关键词:玉稻种植模式; 产量; 资源利用效率; 经济效益 Comparison of Yield and Resource Utilization Efficiency among Different Maize and Rice Cropping Systems in Middle Reaches of Yangtze River LI Shu-Ya1,2, TIAN Shao-Yang1, YUAN Guo-Yin1,2, GE Jun-Zhu1,2, XU Ying1, WANG Meng-Ying1, CAO Cou-Gui1, ZHAI Zhong-Bing3, LING Xiao-Xia1, ZHAN Ming1,*, ZHAO Ming2,* 1Key Laboratory of Crop Physiology, Ecology and Cultivation (The Middle Reaches of the Yangtze River) of Ministry of Agriculture / College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
2Key Laboratory of Crop Physiology and Ecology of Ministry of Agriculture / Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
3Wuxue Modern Agriculture Demonstration Center, Wuxue 435415, China
AbstractThe development of maize production is important to solve the contradiction between maize production and requirement for people in the middle reaches of Yangtze River. With the rapid development of maize production recently, some new double cropping systems in a whole year such as spring maize-late rice, double season maize, early rice-autumn maize have been emerged in this region. In order to explore the extension potential of these double cropping systems in this region, four kinds of double cropping systems were tested in Wuxue, Hubei province in 2013 and 2014, including traditional double season rice (RR), spring maize-late rice (MR), double season maize (MM) and early rice-autumn maize (RM). The field experiment with three replicates was conducted to analyze annual yield, use efficiencies of solar radiation, heat and water, and economic benefit of the four cropping systems. The results showed that annual yield of MR and MM were significantly higher than that of RM and RR. Compared with RR, MR increased annual yield, solar radiation productive efficiency, solar radiation use efficiency, accumulated heat productive efficiency, water use efficiency and economic benefit by 18.3%, 14.1%, 23.4%, 16.4%, 37.2%, and 44.3%, respectively; meanwhile, MM enhanced these paremeters by 13.5%, 8.1%, 26.1%, 11.4%, 88.8%, and 37.8%, respectively. The grain yield of spring maize was 30.6% higher than that of early rice, and there was no significant difference in yield between autumn maize and late rice. In comparison with early rice, spring maize increased accumulated heat productive efficiency, water use efficiency and economic benefit in the two years by 29.5%, 57.2%, and 96.1%, respectively. So the difference in annual yield of different cropping systems mainly results from yield difference between the first season spring maize and early season rice. The cropping systems of spring maize-late rice and double season maize are appropriate to be extended in the middle reaches of Yangtze River.
