关键词:行距; 密度; 夏玉米; 小气候; 抗逆性; 产量 Effects of Different Row Spaces on Canopy Structure and Resistance of Summer Maize CHANG Jian-Feng, ZHANG Hai-Hong, LI Hong-Ping, DONG Peng-Fei, LI Chao-Hai* College of Agronomy, Henan Agricultural University / Collaborative Innovation Center of Henan Grain Crops, Zhengzhou 450002, China Fund:This study was supported by the Special Program of Modern Agro-industry Technology System (CARS-2-19) and the Special Fund for Agro-scientific Research in the Public Interest (HY201203100) AbstractIn order to explore the effects of row spacing on canopy structure and stress resistance, and identify the appropriate row spacing suitable for the development of agricultural mechanization, field experiments were conducted at Fangcheng and Huixian, using three types of maize hybrids (Xianyu 335 is a high plant, Zhengdan 958 is a middle high plant, and 512-4 is a dwarf) with two plant population densities (60 000 and 75 000 plant ha-1) and five row spaces (50 cm, 60 cm, 70 cm, 80 cm, and 80 cm+40 cm). The results showed that, for treatments with equal rows spacing under the same plant density, with the increasing of row spaces, different hybrids had a leave type and decreased leaf orientation value (LOV), their growth deviated from the plant rows, and trend to perpendicular to row; canopy temperature and humidity decreased, light interception and yield were reduced as well, while resistance to disease and insect was improved. The treatments with 60 cm row spacing can reasonably coordinate the relationship between the canopy microenvironment and yield, resulting in appropriate distribution of canopy leaves, suitable canopy temperature and humidity, maize light interception, especially, with the high light interception rate in the lower part of the canopy, and the significantly increased resistance to stresses, different hybrids with two densities got highest yield frequently in treatments with 60 cm of row spacing regardless of the varieties with different plant heights at planting densities, which so suitable for mechanical farming and field management. Therefore, we suggest that 60 cm is the optimal row spacing for summer corn in the Yellow-Huaihe-Haihe Rivers Region.
Keyword:Row spacing; Density; Summer maize; Microclimate; Stress resistance; Yield Show Figures Show Figures
表1 行距配置方式对玉米叶向值(LOV)的影响 Table 1 Effects of different row spaces on LOV
品种 Hybrid
年份 Year
60 000 plant hm-2
75 000 plant hm-2
50 cm
60 cm
70 cm
80 cm
80 cm+40 cm
50 cm
60 cm
70 cm
80 cm
80 cm+40 cm
先玉335 XY335
2012
52.69 a
51.46 a
50.56 a
50.23 a
50.56 a
62.18 a
56.27 b
54.86 b
54.37 b
54.89 b
2013
57.32 a
54.57 ab
53.53 ab
51.71 b
56.75 a
62.61 a
58.91 ab
56.04 b
55.62 b
57.23 b
郑单958 ZD958
2012
61.68 a
60.41 a
59.14 a
57.97 ab
61.86 a
64.96 a
64.39 a
62.80 a
62.59 a
