关键词:冬小麦-夏玉米; 双季玉米; 产量; 光温资源分配; 光温资源利用效率 Comparison of Yield and Light-temperature Resource Use Efficiency between Wheat-Maize and Maize-Maize Cropping Systems ZHOU Bao-Yuan1,2, WANG Zhi-Min2, YUE Yang2, MA Wei1,*, ZHAO Ming1,* 1Institute of Crop Science, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Physiology and Production, Ministry of Agriculture, Beijing 100081, China
2College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
AbstractOptimizing traditional wheat-maize cropping and exploring new cropping system are essential for increasing annual yield and resource use efficiency in the Yellow-Huaihe-Haihe Rivers Plain. The optimized winter wheat-summer maize cropping (T1) and double maize cropping (T2) were established in our field experiment conducted in Xinxiang from 2009 to 2012. The dry matter production, grain yield, and energy (light and temperature) use efficiency were investigated in the two cropping systems and compared with those in traditional cropping system (CK). In the two optimized cropping systems, the distributions of light and temperature between two cropping seasons were adjusted to 0.7:1.0 and 1.4:1.0 in T1 cropping system, and 1.5:1.0 and 1.0:1.0 in T2 cropping system, respectively, by changing the sowing and harvest dates. Under T1 condition, the annual yield increased by 7.8% over that of CK ( P < 0.05), and the yield promotion was mainly attributed to the significant increase in the summer maize season. Late sowing of winter wheat in T1 system resulted in significant improvements of mean leaf area index (MLAI), above-ground biomass, and grain yield of summer maize, meanwhile with no significant yield loss of winter wheat. T2 is a new high-yield production pattern with double maize growing seasons. In the first season, the MLAI, above-ground biomass, and yield of maize were significantly higher than those of winter wheat in CK and T1. In the second season, the above-ground biomass, and yield of T2 were lower than those of CK and T1. However, the annual yield of T2 was higher than that of CK and had no significant difference to that of T1. Compared to CK and T1, T2 resulted in increases by 53.9% and 46.2% in daily yield, 30.5% and 23.3% in light production efficiency, 15.5% and 9.7% in temperature production efficiency, and 30.3% and 23.0% in light energy use efficiency, respectively. These results indicate that the advantages of high resource use efficiency and production capabilities of C4 crop plays the key role in promoting the annual production capability in T1 and T2. The two optimized cropping systems (T1 and T2) may lighten the thoughts for adjusting production patterns to meet an increasing desire of high yield and resource use efficiency in the Yellow-Huaihe-Haihe Rivers Plain.
Keyword:Wheat-Maize; Double maize; Yield; Resource distribution; Resource use efficiency Show Figures Show Figures
表2 2009-2012年不同模式季节间有效积温分配 Table 2 Distribution of effective accumulated temperature (AT) in different cropping systems from 2009 to 2012
年份 Year
模式 Cropping system
第1季First season
第2季Second season
周年Annual
有效积温 AT (℃)
比例 Rate (%)
有效积温 AT (℃)
比例 Rate (%)
有效积温 AT (℃)
比例 Rate (%)
2009
CK
2520.0
44.8
2872.4
51.0
5392.5
95.8
T1
2412.0
42.8
3146.8
55.9
5558.8
98.7
T2
2633.3
46.8
2375.3
42.2
5008.6
88.9
2010
CK
2214.5
40.5
2922.5
53.5
5137.0
94.0
T1
2078.0
38.0
3209.6
58.7
5287.6
96.7
T2
2508.6
45.9