Keyword:Maize and Rice Cropping system; Yield; Natural resource use efficiency; Economic benefit Show Figures Show Figures
当前玉米已跃居我国三大粮食作物之首, 对保障国家粮食安全发挥了十分重要的作用[1]。目前全国玉米产需基本平衡, 但区域性产需矛盾依然突出。玉米产区主要集中在东北、华北和西北, 产量占全国总产的80%左右, 南方地区玉米生产仅占全国的20%左右, 但消费量却达全国总产量的50%以上[2, 3]。长江中下游区是我国重要的粮食生产基地和畜牧业养殖基地, 主要饲料来源于玉米, 玉米常年产需缺口较大[2]。发展长江中下游玉米生产, 增强自身供应能力, 是保障本区粮食安全、稳定农产品价格、实现畜牧业持续发展的重要途径, 因此进行该区玉米生产体系的革新、新技术的创制及新的产业模式的探讨已迫在眉睫。在市场的带动下, 近年来长江中游玉米发展迅速, 尤其是向低丘平原稻区扩展较快。然而由于本区不属于国家玉米主产区域, 玉米生产主要系农民自发行为, 因此玉米生产技术的研发与示范推广严重滞后, 不仅产量水平低, 而且资源利用效率低, 亟待新型种植模式与技术的探索与推广。 高光效的C4作物进入稻田形成的玉稻轮作和双季玉米等新型两熟制种植模式已引起国内外****的关注[4, 5, 6, 7, 8, 9]。在南亚部分国家, 针对稻-玉系统在生态适应性、种植布局和面积、产量与产量潜力、养分管理等领域[9, 10]开展了有关研究, 通过水稻生长模型ORYZA2000和杂交玉米模型模拟指出水稻和玉米的产量潜力分别可达到15.0 t hm-2和22.0 t hm-2左右, 可获得产量通常为产量潜力的80%~90%, 但是玉米实际产量通常只有可获得产量的50%左右, 因此作为玉稻系统, 其产量潜力的发挥还有很大上升空间。赵强基等[6]在中国南方稻区开展的研究表明玉-稻模式比当地主体种植制度(麦-稻两熟制)增产10%以上。李小勇[11]研究表明玉-稻周年产量可达19.9 t hm-2, 玉-稻和双季玉米产量均显著高于双季稻, 但玉-稻和双季玉米产量差异不显著; 与传统双季稻模式相比, 玉-稻周年土地资源利用率, 光、温、水资源生产效率和光能利用率分别提高了9.75%、14.7%、20.4%、12.1%和19.1%。稻-玉系统中, 早季为旱稻的晚季免耕玉米的产量要显著高于早季是水稻的晚季免耕玉米产量[12]。与双季稻模式的连作晚稻比较, 采用同一耕作方式, 玉稻模式的晚稻产量增幅为2.13%~6.47%[11]。李立娟等[13]研究表明与传统冬小麦-夏玉米相比, 黄淮海区双季玉米产量略增, 周年光、温生产效率平均增加26.1%和6.5%。就南方稻区双季玉米不同肥料密度模式[14], 播期与品种搭配[15]等方面也进行了一定研究。但是在长江中游地区同等条件下同时比较研究玉-稻、双季玉米、稻-玉、双季稻4种两熟制种植模式周年产量和资源利用效率及经济效益的差异尚未见报道。 本研究设置长江中游4种两熟制种植模式, 分析比较其产量、资源利用效率和经济效益的差异及其原因, 以期为长江中游种植结构调整, 协调水稻、玉米合理发展提供理论依据与技术支撑。 1 材料与方法1.1 试验地概况湖北省武穴市现代农业示范中心试验基地(30° 00′ N, 115° 44′ E)处亚热带季风性湿润气候, 试验期间2年的旬平均温度和降雨量见图1, 2013年7月至8月比2014年同期降水偏少, 气温偏高。试验田土壤为黄棕壤, 0~30 cm耕层含有机质16.8 g kg-1、全氮1.95 g kg-1、硝态氮7.46 mg kg-1、氨态氮17.15 mg kg-1、全磷0.45 g kg-1、速效磷10.78 mg kg-1、全钾2.32 g kg-1、速效钾108.50 mg kg-1, pH 6.30。 1.2 试验设计2013— 2014年春玉米与秋玉米品种均为郑单958, 早稻为常规籼稻中嘉早17, 晚稻为多穗型杂交籼稻岳优9113。试验共设4个处理, 分别为春玉米-晚稻(MR)、双季玉米(MM)、早稻-秋玉米(RM)和传统种植的双季稻(RR)两熟制模式。不同模式的播栽及收获期见表1。采用随机区组设计, 3次重复。 1.2.1 春玉米-晚稻模式 春玉米采用厢作, 厢宽为1 m, 沟宽为20 cm, 厢沟模式单位宽度为120cm, 40 cm+80 cm宽窄行播种2行, 窄行位于厢面, 每个小区5厢。按27.8 cm株距人工点播, 每穴3粒种子, 播种后人工覆膜。玉米出苗后及时破膜放苗, 三叶期间苗, 五叶期定苗, 定苗密度6.0× 104株 hm-2。2013年公顷施肥量为240 kg N、135 kg P2O5、180 kg K2O, 2014年为240 kg N、120 kg P2O5、180 kg K2O, 试验用复合肥料为山东金正大生态有限公司生产的沃夫特玉米专用缓控释肥(N∶ P2O5∶ K2O为22∶ 8∶ 12), 以N肥为计算单位, P2O5和K2O用量分别用过磷酸钙(含P2O5 12%)和氯化钾(含K2O 60%)补足, 肥料于播种时一次性基施。田间管理措施同一般高产田。 图1 Fig. 1