61.41 ab
2013
61.29 a
60.83 a
58.27 ab
56.16 ab
59.84 a
63.54 a
62.88 a
61.36 a
60.96 ab
61.82 a
512-4
2012
58.14 a
57.90 a
56.59 ab
55.28 b
57.18 ab
59.83 a
59.68 a
59.06 a
59.34 a
60.02 a
2013
59.35 a
57.09 ab
55.86 ab
53.45 b
56.20 ab
61.97 a
60.66 a
60.18 a
56.78 ab
58.80 ab
平均 Average
58.41 a
57.04 a
55.66 ab
54.13 b
57.07 a
62.52 a
60.47 ab
59.05 b
58.28 b
59.03 b
Values followed by different letters and significantly different at P < 0.05 among different row spaces for the same hybrid and the same density in the same year. 数据后不同小写字母表示同一年限中相同株高类型品种和密度下不同行距处理间的差异达0.05显著水平。
表1 行距配置方式对玉米叶向值(LOV)的影响 Table 1 Effects of different row spaces on LOV
表2 Table 2 表2(Table 2)
表2 行距配置方式对玉米叶片水平面法线与种植行夹角的影响 Table 2 Effects of different row spaces on horizontal blade angle normal with planting row (° )
品种 Hybrid
年份 Year
60 000 plant hm-2
75 000 plant hm-2
50 cm
60 cm
70 cm
80 cm
80 cm+40 cm
50 cm
60 cm
70 cm
80 cm
80 cm+40 cm
先玉335 XY335
2012
27.92 b
29.21 ab
30.02 ab
32.50 a
27.57 b
32.12 b
39.62 ab
40.23 ab
44.01 a
38.18 ab
2013
27.99 b
30.12 b
32.70 ab
35.15 a
30.23 b
36.06 b
38.22 b
41.77 a
43.59 a
38.34 b
郑单958 ZD958
2012
28.61 b
32.07 ab
41.21 ab
44.98 a
35.07 ab
35.83 c
42.21 b
46.28 a
47.98 a
45.46 ab
2013
34.63 ab
34.34 ab
36.68 a
38.30 a
37.03 a
39.39 ab
40.73 ab
42.58 a
44.17 a
44.57 a
512-4
2012
30.49 b
33.13 b
41.68 a
42.21 a
38.16 ab
37.76 b
46.45 ab
49.77 a
49.25 a
48.66 a
2013
30.80 b
32.01 b
33.49 ab
35.32 a
38.01 a
37.50 b
39.42 ab
41.96 ab
44.51 a
46.40 a
平均 Average
30.07 e
31.81 d
35.96 b
38.08 a
34.34 c
62.52 a
36.44 c
41.11 b
43.76 a
45.59 a
Values followed by different letters and significantly different at P < 0.05 among different row spaces for the same hybrid and the same density in the same year. 数据后不同小写字母表示同一年限中相同株高类型品种和密度下不同行距处理间的差异达0.05显著水平。
表2 行距配置方式对玉米叶片水平面法线与种植行夹角的影响 Table 2 Effects of different row spaces on horizontal blade angle normal with planting row (° )
表3 行距配置方式对玉米灌浆期冠层光能分布的影响 Table 3 Effects of different row spaces on canopy light distribution at filling stage
年份 Year
密度 Density
行距 Row space
光能辐射量 Radiation (μ mol m-2 s-1)
中上部截获率 Light interception rate in up part (%)
中下部截获率 Light interception rate in lower part (%)
上部 Top
中部 Middle
下部 Bottom
2013
60 000 plant hm-2
50 cm
1197.66 a
409.77 c
302.12 c
65.79 a
26.27 ab
60 cm
1211.85 a
462.36 b
326.04 bc
61.85 ab
29.48 a
70 cm
1217.56 a
495.18 ab
345.45 b
59.33 b
30.24 a
80 cm
1243.35 a
524.67 a
400.74 a
57.80 b
23.62 b
80 cm+40 cm
1234.96 a
522.68 a
385.32 a
57.68 b
26.28 b
75 000 plant hm-2
50 cm
1212.39 a
330.94 c
246.24 c
73.21 a
25.59 ab
60 cm
1228.83 a
349.52 bc
249.52 bc
71.17 a
28.61 a
70 cm
1235.22 a
372.59 b
262.66 b
69.68 ab
29.50 a
80 cm
1252.78 a
413.76 a
328.32 a
66.97 b
20.65 b
80 cm+40 cm
1249.97 a
371.02 b
279.07 b
70.32 ab
24.78 ab
2014
60 000 plant hm-2