2414.3
44.2
4922.9
90.1
2011
CK
2444.1
44.2
2787.6
50.4
5231.7
94.7
T1
2312.9
41.9
3085.5
55.8
5398.4
97.7
T2
2511.1
45.4
2414.4
43.7
4925.5
89.1
2012
CK
2499.8
44.9
2887.1
51.9
5386.9
96.8
T1
2354.8
42.3
3071.3
55.2
5426.1
97.5
T2
2637.4
48.5
2504.4
46.0
5141.8
94.5
平均值
CK
2419.6 ab
43.6 ab
2867.4 b
51.7 b
5287.0 a
95.3 a
Mean
T1
2289.4 b
41.3 b
3128.3 a
56.4 a
5417.7 a
97.7 a
T2
2572.6 a
46.6 a
2427.1 c
44.0 c
4999.7 b
90.7 b
CK: winter wheat-summer maize cropping system followed farmers’ practice; T1: optimized winter wheat-summer maize cropping system; T2: double maize cropping system. Means within a column followed by different letters are significantly different at P< 0.05. CK: 冬小麦-夏玉米农民习惯播/收期模式; T1: 冬小麦-夏玉米优化模式; T2: 双季玉米模式。平均值后不同小写字母表示种植模式间在0.05水平差异显著。
表2 2009-2012年不同模式季节间有效积温分配 Table 2 Distribution of effective accumulated temperature (AT) in different cropping systems from 2009 to 2012
表3 2009-2012年不同种植模式季节间光照资源分配 Table 3 Distribution of light accumulated radiation in different cropping systems from 2009 to 2012
年份 Year
模式 Cropping system
第1季First season
第2季Second season
周年Annual
辐射 Radiation (MJ m-2)
比例 Rate (%)
辐射 Radiation (MJ m-2)
比例 Rate (%)
辐射 Radiation (MJ m-2)
比例 Rate (%)
2009
CK
2594.8
56.3
1662.9
36.1
4257.8
92.4
T1
2536.8
55.0
1831.8
39.7
4368.7
94.8
T2
2115.3
45.9
1390.6
30.2
3505.9
76.0
2010
CK
2559.7
54.9
1630.6
35.0
4190.3
89.9
T1
2443.1
52.4
1812.8
38.9
4255.9
91.4
T2
2023.0
43.4
1354.5
29.1
3377.5
72.5
2011
CK
2804.5
59.1
1519.3
32.0
4323.8
91.1
T1
2723.5
57.4
1712.8
36.1
4436.3
93.5
T2
2226.7
46.9
1322.0
27.9
3548.6
74.8
2012
CK
2362.3
52.5
1771.9
39.4
4134.2
91.9
T1
2282.2
50.7
1889.6
42.0
4171.8
92.7
T2
2102.6
46.7
1617.5
36.0
3720.0
82.7
平均值
CK
2580.3 a
55.7 a
1646.2 a
35.6 b
4226.5 a
91.3 a
Mean
T1
2496.4 a
53.9 a
1811.8 a
39.2 a
4308.2 a
93.1 a
T2
2116.9 b
45.7 b
1421.2 b
30.8 c
3538.0 b
76.5 b
CK: winter wheat-summer maize cropping system followed farmers’ practice; T1: optimized winter wheat-summer maize cropping system; T2: double maize cropping system. Means within a column followed by different letters are significantly different at P< 0.05. CK: 冬小麦-夏玉米农民习惯播/收期模式; T1: 冬小麦-夏玉米优化模式; T2: 双季玉米模式。平均值后不同小写字母表示种植模式间在0.05水平差异显著。
表3 2009-2012年不同种植模式季节间光照资源分配 Table 3 Distribution of light accumulated radiation in different cropping systems from 2009 to 2012
图3 2009-2012年不同种植模式产量比较A图为2009年数据; B图为2010年数据; C图为2011年数据; D图为2012年数据。CK: 冬小麦-夏玉米农民习惯播/收期模式; T1: 冬小麦-夏玉米优化模式; T2: 双季玉米模式。柱上不同字母表示差异达0.05显著水平。Fig. 3 Grain yield of different cropping systems from 2009 to 2012A, B, C, D are the year 2009, 2010, 2011, and 2012, respectively. CK: winter wheat-summer maize cropping system followed farmers’ practice; T1: optimized winter wheat-summer maize cropping system; T2: double maize cropping system. Bars represented by different letters are significantly at the 0.05 probability level.
图4 2009-2012年不同种植模式日产量比较A图为2009年数据; B图为2010年数据; C图为2011年数据; D图为2012年数据。CK: 冬小麦-夏玉米农民习惯播/收期模式; T1: 冬小麦-夏玉米优化模式; T2: 双季玉米模式。柱上不同字母表示差异达0.05显著水平。Fig. 4 Daily grain yield of different cropping systems from 2009 to 2012A, B, C, D are the year 2009, 2010, 2011, and 2012, respectively. CK: winter wheat-summer maize cropping system followed farmers’ practice; T1: optimized winter wheat-summer maize cropping system; T2: double maize cropping system. Bars represented by different letters are significantly at the 0.05 probability level.