表2 不同玉稻种植模式产量比较 Table 2 Comparison of grain yield of different maize and rice cropping systems (t hm-2)
处理 Treatment
第1季 1st season
第2季 2nd season
周年 Whole year
2013
春玉米晚稻周年种植模式MR
9.65± 0.82 a
8.93± 0.08 a
18.58± 0.85 a
双季玉米周年种植模式MM
9.04± 0.34 a
8.40± 0.35 b
17.44± 0.22 b
早稻秋玉米周年种植模式RM
7.16± 0.10 b
9.10± 0.07 a
16.27± 0.17 c
双季稻周年种植模式RR
6.98± 0.10 b
8.26± 0.10 b
15.24± 0.20 d
2014
春玉米晚稻周年种植模式MR
9.36± 0.22 a
9.79± 0.12 a
19.16± 0.23 a
双季玉米周年种植模式MM
9.19± 0.64 a
9.57± 0.25 a
18.76± 0.58 a
早稻秋玉米周年种植模式RM
7.12± 0.10 b
7.94± 0.77 b
15.06± 0.73 c
双季稻周年种植模式RR
7.27± 0.19 b
9.39± 0.13 a
16.66± 0.24 b
Values followed by different letters are significantly different at the 0.05 probability level among treatments. Abbreviations are the same as those given in Table 1. 不同小写字母表示处理间差异达0.05显著水平。
表2 不同玉稻种植模式产量比较 Table 2 Comparison of grain yield of different maize and rice cropping systems (t hm-2)
2.3 不同玉稻种植模式资源利用效率比较2.3.1 光能生产效率及利用率 由表3看出, 周年种植模式光能生产效率年际间趋势一致(除2014年RM)。不同年际间有差异, 2013年, MR、MM和RM周年光能生产效率比RR分别提高0.08 g MJ-1、0.03 g MJ-1和0.02 g MJ-1, 增幅分别为17.8%、6.7%和4.4%, 差异达显著水平; 2014年, MR和MM周年光能生产效率比RR分别显著高出0.06 g MJ-1和0.05 g MJ-1, 增幅为11.1%和9.3%。周年总光能利用率MR和MM显著高于RM和RR, 其中2013年MR比RM和RR分别显著高出16.1%和23.8%, MM比RM和RR分别显著高出14.3%和21.9%, 2014年MR比RM和RR分别显著高出25.2%和23.0%, MM比RM和RR分别显著高出32.4%和30.1%。 2.3.2 积温生产效率及利用率 由表3可知, 周年种植模式积温生产效率年际间趋势一致(除2014年RM)。与RR周年积温生产效率相比, MR、MM和RM在2013年分别提高1.04 kg hm-2 ℃-1 d-1、0.59 kg hm-2 ℃-1 d-1和0.31 kg hm-2 ℃-1 d-1, 增幅分别为20.5%、11.6%和6.1%, 差异达显著水平; 而在2014年MR和MM周年光能生产效率比RR分别显著高出0.73 kg hm-2 ℃-1 d-1和0.64 kg hm-2 ℃-1 d-1, 增幅为12.8%和11.2%。单季比较结果表明, 第1季春玉米积温生产效率显著高于早稻, 2013年和2014年分别平均显著高出1.39 kg hm-2 ℃-1 d-1和1.49 kg hm-2 ℃-1 d-1, 增幅为28.6%和30.3%; 第2季秋玉米积温生产效率有大于晚稻的趋势。4种种植模式对年有效积温的利用率均接近饱和, 其中2013年MR、MM和RM本田期年有效积温利用率比RR分别高出9.9%、18.1%和6.6%, 2014年MR、MM和RM本田期年有效积温利用率比RR分别提高9.6%、16.0%和1.4% (表3)。 表3 Table 3 表3(Table 3)
表3 不同玉稻种植模式的光温生产效率与周年利用率 Table 3 Solar radiation, GDD (growing degree days) production efficiency and annual use efficiency of different maize and rice cropping systems
处理Treatment
光能生产效率 Solar radiation production efficiency (g MJ-1)
年总光能利用率 Use efficiency of annual solar radiation (%)
积温(≥ 10℃)生产效率 GDD production efficiency (kg hm-2℃-1 d-1)
年有效积温利用率 Use efficiency of annual GDD (%)
第1季 1st season
第2季 2nd season
周年 Whole year
第1季 1st season
第2季 2nd season
周年 Whole year
2013
MR
0.52 ab
0.57 a
0.53 a