50 cm
1535.14 a
471.89 b
337.21 c
69.26 a
28.54 b
60 cm
1485.67 a
515.60 ab
357.64 bc
65.30 ab
30.64 a
70 cm
1513.51 a
532.38 a
366.61 b
64.82 ab
31.14 a
80 cm
1535.38 a
554.27 a
404.60 a
63.90 b
27.00 b
80 cm+40 cm
1522.87 a
532.74 a
374.50 b
65.02 ab
29.70 ab
75 000 plant hm-2
50 cm
1500.51 a
400.27 c
289.58 b
73.32 a
27.65 ab
60 cm
1539.25 a
439.09 b
305.33 ab
71.47 ab
30.46 a
70 cm
1534.42 a
445.00 ab
310.28 ab
71.00 ab
30.28 a
80 cm
1558.06 a
465.66 a
333.62 a
70.11 b
24.38 b
80 cm+40 cm
1540.35 a
438.60 b
325.58 a
71.53 ab
25.77 b
Values followed by different letters and significantly different at P < 0.05 among different row spaces for the same hybrid and the same density in the same year. 数据后不同小写字母表示同一年限中相同株高类型品种和密度下不同行距处理间的差异达0.05显著水平。
表3 行距配置方式对玉米灌浆期冠层光能分布的影响 Table 3 Effects of different row spaces on canopy light distribution at filling stage
表4 行距配置方式对玉米冠层小气候的影响 Table 4 Effects of different row spaces on the canopy microclimate
密度 Density
行距 Row space
2013
2014
CO2浓度 CO2 concentration (μ mol L-1)
温度 Temperature (℃)
相对湿度 Relative humidity (%)
CO2浓度 CO2 concentration (μ mol L-1)
温度 Temperature (℃)
相对湿度 Relative humidity (%)
60 000 plant hm-2
50 cm
398.49 a
34.13 a
62.53 a
383.84 a
33.68 a
56.24 a
60 cm
406.36 a
33.65 a
61.59 a
387.40 a
33.48 a
54.91 ab
70 cm
408.97 a
33.27 a
60.11 ab
392.48 a
33.20 a
54.10 ab
80 cm
411.53 a
32.75 a
59.31 b
403.00 a
32.91 a
53.54 b
80 cm+40 cm
402.69 a
33.38 a
60.43 ab
388.76 a
33.05 a
53.88 ab
75 000 plant hm-2
50 cm
393.98 a
34.58 a
63.83 a
379.64 a
33.76 a
55.32 a
60 cm
398.29 a
33.99 a
62.75 a
383.44 a
33.60 a
53.88 ab
70 cm
402.02 a
33.55 a
61.95 ab
388.16 a
33.40 a
53.52 ab
80 cm
408.55 a
33.06 a
60.52 b
396.44 a
32.96 a
53.00 b
80 cm+40 cm
399.93 a
33.53 a
62.70 a
384.60 a
33.10 a
53.24 b
Values followed by different letters and significantly different at P < 0.05 among different row spaces for the same hybrid and the same density in the same year. 数据后不同小写字母表示同一年限中相同株高类型品种和密度下不同行距处理间的差异达0.05显著水平。
表4 行距配置方式对玉米冠层小气候的影响 Table 4 Effects of different row spaces on the canopy microclimate
表5 行距配置方式对玉米群体抗逆性的影响(方城, 2014) Table 5 Effects of different row spaces on stress resistance of corn population (Fangcheng, 2014)
品种 Hybrid
60 000 plant hm-2
75 000 plant hm-2
50 cm
60 cm
70 cm
80 cm
80 cm+40 cm
50 cm
60 cm
70 cm
80 cm
80 cm+40 cm
灌浆期虫害率 Rate of insect pest at filling stage (%)
XY335
44.96 a
42.17 b
41.85 b
40.80 c
43.77 ab
53.77 a
49.12 b
45.95 c
43.29 d
51.45 ab
ZD958
59.35 a
57.27 ab
55.22 b
52.25 c
58.33 a
61.90 a
59.97 ab
56.86 b
54.16 c
60.75 a
512-4
55.93 a
51.75 b
49.53 bc
47.21 c
53.75 ab
60.12 a
54.29 b
51.53 c
49.56 d
58.49 a
Average
53.41 a
50.40 b
48.87 bc
46.75 c
51.95 ab
58.60 a
54.46 b
51.45 c
49.00 d
56.90 a
灌浆期病害率 Rate of disease at filling stage (%)
XY335
22.19 a
18.24 c
18.11 c
