come. , 2013, 18: 433-444[本文引用:2][JCR: 11.808]
[26]
White JW, Andrade-SanchezP, Gore MA, Bronson KF, Coffelt TA, Conley MM, Feldmann KA, French AN, Heun JT, Hunsaker DJ, Jenks MA, Kimball BA, Roth RL, Strand RJ, Thorp KR, Wall GW, Wang GY. Field-based phenomics for plant genetics research. , 2012, 133: 101-112[本文引用:2][JCR: 2.474]
[27]
JohannsenW. The genotype conception of heredity. , 1911, 45: 129-159[本文引用:1][JCR: 4.552]
[28]
Baylin SB, Gazdar AF, Minna JD, Bernal SD, Shaper JH. A unique cell-surface protein phenotype distinguishes human small-cell from non-small-cell lung cancer. , 1982, 79: 4650-4654[本文引用:1][JCR: 9.737]
[29]
Jimenez-MarinD, Dessauer HC. Protein phenotype variation in laboratory populations of Rattus norvegicus. , 1973, 46: 487-488[本文引用:1][JCR: 2.069]
[30]
PringleC, DuncanI, StevensonM. Isolation and characterization of temperature-sensitive mutants of vesicular stomatitis virus, New Jersey serotype. , 1971, 8: 836-841[本文引用:1][JCR: 5.076]
[31]
Frey TK, Youngner JS. Novel phenotype of RNA synthesis expressed by vesicular stomatitis virus isolated from persistent infection. , 1982, 44: 167-174[本文引用:1][JCR: 5.076]
[32]
ParsonsP. The behavioral phenotype in mice. , 1974, 108: 377-385[本文引用:1][JCR: 4.552]
[33]
De CB, LefebvreV, NakashimaK. Regulatory mechanisms in the pathways of cartilage and bone formation. , 2001, 13: 721-728[本文引用:1][JCR: 11.41]
[34]
ReintanzB, LehnenM, ReicheltM, GershenzonJ, KowalczykM, Sand bergG, GoddeM, UhlR, PalmeK. Bus, a bushy Arabidopsis CYP79F1 knockout mutant with abolished synthesis of short-chain aliphatic glucosinolates. , 2001, 13: 351-367[本文引用:1][JCR: 9.251]
[35]
OkusuH, Ma DNikaidoH. AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of Escherichia coli multiple-antibiotic-resistance (Mar) mutants. , 1996, 178: 306-308[本文引用:1][JCR: 3.194]
GeisslerT, Wessjohann LA. A whole-plant microtiter plate assay for drought stress tolerance-inducing effects. , 2011, 30: 504-511[本文引用:1][JCR: 1.99]
[38]
AppelsR. Plant phenome to genome: a mini-review. , 2012, 39: 3-8[本文引用:1][JCR: 2.471]
[39]
PoorterH, NiinemetsU, WalterA, FioraniF, SchurrU. A method to construct dose-response curves for a wide range of environmental factors and plant traits by means of a meta-analysis of phenotypic data. , 2010, 61: 2043-2055[本文引用:1][JCR: 5.242]
[40]
Cobb JN, DeClerckG, GreenbergA, ClarkR, McCouchS. Next-generation phenotyping: requirements and strategies for enhancing our understand ing of genotype-phenotype relationships and its relevance to crop improvement. , 2013, 126: 867-887[本文引用:1][JCR: 3.658]
[41]
Brown TB, ChengR, Sirault XR, RungratT, Murray KD, TrtilekM, Furbank RT, BadgerM, Pogson BJ, Borevitz JO. TraitCapture: genomic and environment modelling of plant phenomic data. , 2014, 18: 73-79[本文引用:1][JCR: 8.455]
ZamirD. Where have all the crop phenotypes gone?, 2013, 11: e1001595[本文引用:1][JCR: 12.69]
[44]
KohlerS, Doelken SC, Mungall CJ, BauerS, Firth HV, Bailleul-ForestierI, BlackG C M, BrownD L, BrudnoM, CampbellJ, FitzPatrickD R, EppigJ T, JacksonA P, FresonK, GirdeaM, HelbigI, HurstJ A, JahnJ, JacksonL G, KellyA M, LedbetterD H, MansourS, MartinIC L, MossC, MumfordA, Ouwehand W H, ParkS M, RiggsE R, ScottR H, SisodiyaS, Van VoorenS, WapnerR J, WilkieA O M, Wright, Vulto-van SilfhoutA T, de LeeuwN, de VriesB B A, WashingthonN L, SmithC L, WesterfieldM, Bailleul-ForestierISchofield P, RuefB J, GkoutosG V, HaendelM, SmedleyD, LewisS E, RobinsonP N. The Human Phenotype Ontology project: linking molecular biology and disease through phenotype data. , 2014, 42(D1): D966-D974[本文引用:1]
[45]
Mungall CJ, Gkoutos GV, Smith CL, Haendel MA, Lewis SE, AshburnerM. Integrating phenotype ontologies across multiple species. , 2010, 11: R2[本文引用:1][JCR: 10.288]
[46]
HuH, Zhang JZ, Sun XY, Zhang XM. Estimation of leaf chlorophyll content of rice using image color analysis. , 2013, 39: 185-190[本文引用:1][JCR: 0.986]
[47]
RousseauC, BelinE, BoveE, RousseauD, FabreF, BerruyerR, GuillaumesJ, ManceauC, Jacques MA, BoureauT. High throughput quantitative phenotyping of plant resistance using chlorophyll fluorescence image analysis. , 2013, 9: 17[本文引用:1][JCR: 2.667]
[48]
Feher-JuhaszE, MajerP, SassL, LantosC, CsiszarJ, TuroczyZ, MihalyR, MaiA, Horvath GV, VassI, DuditsD, PaukJ. Phenotyping shows improved physiological traits and seed yield of transgenic wheat plants expressing the alfalfa aldose reductase under permanent drought stress. , 2014, 36: 663-673[本文引用:1][JCR: 1.305]
[49]
MatsudaO, TanakaA, FujitaT, IbaK. Hyperspectral imaging techniques for rapid identification of Arabidopsis mutants with altered leaf pigment status. , 2012, 53: 1154-1170[本文引用:1][JCR: 4.134]
[50]
De SN. Machines learn phenotypes. , 2013, 10: 38-38[本文引用:1][JCR: 23.565]