1.30 a
6.47 a
4.49 c
6.11 a
18.8+87.9
MM
0.49 b
0.48 c
0.48 b
1.28 a
6.06 a
5.28 b
5.66 b
94.5
RM
0.55 a
0.53 b
0.47 b
1.12 b
4.93 b
5.80 a
5.38 b
7.3+85.3
RR
0.54 a
0.52 b
0.45 c
1.05 c
4.80 b
4.16 d
5.07 c
25.5+80.0
2014
MR
0.56 a
0.70 a
0.60 a
1.39 b
6.48 a
5.23 bc
6.42 a
16.5+89.1
MM
0.55 a
0.63 bc
0.59 a
1.47 a
6.36 a
6.30 a
6.33 a
94.3
RM
0.57 a
0.57 c
0.51 c
1.11 c
4.88 b
5.73 b
5.29 c
8.2+82.4
RR
0.58 a
0.67 ab
0.54 b
1.13 c
4.98 b
5.01 c
5.69 b
24.7+81.3
Utilization efficiency of annual GDD is calculated in the seedling stage and in the transplanted field stage separately. Values followed by different letters are significantly different at the 0.05 probability level among treatments. Abbreviations are the same as those given in Table 1. 年有效积温利用率以秧田期和本田期分开计算。不同小写字母表示处理间差异达0.05显著水平。缩写同表1。
表3 不同玉稻种植模式的光温生产效率与周年利用率 Table 3 Solar radiation, GDD (growing degree days) production efficiency and annual use efficiency of different maize and rice cropping systems
表4 不同玉稻种植模式的用水量与水分利用率 Table 4 Water input and use efficiency of different maize and rice cropping systems
处理 Treatment
降水量 Rainfall (mm)
灌溉 Irrigation (mm)
水分利用率 WUE (kg m-3)
第1季 1st season
第2季 2nd season
周年 Whole year
第1季 1st season
第2季 2nd season
周年 Whole year
第1季 1st season
第2季 2nd season
周年 Whole year
2013
MR
526
149
689
0
380
380
1.83 a
1.69 c
1.74 b
MM
526
164
691
0
86
86
1.72 a
3.36 b
2.25 a
RM
380
164
632
228
86
314
1.18 b
3.64 a
1.72 b
RR
380
149
630
228
380
608
1.15 b
1.56 c
1.23 c
2014
MR
596
135
731
0
456
456
1.57 a
1.66 c
1.58 b
MM
596
120
716
0
91
91
1.54 a
4.53 a
2.32 a
RM
518
118
636
228
91
319
0.95 b
3.81 b
1.44 c
RR
518
135
653
228
456
684
0.97 b
1.59 c
1.19 d
Values followed by different letters are significantly different at the 0.05 probability level among treatments. Abbreviations are the same as those given in Table 1. 不同小写字母表示处理间差异达0.05显著水平。缩写同表1。
表4 不同玉稻种植模式的用水量与水分利用率 Table 4 Water input and use efficiency of different maize and rice cropping systems
表5 Table 5 表5(Table 5)
表5 不同玉稻种植模式氮、磷、钾利用率 Table 5 N, P, and K use efficiency of different maize and rice cropping systems
处理Treatment
偏生产力 Partial factor productivity (kg kg-1)
籽粒生产效率 Use efficiency for grain production (kg kg-1)
干物质生产效率 Use efficiency for biomass production (kg kg-1)
收获指数 Harvest index (%)
N
P
K
N
P
K
N
P
K
N
P
K
2013
MR
44.2 a
68.8 a
51.6 a
40.0 b
276.3 bc
41.4 c
75.2 c
519.2 b
77.7 c
67.4 a
73.9 b
12.6 c
MM
41.5 b
64.6 b
48.5 b
46.0 a
324.2 a