17.47 d
19.73 b
25.69 a
21.78 b
18.67 c
18.16 d
21.13 b
ZD958
30.37 a
29.52 a
28.60 b
25.69 c
29.92 a
34.08 a
30.26 c
29.58 c
27.13 d
32.14 b
512-4
18.06a
16.34 b
15.60 c
14.85 d
17.34 ab
21.03 a
18.30 c
18.21 c
17.34 d
19.92 b
Average
23.54 a
21.37 c
20.77 c
19.37 d
22.33 b
26.93 a
23.45 b
22.15 c
20.88 d
24.40 b
成熟期青枯病率 Rate of bacterial wilt at maturity (%)
XY335
65.26 a
59.51 b
59.39 b
57.18 c
62.49 ab
72.12 a
67.62 b
65.52 b
61.20 c
69.73 ab
ZD958
27.96 a
23.94 c
22.98 cd
21.20 d
25.53 b
41.57 a
37.05 c
33.73 d
31.13 e
38.68 b
512-4
31.48 a
27.14 c
26.78 c
24.77 d
28.53 b
44.15 a
39.43 c
34.01 d
31.45 e
41.45 b
Average
41.57 a
36.86 c
36.38 c
34.38 d
38.85 b
52.61 a
48.03 b
44.42 c
41.26 d
49.95 b
成熟期倒伏率 Rate of lodging at maturity (%)
XY335
13.68 a
11.65 c
11.05 d
10.24 e
12.62 b
16.37 a
15.52 ab
14.11 b
13.27 c
15.99 a
ZD958
8.15 a
7.24 b
6.30 c
4.83 d
6.49 c
10.79 a
9.23 b
6.90 c
6.47 d
9.13 b
512-4
11.57 a
9.89 c
9.80 c
8.62 d
10.76 b
13.59 a
11.44 c
10.21 d
9.86 d
12.80 b
Average
11.13 a
9.59 c
9.05 d
7.90 e
9.96 b
13.58 a
12.06 c
10.41 d
9.87 e
12.64 b
Values followed by different letters and significantly different at P < 0.05 among different row spaces for the same hybrid and the same density in the same year. 数据后不同小写字母表示同一年限中相同株高类型品种和密度下不同行距处理间的差异达0.05显著水平。
表5 行距配置方式对玉米群体抗逆性的影响(方城, 2014) Table 5 Effects of different row spaces on stress resistance of corn population (Fangcheng, 2014)
表6 行距配置方式对玉米产量的影响 Table 6 Effects of different row spaces on yield (t hm-2)
品种 Hybrid
密度 Density
地点 Location
年份 Year
行距 Row space
50 cm
60 cm
70 cm
80 cm
80 cm+40 cm
先玉335 XY335
60 000 plant hm-2
方城Fangcheng
2013
10.83 ab
10.99 a
10.80 ab
10.73 ab
10.22 b
2014
8.45 b
8.80 ab
8.99 a
8.76 ab
8.81 ab
辉县Huixian
2013
9.65 a
9.82 a
9.80 a
9.66 a
9.89 a
2014
11.73 c
12.40 b
13.23 a
13.08 a
12.60 b
75 000 plant hm-2
方城Fangcheng
2013
13.01 a
13.46 a
12.95 a
12.76 ab
12.64 b
2014
10.02 b
10.42 a
10.26 a
9.85 b
10.12 ab
辉县Huixian
2013
10.39 b
11.11 a
10.95 a
10.46 b
10.81 ab
2014
12.14 b
12.59 ab
13.06 a
12.10 b
12.19 b
郑单958 ZD958
60 000 plant hm-2
方城Fangcheng
2013
9.99 b
10.31 b
11.10 a
10.11 b
10.15 b
2014
8.77 b
9.11 a
8.93 b
8.24 b
8.44 b
辉县Huixian
2013
8.86 ab
9.30 a
8.99 ab
8.59 b
8.66 b
2014
11.14 b
11.23 ab
11.22 ab
10.61 b
11.38 a
75 000 plant hm-2
方城Fangcheng
2013
12.11 a
11.82 ab
11.07 b
11.14 b
11.07 b
2014
9.71 ab
9.83 a
9.31 ab
8.73 b
8.91 b
辉县Huixian
2013
9.97 a
10.04 a
9.99 a
9.31 b
9.63 b
2014
11.23 bc
12.42 a
12.27 a
11.44 b
10.92 c
512-4
60 000 plant hm-2
方城Fangcheng
2013
10.77 ab
11.19 a
10.64 b
10.53 b
11.00 ab
2014
8.18 b
8.59 a
8.39 ab
8.09 b
8.39 ab
辉县Huixian
2013
9.37 b
9.71 a
9.61 ab
9.58 ab
9.45 b
75 000 plant hm-2
方城Fangcheng
2013
12.33 a
12.28 a
12.27 a
11.55 b
11.83 ab
2014
9.40 ab
9.61 a
9.01 b
8.88 b
8.92 b
辉县Huixian
2013
10.16 a
10.06 a