图5 2009-2012年不同种植模式平均叶面积指数(MLAI)比较A图为2009年数据; B图为2010年数据; C图为2011年数据; D图为2012年数据。CK: 冬小麦-夏玉米农民习惯播/收期模式; T1: 冬小麦-夏玉米优化模式; T2: 双季玉米模式。柱上不同字母表示差异达0.05显著水平。Fig. 5 Mean leaf area index (MLAI) of different cropping systems from 2009 to 2012A, B, C, D are the year 2009, 2010, 2011, and 2012, respectively. CK: winter wheat-summer maize cropping system followed farmers’ practice; T1: optimized winter wheat-summer maize cropping system; T2: double maize cropping system. Bars represented by different letters are significantly at the 0.05 probability level.
图6 2009-2012年不同种植模式生物量比较A图为2009年数据; B图为2010年数据; C图为2011年数据; D图为2012年数据。CK: 冬小麦-夏玉米农民习惯播/收期模式; T1: 冬小麦-夏玉米优化模式; T2: 双季玉米模式。柱上不同字母表示差异达0.05显著水平。Fig. 6 Biomass of different cropping systems from 2009 to 2012A, B, C, D are the year 2009, 2010, 2011, and 2012, respectively. CK: winter wheat-summer maize cropping system followed farmers’ practice; T1: optimized winter wheat-summer maize cropping system; T2: double maize cropping system. Bars represented by different letters are significantly at the 0.05 probability level.
表4 2009-2012年不同种植模式光能、温度生产效率 Table 4 Production efficiency of light energy and temperature in different cropping systems from 2009 to 2012
年份 Year
模式 Cropping system
光能生产效率 Production efficiency of light energy (g MJ-1)
温度生产效率 Production efficiency of temperature (kg hm-2 ℃-1)
第1季 First season
第2季 Second season
周年 Annual
第1季 First season
第2季 Second season
周年 Annual
2009
CK
0.24
0.49
0.34
2.47
2.84
2.67
T1
0.24
0.52
0.36
2.56
3.02
2.82
T2
0.45
0.49
0.46
3.61
2.84
3.24
2010
CK
0.29
0.58
0.40
3.32
3.25
3.28
T1
0.29
0.58
0.41
3.38
3.27
3.31
T2
0.52
0.57
0.54
4.17
3.20
3.70
2011
CK
0.30
0.49
0.37
3.48
2.69
3.06
T1
0.31
0.51
0.39
3.60
2.85
3.17
T2
0.42
0.62
0.50
3.74
3.41
3.58
2012
CK
0.38
0.54
0.45
3.62
3.29
3.44
T1
0.40
0.61
0.49
3.85
3.76
3.80
T2
0.50
0.57
0.53
4.02
3.67
3.85
平均值 Mean
CK
0.30 b
0.53 a
0.39 b
3.22 b
3.02 b
3.11 b
T1
0.31 b
0.56 a
0.41 b
3.34 b
3.22 a
3.27 b
T2
0.47 a
0.56 a
0.51 a
3.88 a
3.29 a
3.59 a
CK: winter wheat-summer maize cropping system followed farmers’ practice; T1: optimized winter wheat-summer maize cropping system; T2: double maize cropping system. Means within a column followed by different letters are significantly different at P< 0.05. CK: 冬小麦-夏玉米农民习惯播/收期模式; T1: 冬小麦-夏玉米优化模式; T2: 双季玉米模式。平均值后不同小写字母表示种植模式间在0.05水平差异显著。
表4 2009-2012年不同种植模式光能、温度生产效率 Table 4 Production efficiency of light energy and temperature in different cropping systems from 2009 to 2012
表5 2009-2012年不同种植模式光能利用效率 Table 5 Comparison of light energy use efficiency in different cropping systems from 2009 to 2012
年份 Year
模式Cropping system
籽粒光能利用效率 Light energy use efficiency of grain
总生物量光能利用效率 Light energy use efficiency of biomass
第1季 First season
第2季 Second season
周年 Annual
第1季 First season
第2季 Second season
周年 Annual
2009
CK
0.43
0.87
0.60
0.93
1.58