53.1 a
87.8 a
618.5 a
101.4 a
69.8 a
81.4 a
17.9 a
RM
38.7 c
60.2 c
45.2 c
39.3 b
281.5 a
47.7 b
72.4 d
518.6 b
87.9 b
64.6 b
74.2 b
15.1 b
RR
42.3 ab
56.4 d
42.3 d
40.3 b
256.6 c
33.2 d
77.7 b
494.6 c
64.0 d
63.6 b
67.5 c
9.4 d
2014
MR
45.6 a
98.2 a
67.2 b
45.5 b
301.5 a
65.7 b
78.2 b
531.5 a
115.8 b
68.0 b
79.7 a
8.7 b
MM
44.7 a
78.2 b
52.1 c
42.6 c
291.9 a
72.7 a
78.8 b
539.7 a
134.4 a
71.5 a
81.6 a
14.9 a
RM
35.9 b
71.7 c
52.8 c
50.4 a
271.6 b
54.1 c
92.5 a
499.7 b
97.0 c
56.3 c
66.2 b
6.6 c
RR
46.3 a
101.0 a
79.3 a
46.1 b
238.4 c
52.2 c
79.3 b
409.7 c
89.7 d
58.2 c
59.6 c
3.4 d
Values followed by different letters are significantly different at the 0.05 probability level among treatments. Abbreviations are the same as those given in Table 1. 不同小写字母表示处理间差异达0.05显著水平。缩写同表1。
表5 不同玉稻种植模式氮、磷、钾利用率 Table 5 N, P, and K use efficiency of different maize and rice cropping systems
表6 Table 6 表6(Table 6)
表6 不同玉稻种植模式经济效益比较 Table 6 Comparison of economic benefit of different maize and rice cropping systems (Yuan hm-2)
处理Treatment
产值Total income
成本Cost
经济效益Net income
第1季 1st season
第2季 2nd season
周年 Whole year
第1季 1st season
第2季 2nd season
周年 Whole year
第1季 1st season
第2季 2nd season
周年 Whole year
2013
MR
21230
23225
44455
12195
14325
26520
9035
8900
17935
MM
19887
18487
38374
12195
9420
21615
7692
9067
16759
RM
16475
20028
36503
12450
12345
24345
4025
8133
12158
RR
16046
21480
37526
12450
14325
26775
3596
7155
10751
2014
MR
20602
25461
46064
12120
13575
25695
8482
11886
20369
MM
20219
21055
41275
11775
9675
21450
8444
11380
19825
RM
16371
17476
33848
11775
11820
23595
4596
5656
10253
RR
16723
24415
41138
11775
13575
25350
4948
10840
15788
Values followed by different letters are significantly different at the 0.05 probability level among treatments. Abbreviations are the same as those given in Table 1. 不同小写字母表示处理间差异达0.05显著水平。缩写同表1。
表6 不同玉稻种植模式经济效益比较 Table 6 Comparison of economic benefit of different maize and rice cropping systems (Yuan hm-2)
韩长赋. 玉米论略. , 2012, (6): 4-8Han CF. The analysis of maize. , 2012, (6): 4-8 (in Chinese)[本文引用:1]
[2]
徐杰. 基于“系统流”理论的中国玉米产业系统协调性研究. , 山东泰安, 2012XuJ. Analysis on the Coordination of Chinese Corn Industry System Based on “System Flow” Theory. , 2012 (in Chinese with English abstract)[本文引用:2]
[3]
孙艳妮, 程林, 李昌新. 我国粮食安全的区域性和结构性差异. 江苏农业科学, 2010, (5): 524-526Sun YN, ChengL, Li CX. Regional and structural differences of food security in China. Jiangsu Agric Sci, 2010, (5): 524-526 (in Chinese)[本文引用:1]
