关键词:冬小麦; 微喷灌; 畦灌; 产量; 水分利用效率 Grain Yield and Water Use Characteristics of Winter Wheat under Micro- sprinkler Irrigation DONG Zhi-Qiang, ZHANG Li-Hua, LI Qian, LÜ Li-Hua, SHEN Hai-Ping, CUI Yong-Zeng, LIANG Shuang-Bo*, JIA Xiu-Ling Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences / Scientific Observing and Experimental Station of Crop Cultivation in North China, Ministry of Agriculture, Shijiazhuang 050035, China Fund:This study was supported by the National Special Fund for Agro-Scientific Research in the Public Interests (201303133-1-1, 201203100), the Natural Science Foundation of Hebei Province, China (C2014301007) and Hebei Provincial Special Fund for Building up Bohai Grain-Store” of Hebei Province AbstractThe objective of this study was to establish the water-saving and high-yield irrigation system using micro-sprinkler in winter wheat in North China Plain. A two-yield experiment was carried out in the same field in 2012-2013 (normal precipitation) and 2013-2014 (dry year) wheat growing seasons to compare the effects of different irrigation amounts in micro-sprinkler and furrow irrigation modes on wheat population, leaf area index, grain yield, water use efficiency, and water consumption. The total water amount in micro-sprinkler mode ranged from 60 to 180 mm in 2-6 irrigations and the total water amount in furrow irrigation mode ranged from 74 to 229 mm in 1-3 irrigations. In the 2012-2013 growing season, the average wheat yield of micro-sprinkler irrigation was 5.6% higher than that of furrow irrigation, and the highest yield was obtained under micro-sprinkler irrigation of 120 mm. Yield increased significantly in the micro-sprinkler treatment than in the furrow irrigation treatment when water amount ≤90 mm, but decreased significantly when the water amount was larger than 150 mm. In the 2013-2014 growing season, the average yield of micro-sprinkler irrigation was 0.8% higher than that of furrow irrigation, and the highest yield was obtained under micro-sprinkler irrigation of 150 mm. Thousand-grain weight and water use efficiency under micro-sprinkler irrigation were also higher than those under furrow irrigation, and the increased rations were 5.1% and 8.7% in 2012-2013 growing season and 7.9% and 10.7% in 2013-2014 growing season, respectively. We recommend that winter wheat production with micro-sprinkler under the similar condition of this experiment should be irrigated with water amount of 90-120 mm and water consumption of 325-355 mm in normal precipitation year and with water amount of 105-150 mm (30-45 mm for each irrigation) and water consumption of 335-380 mm in dry year. Compared with furrow irrigation, micro-sprinkler irrigation has the water-saving potential of 20-50 mm in normal year and 70-110 mm in dry year at the same yield level.
Keyword:Winter wheat; Micro-sprinkler irrigation; Furrow irrigation; Yield; Water use efficiency Show Figures Show Figures