1.19
T1
0.43
0.92
0.64
0.95
1.62
1.23
T2
0.80
0.86
0.82
1.60
1.72
1.64
2010
CK
0.51
1.04
0.72
1.11
2.11
1.50
T1
0.51
1.03
0.73
1.16
2.03
1.53
T2
0.92
1.02
0.96
1.81
1.99
1.89
2011
CK
0.54
0.88
0.66
1.19
1.61
1.34
T1
0.54
0.91
0.69
1.17
1.68
1.40
T2
0.75
1.11
0.88
1.53
2.31
1.82
2012
CK
0.68
0.95
0.80
1.50
2.03
1.73
T1
0.71
1.09
0.88
1.58
2.15
1.84
T2
0.90
1.01
0.95
1.80
2.13
1.94
平均值 Mean
CK
0.54 b
0.94 a
0.69 b
1.18 b
1.83 a
1.44 b
T1
0.55 b
0.99 a
0.73 b
1.22 b
1.87 a
1.50 b
T2
0.84 a
1.00 a
0.90 a
1.69 a
2.04 a
1.82 a
CK: winter wheat-summer maize cropping system followed farmers’ practice; T1: optimized winter wheat-summer maize cropping system; T2: double maize cropping system. Means within a column followed by different letters are significantly different at P< 0.05. CK: 冬小麦-夏玉米农民习惯播/收期模式; T1: 冬小麦-夏玉米优化模式; T2: 双季玉米模式。平均值后不同小写字母表示种植模式间在0.05水平差异显著。
表5 2009-2012年不同种植模式光能利用效率 Table 5 Comparison of light energy use efficiency in different cropping systems from 2009 to 2012
侯满平, 郝晋珉, 丁忠义, 孟鹏. 黄淮海平原资源低耗生态农业模式研究. , 2005, 13(1): 189-191Hou MP, Hao JM, Ding ZY, MengP. Research on the eco-agriculture mode of resource low dissipation in Huang-Huai-Hai Plain. , 2005, 13(1): 189-191 (in Chinese with English abstract)[本文引用:1][CJCR: 1.296]
[2]
侯美亭, 毛任钊, 吴素霞. 黄淮海平原不同生态类型区农业可持续发展策略研究. , 2006, 24(3): 156-159Hou MT, Mao RZ, Wu SX. A discussion on sustainable agricultural development in the different ecological districts in Huang-Huai-Hai Plain. , 2006, 24(3): 156-159 (in Chinese with English abstract)[本文引用:1][CJCR: 0.942]
[3]
TaoF, YokozawaM, Xu YL, YousayH, ZhaoZ. Climate changes and trends in penology and yields of field crops in China, 1981-2000. , 2006, 138: 82-92[本文引用:2]
[4]
WangJ, Wang EL, Yang XG, Zhang FS, YinH. Increased yield potential of wheat-maize cropping system in the North China Plain by climate change adaptation. , 2012, 113: 825-840[本文引用:2][JCR: 4.622]
[5]
Sun HY, Zhang XY, Chen SY, PeiD, Liu CM. Effects of harvest and sowing time on the performance of the rotation of winter wheat-summer maize in the North China Plain. , 2007, 25: 239-247[本文引用:7][JCR: 3.208]
[6]
胡焕焕, 刘丽平, 李瑞奇, 李慧玲, 李雁鸣. 播种期和密度对冬小麦品种河农822产量形成的影响. , 2008, 28: 490-495Hu HH, Liu LP, Li RQ, Li HL, Li YM. Effect of sowing date and planting density on the yield formation of a winter wheat cultivar Henong 822. , 2008, 28: 490-495 (in Chinese with English abstract)[本文引用:2][CJCR: 0.779]
[7]
RáczF, KásaS, HadiG. Daily changes in the water content of early and late maturing grain maize varieties in the later stages of over-ripening. , 2008, 36: 583-589[本文引用:2][JCR: 0.624]
[8]
王树安. . 北京: 农业出版社, 1991Wang SA. Beijing: Agriculture Press, 1991 (in Chinese)[本文引用:2]
[9]
黄川容, 刘洪. 气候变化对黄淮海平原冬小麦与夏玉米生产潜力的影响. , 2011, 32(增刊): 118-123Huang CR, LiuH. The effect of the climate change on potential productivity of winter wheat and summer maize in the Huang-Huai-Hai Plain. , 2011, 32(suppl): 118-123 (in Chinese with English abstract)[本文引用:2]