9.78 ab
9.57 b
9.96 ab
新单65 XD65
60 000 plant hm-2
辉县Huixian
2014
10.16 a
10.06 a
9.78 ab
9.57 b
9.96 ab
75 000 plant hm-2
辉县Huixian
2014
11.96 ab
12.55 a
11.66 b
10.77 c
11.39 b
Values followed by different letters and significantly different at P < 0.05 among different row spaces for the same hybrid and the same density in the same year. 数据后不同小写字母表示同一年限中相同株高类型品种和密度下不同行距处理间的差异达0.05显著水平。
表6 行距配置方式对玉米产量的影响 Table 6 Effects of different row spaces on yield (t hm-2)
赵久然, 王荣焕. 30年来我国玉米主要栽培技术发展. 玉米科学, 2012, 20(1): 146-152Zhao JR, Wang RH. Development of main cultivation technology in Chinese maize production since reform and opening up. J Maize Sci, 2012, 20(1): 146-152 (in Chinese with English abstract)[本文引用:1]
[2]
赵明, 李少昆, 董树亭, 张东兴, 王璞, 薛吉全, 高聚林, 孙士明, 张吉旺, 刘鹏, 刘永红, 王永军. 美国玉米生产关键技术与中国现代玉米生产发展的思考——赴美国考察报告. 作物杂志, 2011, (2): 1-3ZhaoM, Li SK, Dong ST, Zhang DX, WangP, Xue JQ, Gao JL, Sun SM, Zhang JW, LiuP, Liu YH, Wang YJ. The key technology in American corn production and the thought of China’s maize production development-investigation report to the United States. Crops, 2011, (2): 1-3 (in Chinese with English abstract)[本文引用:1]
[3]
韩成卫, 孔晓民, 刘丽, 曾苏明. 不同种植模式对玉米生长发育、产量及机械化收获效率的影响. 玉米科学, 2012, 20(6): 89-93Han CW, Kong XM, LiuL, Zeng SM. Contrast test for maize different planting patterns under the mechanize harvest. J Maize Sci, 2012, 20(6): 89-93 (in Chinese with English abstract)[本文引用:2]
[4]
宋伟, 赵长星, 王月福, 王铭伦, 程曦, 康玉洁. 不同种植方式对花生田间小气候效应和产量的影响. 生态学报, 2011, 31: 7188-7195SongW, Zhao CX, Wang YF, Wang ML, ChengX, Kang YJ. Influence of different planting patterns on field microclimate effect and yield of peanut (Arachis hypogea L. ). Acta Ecol Sin, 2011, 31: 7188-7195 (in Chinese with English abstract)[本文引用:1]
[5]
冯海娟, 张善平, 马存金, 刘鹏, 董树亭, 赵斌, 张吉旺, 杨今胜. 种植密度对夏玉米茎秆维管束结构及茎流特性的影响. 作物学报, 2014, 40: 1435-1442Feng HJ, Zhang SP, Ma CJ, LiuP, Dong ST, ZhaoB, Zhang JW, Yang JS. Effect of plant density on microstructure of stalk vascular bundle of summer maize (Zea mays L. ) and its characteristics of sap flow. Acta Agron Sin, 2014, 40: 1435-1442 (in Chinese with English abstract)[本文引用:3]
[6]
杨吉顺, 高辉远, 刘鹏, 李耕, 董树亭, 张吉旺, 王敬峰. 种植密度和行距配置对超高产夏玉米群体光合特性的影响. 作物学报, 2010, 36: 1226-1233Yang JS, Gao HY, LiuP, LiG, Dong ST, Zhang JW, Wang JF. Effects of planting density and row spacing on canopy apparent photosynthesis of high-yield summer corn. Acta Agron Sin, 2010, 36: 1226-1233 (in Chinese with English abstract)[本文引用:4]
[7]
刘铁宁, 徐彩龙, 谷利敏, 董树亭. 高密度种植条件下去叶对不同株型夏玉米群体及单叶光合性能的调控. 作物学报, 2014, 40: 143-153Liu TN, Xu CL, Gu LM, Dong ST. Effects of leaf removal on canopy apparent photosynthesis and individual leaf photosynthetic characteristics in summer maize under high plant density. Acta Agron Sin, 2014, 40: 143-153 (in Chinese with English abstract)[本文引用:1]
[8]