[4]
Ali MY, Waddington SR, TimsinaJ, HodsonD, DixonJ. Maize-rice cropping systems in Bangladesh: status and research needs. , 2009, 3: 35-53[本文引用:1]
[5]
蔡庆红, 陶优生, 唐云鹏, 唐启源. 南方玉米高产栽培技术研究进展. 作物研究, 2012, 26: 282-287Cai QH, Tao YS, Tang YP, Tang QY. Research progress in the high yield cultivation techniques of southern maize. Crop Res, 2012, 26: 282-287 (in Chinese)[本文引用:1]
[6]
赵强基, 郑建初, 袁从, 卞新民, 李萍萍, 章熙谷. 中国南方稻区玉米-稻种植模式的建立和实践. , 1997, 13: 215-219Zhao QJ, Zheng JC, YuanC, Bian XM, Li PP, Zhang XG. Establishment and practice on maize-rice cropping model in Paddy Area of southern China. , 1997, 13: 215-219 (in Chinese with English abstract)[本文引用:2]
[7]
展茗, 赵明, 刘永忠, 徐尚忠. 湖北省玉米产需矛盾及提升玉米生产科技水平对策. 湖北农业科学, 2010, 49: 802-806ZhanM, ZhaoM, Liu YZ, Xu SZ. Enhance maize production technology, alleviate the contradiction between production and demand of maize in Hubei province. Hubei Agric Sci, 2010, 49: 802-806 (in Chinese with English abstract)[本文引用:1]
[8]
袁建华, 颜伟, 陈艳萍, 张跃中. 南方丘陵生态区玉米生产现状及发展对策. 玉米科学, 2003, (专刊): 29-31Yuan JH, YanW, Chen YP, Zhang YZ. Production situation and development strategies of maize in southern hill ecological region. J Maize Sci, 2003, (special issue): 29-31 (in Chinese)[本文引用:1]
[9]
TimsinaJ, Buresh RJ, DobermannA, DixonJ. Rice-maize Systems in Asia: Current Situation and Potential. , 2011[本文引用:3]
[10]
TimsinaJ, Jat ML, MajumdarK. Rice-maize systems of South Asia: current status, future prospects and research priorities for nutrient management. Plant Soil, 2010, 335: 65-82[本文引用:1]
[11]
李小勇. 南方稻田春玉米-晚稻种植模式资源利用效率及生产力优势研究. , 2011Li XY. Study on Resource Use Efficiency and Relative Advantage of Productivity in Spring Maize-Later Rice Planting Model on South China Paddy Field. , 2011 (in Chinese with English abstract)[本文引用:4]
[12]
Kadiyala M DM, Mylavarapu RS, Li YC, Reddy GB, Reddy MD. Impact of aerobic rice cultivation on growth, yield, and water productivity of rice-maize rotation in semiarid tropics. Agron J, 2012, 104: 1757-1765[本文引用:1]
[13]
李立娟, 王美云, 薛庆林, 崔彦宏, 侯海鹏, 葛均筑, 赵明. 黄淮海双季玉米产量性能与资源效率的研究. 作物学报, 2011, 37: 1229-1234Li LJ, Wang MY, Xue QL, Cui YH, Hou HP, Ge JZ, ZhaoM. Yield performance and resource efficiency of double-cropping maize in the Yellow, Huai and Hai River valleys region. Acta Agron Sin, 2011, 37: 1229-1234 (in Chinese with English abstract)[本文引用:2]