[10]
陈国平, 尉德铭, 刘志文, 赵仕孝, 杨洪友. 夏玉米的高产生育模式及其控制技术. , 1986, 19(1): 33-40Chen GP, Wei DM, Liu ZW, Zhao SX, Yang HY. The model of development and control technique for a high yielding summer maize. , 1986, 19(1): 33-40 (in Chinese with English abstract)[本文引用:1][CJCR: 1.4]
[11]
杨晓光, 刘志娟, 陈阜. 全球气候变暖对中国种植制度可能影响: I. 气候变暖对中国种植制度北界和粮食产量可能影响的分析. , 2010, 43: 329-336Yang XG, Liu ZJ, ChenF. The possible effects of global warming on cropping systems in China: I. The possible effects of climate warming on northern limits of cropping systems and crop yields in China. , 2010, 43: 329-336 (in Chinese with English abstract)[本文引用:1][CJCR: 1.4]
[12]
张厚. 中国种植制度对全球气候变化响应的有关问题: II. 我国种植制度对气候变化响应的主要问题. , 2000, 21(2): 10-13ZhangH. Response of cropping system in China to global climatic changes: II. Effect of cropping system in China to global climatic changes. , 2000, 21(2): 10-13 (in Chinese with English abstract)[本文引用:1]
[13]
王绍武. 近百年气候变化与变率的诊断研究. , 1994, 52: 261-273Wang SW. Diagnostic studies on the climate change and variability for the period of 1880-1990. , 1994, 52: 261-273 (in Chinese)[本文引用:1][CJCR: 1.6]
[14]
Westgate ME. Water status and development of the maize endosperm and embryo during drought. , 1994, 34: 76-83[本文引用:1][JCR: 1.478]
[15]
BorrásL, Gambín BL. Trait dissection of maize kernel weight: towards integrating hierarchical scales using a plant growth approach. , 2010, 118: 1-12[本文引用:1][JCR: 2.608]
[16]
Cairns JE, SonderK, Zaidi PH, VerhulstN, MahukuG, BabuR. . Burlington: Academic Press, 2012, Vol. 114: pp 1-58[本文引用:1]
[17]
王美云. 热量限制两熟区双季青贮玉米模式及其技术体系研究. , 2006Wang MY. Study on Mode and Technique of Two Harvests Silage Maize in the Temperature Limited Region of Double Cropping System. , 2006 (in Chinese with English abstract)[本文引用:3]
[18]
李立娟, 王美云, 薛庆林, 崔彦宏, 侯海鹏, 葛均筑, 赵明. 黄淮海双季玉米产量性能与资源效率的研究. , 2011, 37: 1229-1234LI LJ, Wang MY, Xue QL, Cui YH, Hou HP, Ge JZ, ZhaoM. Yield performance and resource efficiency of double-cropping maize in the Yellow, Huai and Hai River Valleys Region. , 2011, 37: 1229-1234 (in Chinese with English abstract)[本文引用:3][CJCR: 1.681]
[19]
付雪丽, 张惠, 贾继增, 杜立丰, 付金东, 赵明. 冬小麦-夏玉米“双晚”种植模式的产量形成及资源效率研究. , 2009, 35: 1708-1714Fu XL, ZhangH, Jia JZ, Du LF, Fu JD, ZhaoM. Yield performance and resources use efficiency of winter wheat and summer maize in double late-cropping system. , 2009, 35: 1708-1714 (in Chinese with English abstract)[本文引用:3][CJCR: 1.681]
[20]
张甲元, 周苏玫, 尹钧, 刘万代, 李巧云, 石珊珊, 年力. 适期晚播对弱春性小麦籽粒灌浆期光合性能的影响. , 2011, 31: 535-539Zhang JY, Zhou SM, YinJ, Liu WD, Li QY, Shi SS, NianL. Effect of suitable late sowing on photosynthetic performance of weak spring wheat during grain filling stage. , 2011, 31: 535-539 (in Chinese with English abstract)[本文引用:1][CJCR: 0.779]
[21]