Modarres AM, Hamilton RI, DijakM, Dwyer LM, Stewart DW, Mather DE, Smith DL. Plant population density effects on maize inbred lines grown in short-season environments. Crop Sci, 1998, 38: 104-108[本文引用:1]
[9]
Soratto RP, Souza-Schlick G D, Fernand es A M, Zanotto M D, Crusciol C A C. Narrow row spacing and high plant population to short height castor genotypes in two cropping seasons. , 2012, 35: 244-249[本文引用:3]
[10]
Ballaré CL, Mazza CA, Austin AT, PierikR. Canopy light and plant. Plant Physiol, 2012, 160: 145-155[本文引用:1]
[11]
魏珊珊, 王祥宇, 董树亭. 株行距配置对高产夏玉米冠层结构及籽粒灌浆特性的影响. 应用生态学报, 2014, 25: 441-450Wei SS, Wang XY, Dong ST. Effects of row spacing on canopy structure and grain-filling characteristics of high-yield summer maize. Chin J Appl Ecol, 2014, 25: 441-450 (in Chinese with English abstract)[本文引用:2]
[12]
MatteraJ, Romero LA, Cuatrín AL, Cornaglia PS, Grimoldi AA. Yield components, light interception and radiation use efficiency of lucerne (Medicago sativa L. ) in response to row spacing. Eur J Agron, 2013, 45: 87-95[本文引用:1]
[13]
苌建峰, 张海红, 董朋飞, 李潮海, 张学舜, 马俊峰. 种植模式对不同株型夏玉米品种生理生态效应比较. 玉米科学, 2014, 22(3): 115-120Chang JF, Zhang HH, Dong PF, Li CH, Zhang XS, Ma JF. Comparison on physiological and ecological effects of planting patterns in summer maize with different morphological types. J Maize Sci, 2014, 22(3): 115-120 (in Chinese with English abstract)[本文引用:5]
[14]
Mohammadi GR, Ghobadi ME, Sheikheh-PoorS. Phosphate biofertilizer, row spacing and plant density effects on corn (Zea mays L. ) yield and weed growth. Am J Plant Sci, 2012, 3: 425-429[本文引用:2]
[15]
Ballaré CL, Mazza CA, Austin AT, PierikR. Canopy light and plant health. Plant Physiol, 2012, 160: 145-155[本文引用:1]
[16]
Maddonni GA, Otegui ME, Cirilo AG. Plant population density, row spacing and hybrid effects on maize canopy architecture and light attenuation. Field Crops Res, 2001, 71: 183-193[本文引用:2]
[17]
白伟, 孙占祥, 郑家明, 侯志研, 刘洋, 冯良山, 杨宁. 辽西地区不同种植模式对春玉米产量形成及其生长发育特性的影响. 作物学报, 2014, 40: 181-189BaiW, Sun ZX, Zheng JM, Hou ZY, LiuY, Feng LS, YangN. Effect of different planting patterns on maize growth and yield in western Liaoning province. Acta Agron Sin, 2014, 40: 181-189 (in Chinese with English abstract)[本文引用:2]
[18]
杨利华, 张丽华, 张全国, 姚艳荣, 贾秀领, 马瑞昆. 种植样式对高密度夏玉米产量和株高整齐度的影响. 玉米科学, 2006, 14(6): 122-124Yang LH, Zhang LH, Zhang QG, Yao YR, Jia XL, Ma RK. Effect of row spacing pattern on yield and plant height uniformity in highly-densed summer maize. J Maize Sci, 2006, 14(6): 122-124 (in Chinese with English abstract)[本文引用:2]
[19]
Maddonni GA, Martínez-BercovichJ. Row spacing, land scape position, and maize grain yield. , 2014, 2014: 1-12[本文引用:2]
[20]
张玉芹, 杨恒山, 高聚林, 张瑞富, 王志刚, 徐寿军, 范秀艳, 杨升辉. 超高产春玉米冠层结构及其生理特性. 中国农业科学, 2011, 44: 4367-4376Zhang YQ, Yang HS, Gao JL, Zhang RF, Wang ZG, Xu SJ, Fan XY, Yang SH. Study on canopy structure and physiological characteristics of super-high yield spring maize. Sci Agric Sin, 2011, 44: 4367-4376 (in Chinese with English abstract)[本文引用:1]