蔡庆红. 南方稻区双季玉米周年高产的播期与品种搭配效应研究. 湖南农业大学硕士学位论文, 湖南长沙, 2013Cai QH. Study on Effects of Sowing Date and Variety Combination on the Whole Year’s High-Yield of Double Cropping Maize in Southern Paddy. MS Thesis of Hunan Agricultural University, Hunan, China, 2013 (in Chinese with English abstract)[本文引用:1]
[16]
王美云, 任天志, 赵明, 李少昆, 王晓波, 李立娟, 陈长利. 双季青贮玉米模式物质生产及资源利用效率研究. 作物学报, 2007, 33: 1316-1323Wang MY, Ren TZ, ZhaoM, Li SK, Wang XB, Li LJ, Chen CL. Matter production and resources use efficiency of double- cropping silage maize system. Acta Agron Sin, 2007, 33: 1316-1323 (in Chinese with English abstract)[本文引用:3]
[17]
林益明, 郑茂钟, 林鹏, 陈松河. 园林竹类植物叶的热值和灰分含量研究. 厦门大学学报, 2000, 39(1): 136-140Lin YM, Zheng MZ, LinP, Chen SH. Ash content and caloric value in leaves of garden bamboo species. J Xiamen Univ, 2000, 39(1): 136-140 (in Chinese with English abstract)[本文引用:1]
[18]
徐勇, 齐文虎, 谢高地, 章予舒. 农业自然资源利用效率的因子-能量评价模型及其应用. 资源科学, 2002, 24(3): 86-91XuY, Qi WH, Xie GD, Zhang YS. The factor-energy evaluation model of agricultural natural resources utilization efficiency and its application. Resour Sci, 2002, 24(5): 86-91 (in Chinese with English abstract)[本文引用:1]
[19]
陈友订, 黄秋妹, 黄农荣, 刘彦卓, 梁祖扬, 张旭. 几个两系法高产杂交组合的光能利用率初探. 杂交水稻, 2000, 15(5): 37-40Chen YD, Huang QM, Huang NR, Liu YZ, Liang ZY, ZhangX. Preliminary studies on utilization ratio of solar energy for several high-yielding two-line hybrid rice combinations. Hybrid Rice, 2000, 15(5): 37-40 (in Chinese with English abstract)[本文引用:1]
[20]
张占琴, 魏建军, 杨相昆, 桑志勤. 北疆“一年两作”冬小麦-复播青贮玉米模式物质生产及资源利用率研究. , 2013, 31(6): 28-33Zhang ZQ, Wei JJ, Yang XK, Sang ZQ. Dry matter production and resources use efficiency of double-cropping winter wheat-forage maize system in North Xinjiang. , 2013, 31(6): 28-33 (in Chinese with English abstract)[本文引用:1]
[21]
高海涛, 王育红, 孟战赢, 席玲玲, 段国辉, 温红霞. 小麦-玉米双晚种植对周年产量和资源利用的影响. 麦类作物学报, 2012, 32: 1102-1106Gao HT, Wang YH, Meng ZY, Xi LL, Duan GH, Wen HX. Effects of later sowing of winter wheat and later harvest of summer maize cropping system on yield and resources use efficiency of whole-year. J Triticeae Crops, 2012, 32: 1102-1106 (in Chinese with English abstract)[本文引用:1]
[22]
侯连涛, 江晓东, 韩宾, 焦念元, 赵春, 李增嘉. 不同覆盖处理对冬小麦气体交换参数及水分利用效率的影响. 农业工程学报, 2006, 22(9): 58-63Hou LT, Jiang XD, HanB, Jiao NY, ZhaoC, Li ZJ. Effects of different mulching treatments on the gas exchange parameters and water use efficiency of winter wheat. Trans CSAE, 2006, 22(9): 58-63 (in Chinese with English abstract)[本文引用:1]
[23]