Coventry DR, Reeves TG, Brooke HD, Cann DK. Influence of genotype, sowing date, and seeding rate on wheat development and yield. , 1993, 33: 751-757[本文引用:1][JCR: 1.621]
[22]
McDonald GK, Sutton BG, Ellison FW. The effect of sowing date, irrigation and cultivar on the growth and yield of wheat in the Namoi River Valley, New South Wales. , 1984, 5: 123-135[本文引用:1][JCR: 2.843]
[23]
高海涛, 王育红, 孟战赢, 席玲玲, 段国辉, 温红霞. 小麦-玉米双晚种植对周年产量和资源利用的影响. , 2012, 32: 1102-1106Gao HT, Wang YH, Meng ZY, Xi LL, Duan GH, Wen HX. Effects of later sowing of winter wheat and later harvest of summer maize cropping system on yield and resources use efficiency of whole-year. , 2012, 32: 1102-1106 (in Chinese with English abstract)[本文引用:1][CJCR: 0.779]
[24]
张宾, 赵明, 董志强, 李建国, 陈传永, 孙锐. 作物高产群体LAI 动态模拟模型的建立与检验. , 2007, 33: 612-619ZhangB, ZhaoM, Dong ZQ, Li JG, Chen CY, SunR. Establishment and test of LAI dynamic simulation model for high yield population. , 2007, 33: 612-619 (in Chinese with English abstract)[本文引用:1][CJCR: 1.681]
[25]
李向岭, 赵明, 李从锋, 葛均筑, 侯海鹏. 玉米叶面积系数动态特征及其积温模型的建立. , 2011, 37: 321-330Li XL, ZhaoM, Li CF, Ge JZ, Hou HP. Dynamic characteristics of leaf area index in maize and its model establishment based on accumulated temperature. , 2011, 37: 321-330 (in Chinese with English abstract)[本文引用:1][CJCR: 1.681]
[26]
杨羡敏, 曾燕, 邱新法, 姜爱军. 1960-2000年黄河流域太阳总辐射气候变化规律研究. , 2005, 16: 243-247Yang XM, ZengY, Qiu XF, Jiang AJ. The climatic change of solar radiation over the Yellow River basin during 1961-2000. , 2005, 16: 243-247 (in Chinese)[本文引用:1]
[27]
郑海霞, 封志明, 游松财. 基于GIS的甘肃省农业生产潜力研究. , 2003, 22: 400-408Zheng HX, Feng ZM, You SC. A study on potential land productivity based on GIS technology in Gansu province. , 2003, 22: 400-408 (in Chinese with English abstract)[本文引用:1]
[28]
徐勇, 齐文虎, 谢高地, 章予舒. 农业自然资源利用效率的因子-能量评价模型及其应用. , 2002, 24(3): 86-91XuY, Qi WH, Xie GD, Zhang YS. The factor-energy evaluation model of agricultural natural resources utilization efficiency and its application. , 2002, 24(3): 86-91 (in Chinese with English abstract)[本文引用:1][CJCR: 2.068]
[29]
Meng QF, Sun QP, Chen XP, Cui ZL, Yue SC, Zhang FS, RömheldV. Alternative cropping systems for sustainable water and nitrogen use in the North China Plain. , 2012, 146: 93-102[本文引用:1]
[30]
Pronk AA, HeuvelinkE, ChallaH. Dry mass production and leaf area development of field grown ornamental conifers: measurements and simulation. , 2003, 78: 337-353[本文引用:1][CJCR: 0.782]
[31]
Fageria NK, Baligar VC, Clark RB. Physiology of Crop Production. , 2005. pp 72-82[本文引用:1]
[32]
DingL, Wang KJ, Jiang GM, Liu MZ, Niu SL, Gao LM. Post-anthesis changes in photosynthetic traits of maize hybrids released in different years. , 2005, 93: 108-115. doi: DOI:10.1016/j.fcr.2004.09.008[本文引用:1][JCR: 2.608]
[33]
中华人民共和国农业部. . 北京: 中国农业出版社, 2012Ministry of Agriculture, The People’s Republic of China. Beijing: China Agriculture Press, 2012[本文引用:1]