[21]
赵海新, 杨丽敏, 陈书强, 姜树坤, 黄晓群, 单莉莉, 潘国君. 行距对两个不同类型水稻品种冠层结构与产量的影响. 中国水稻科学, 2011, 25: 488-494Zhao XH, Yang LM, Chen SQ, Jiang SK, Huang XQ, Shan LL, Pan GJ. Effects of row-spacing on canopy structure and yield in different type rice. Chin J Rice Sci, 2011, 25: 488-494 (in Chinese with English abstract)[本文引用:2]
[22]
Begna SH, Hamilton RI, Dwyer LM, Stewart DW, Smith DL. Effects of population density on the vegetative growth of leafy reduced-stature maize in short-season areas. J Agron Crop Sci, 1999, 182: 49-55[本文引用:2]
[23]
马韫韬, 郭焱, 李保国. 应用三维数字化仪对玉米植株叶片方位分布的研究. 作物学报, 2006, 32: 791-798Ma WT, GuoY, Li BG. Azimuthal distribution of maize plant leaves determined by 3D digitizer. Acta Agron Sin, 2006, 32: 791-798 (in Chinese with English abstract)[本文引用:1]
[24]
冯国艺, 姚炎帝, 罗宏海, 张亚黎, 杜明伟, 张旺锋, 夏冬利, 董恒义. 新疆超高产棉花冠层光分布特征及其与群体光合生产的关系. 应用生态学报, 2012, 23: 1286-1294Feng GY, Yao YD, Luo HH, Zhang YL, Dui MW, Zhang WF, Xia DL, Dong HY. Canopy light distribution and its correlation with photosynthetic production in super-high yielding cotton fields of Xinjiang, northwest China. Chin J Appl Ecol, 2012, 23: 1286-1294 (in Chinese with English abstract)[本文引用:1]
[25]
汤亮, 朱相成, 曹梦莹, 曹卫星, 朱艳. 水稻冠层光截获、光能利用与产量的关系. 应用生态学报, 2012, 23: 1269-1276TangL, Zhu XC, Cao MY, Cao WX, ZhuY. Relationships of rice canopy PAR interception and light use efficiency to grain yield. Chin J Appl Ecol, 2012, 23: 1269-1276 (in Chinese with English abstract)[本文引用:2]
[26]
李妍妍, 景希强, 丰光, 何晶, 齐华. 玉米倒伏的主要相关因素研究进展. 辽宁农业科学, 2013, (4): 47-51Li YY, Jing XQ, FengG, HeJ, QiH. The research progress on correlation factors of maize lodging resistance problem. Liaoning Agric Sci, 2013, (4): 47-51 (in Chinese with English abstract)[本文引用:2]
[27]
Ballaré CL. Light regulation of plant defense. Annu Rev Plant Biol, 2014, 65: 335-363[本文引用:1]
[28]
张晓丽, 边大红, 秦建国, 杜雄, 李军虎, 崔彦宏, 杜义英. 高密度条件下行距配置对夏玉米抗倒能力的影响. 玉米科学, 2012, 20(4): 118-121Zhang XL, Bian DH, Qin JG, DuiX, Li JH, Cui YH, Du YY. Effects of row spacing on lodging-resistance of summer maize under high density. J Maize Sci, 2012, 20(4): 118-121 (in Chinese with English abstract)[本文引用:1]
[29]
郑亭, 陈溢, 樊高琼, 李金刚, 李朝苏, 荣晓椒, 李国瑞, 杨文钰, 郭翔. 株行配置对带状条播小麦群体光环境及抗倒伏性能的影响. 中国农业科学, 2013, 46: 1571-1582ZhengT, ChenY, Fan GQ, Li JG, Li CS, Rong XJ, Li GR, Yang WY, GuoX. Effect of plant and row allocation on population light environment and lodging resistance of strip sown wheat in drill. Sci Agric Sin, 2013, 46: 1571-1582 (in Chinese with English abstract)[本文引用:1]
[30]
SaeedM, Marwat KB, HassanG, KhanA, Khan IA. Interference of horse purslane (Trianthema portulacastrum L. ) with maize (Zea mays L. ) at different densities. , 2010, 42: 173-179[本文引用:1]