吴文革, 张洪程, 陈烨, 李杰, 钱银飞, 吴桂成, 翟超群. 超级中籼杂交水稻氮素积累利用特性与物质生产. 作物学报, 2008, 34: 1060-1068Wu WG, Zhang HC, ChenY, LiJ, Qian YF, Wu GC, Zhai CQ. Dry-matter accumulation and nitrogen absorption and utilization in middle-season indica super hybrid rice. Acta Agron Sin, 2008, 34: 1060-1068 (in Chinese with English abstract)[本文引用:1]
[24]
梁红梅. 中国种植业优势区域及其耕地保护策略. , 2011Liang HM. Study on the Advantage Regions of Crop Farming in China and Their Arable Land Protection Tactics. , 2011 (in Chinese with English abstract)[本文引用:1]
[25]
武兰芳, 陈阜, 欧阳竹. 种植制度演变与研究进展. 耕作与栽培, 2002, (3): 1-5Wu LF, ChenF, Ou-YangZ. Evolution and study progress of cropping system. Gengzuo yu Zaipei, 2002, (3): 1-5 (in Chinese)[本文引用:1]
[26]
刘建. 江苏沿江稻区玉米-稻模式新型种植方式研究. , 2000, (1): 5-7LiuJ. Study on the new rice-maize cropping system along the Yangtze River in Jiangsu Province. , 2000, (1): 5-7 (in Chinese)[本文引用:1]
[27]
刘建, 徐少安, 周根友, 沈锦根, 陆虎华. 沿江稻区多熟制春玉米两段覆膜种植技术. 江苏农业学报, 2001, 17: 13-18LiuJ, Xu SA, Zhou GY, Shen JG, Lu HH. Cultivation techniques for multi-cropping spring maize with plastic film covered at two stages in paddy region along Yangtze River. Jiangsu J Agric Sci, 2001, 17: 13-18 (in Chinese with English abstract)[本文引用:1]
[28]
范明生, 江荣风, 张福锁, 吕世华, 刘学军. 水旱轮作系统作物养分管理策略. 应用生态学报, 2008, 19: 424-432Fan MS, Jiang RF, Zhang FS, Lü SH, Liu XJ. Nutrient management strategy of paddy rice-upland crop rotation system. Chin J Appl Ecol, 2008, 19: 424-432 (in Chinese with English abstract)[本文引用:1]
[29]
Qin JQ, Impa SM, Tang QY, Yang SH, YangJ, Tao YS, Jagadish K S V. Integrated nutrient, water and other agronomic options to enhance rice grain yield and N use efficiency in double-season rice crop. Field Crops Res, 2013, 148: 15-23[本文引用:1]
[30]
Ali MY, Waddington SR, HodsonD, TimsinaJ, DixonJ. Maize-rice Cropping Systems in Bangladesh: Status and Research Opportunities. , 2008[本文引用:1]
展茗, 张胜, 李建鸽, 赵明, 葛均筑. 湖北省不同时期玉米区域生产比较优势分析. 中国农学通报, 2013, 29(3): 63-68ZhanM, ZhangS, Li JG, ZhaoM, Ge JZ. Analysis on comparative advantage of corn production in different regions and periods in Hubei Province. Chin Agric Sci Bull, 2013, 29(3): 63-68 (in Chinese with English abstract)[本文引用:1]
[33]
刘顺飞. 中国水稻布局变化研究——1978年至2004年. , 2007Liu SF. The Research of Rice Spatial Distribution—from 1978 to 2004. , 2007 (in Chinese with English abstract)[本文引用:1]
[34]
Haefele SM, Banayo N P M, Amarante S T, Siopongco J D L C, Mabesa R L. Characteristics and management options for rice- maize systems in the Philippines. Field Crops Res, 2013, 144: 52-61[本文引用:1]