冬小麦是我国华北平原主要粮食作物, 其产量约占粮食总产量的61%[1]。该地区冬小麦生育期耗水量为450 mm左右[2, 3], 河北省山前平原冬小麦生育期降水量范围为60~150 mm[4], 不能满足生长发育需求, 易造成冬小麦生育期的水分亏缺[5], 补充灌溉是保证该地区小麦高产的重要措施之一。长期以来, 小麦采用地面漫灌方式, 灌水定额大、水分利用效率低、水资源浪费严重, 导致地下水严重超采、地下水位下降、地基沉降等一系列生态环境问题。因此, 如何合理高效利用有限水资源, 提高作物水分生产效率是小麦生产面临的严峻挑战[6]。 传统的地面大水漫灌方式是节水生产中亟需替换的灌溉技术。近年来, 针对冬小麦节水灌溉国内外已开展了大量研究, 多数以地面灌溉模式下水分高效利用研究为主。研究表明, 在一定范围内, 小麦籽粒产量随土壤水分含量的增加而增加[7]; 通过调控灌水量[8, 9]和灌水时期[10]形成适度水分胁迫, 可提高小麦籽粒产量和水分利用效率。与传统地面灌溉相比, 喷灌能有效地控制灌水定额, 显著减少总灌水量, 改善麦田生态环境, 提高灌水分布均匀系数[11, 12], 显著提高小麦产量和水分利用效率[13, 14]。 微喷带灌溉是在喷灌和滴灌基础上发展起来的一种新型灌溉方式, 利用微喷带[15]将水均匀地喷洒在田间, 所用设施相对简单、廉价[16]。与畦灌相比, 微喷带灌溉可减少灌水量67.5~75.0 mm, 降低表层土壤容重, 抑制土壤养分下渗, 具有节水和灌溉均匀等特点[17, 18]。满建国等[19]研究表明, 冬小麦拔节期和开花期采用微喷带测墒补灌, 各处理总耗水量为383.6~475.2 mm, 且表现为随喷灌带带长缩短, 开花期灌水量和总灌水量减少, 总耗水量显著减少, 而籽粒产量和水分利用效率显著增加的趋势。目前, 关于冬小麦微喷灌条件下水肥一体化模式的研究报道甚少。本研究在该模式下对不同灌水处理冬小麦籽粒产量、耗水特征、群体动态变化和水分利用效率进行了探讨, 针对华北山前平原高产限水区不同降水年型提出微喷带灌溉水肥一体化模式冬小麦优化灌溉制度, 为该地区冬小麦节水高产栽培提供相应的理论依据和技术支持。 1 材料与方法1.1 试验区概况在河北省农林科学院粮油作物研究所藁城堤上试验站(38° 41' N, 116° 85' E, 海拔51.2 m)同一地块进行田间试验。前茬种植玉米, 试验地0~20 cm土壤含有机质15.68 g kg-1、全氮1.04 g kg-1、全磷2.13 g kg-1、碱解氮80.0 mg kg-1、速效磷21.4 mg kg-1、速效钾113.9 mg kg-1。 2012— 2013年度, 前茬玉米季降水量为380.0 mm, 冬小麦生育期总降水量为136.0 mm, 属平水年, 其中播种至越冬前29.6 mm、越冬至返青期27.1 mm、拔节至开花期22.4 mm、开花至成熟期56.9 mm; 2013— 2014年度玉米季降水量为520.0 mm, 小麦季降水量为66.4 mm, 属枯水年, 上述4个小麦生育阶段降水量分别为15.8、5.9、17.5和27.2 mm。 1.2 试验设计采取裂区设计, 主区为灌溉模式, 设微喷带灌溉(简称微喷灌)和畦灌两种模式; 副区为灌水次数和总灌水量, 微喷灌模式设6个水平, 畦灌模式设3个水平, 小区随机排列, 4次重复, 小区面积7.0 m × 5.4 m, 处理间设1.0 m隔离区。微喷带为并列斜5孔、孔径0.8 mm、带宽40.0 mm、喷射角范围45° ~70° , 微喷带铺设间距1.8 m; 畦灌模式采用PE软管灌溉, 即每个小区用两根直径63.0 mm的软管(软管间距2.5 m)输送至小区中部。微喷灌模式和畦灌模式各处理的灌水时期、灌水量分别见表1和表2。 表1 Table 1 表1(Table 1)
表1 畦灌模式下不同处理的灌溉量 Table 1 Irrigation quantities of different furrow irrigation treatments during two wheat growing seasons
处理 Treatment
灌水次数 Irrigation frequency
灌水总量 Total amount (mm)
越冬期 Pre-wintering (mm)
拔节期 Jointing (mm)
拔节后 After jointing (mm)
开花期 Anthesis (mm)
2012-2013
FI1
1
74
—
—
74
—
FI2
2
138
—
67
—
71
FI3
3
167
56
55
—
56
2013-2014
FI1
1
75
—
—
75
—
FI2
2
191
—
105
—
86
FI3
3
229
69
83
—
77
FI: 畦灌。FI: furrow irrigation.
表1 畦灌模式下不同处理的灌溉量 Table 1 Irrigation quantities of different furrow irrigation treatments during two wheat growing seasons
表2 Table 2 表2(Table 2)
表2 微喷灌模式下不同处理的灌溉量 Table 2 Irrigation quantities of different micro-sprinkler irrigation treatments during two wheat growing seasons
处理 Treatment
灌水次数 Irrigation frequency
灌水总量 Total amount (mm)
越冬期 Pre-wintering stage
返青期 Re-greening stage
起身期 Erecting stage
拔节期 Jointing stage
孕穗期 Booting stage
开花期 Anthesis stage
灌浆期 Filling stage
2012-2013
MSI1
3
90
—
—
—
30
—
30
30
MSI2
3
120
—
—
—
45
—
45
30
MSI3
4
120
—
—
30
30
—
30
30
MSI4
4
120
—
—
—
30
30
30
30
MSI5
5
150
—
—
30
30
30
30
30
MSI6
6
180
—
30
30
30
30
30
30
2013-2014
MSI1
2
60
—
—
—
30
—
30
—
MSI2
3
83
—
—
—
30
23
30
—
MSI3
3
105
—
—
—
45
30
30
—
MSI4
4
120
30
—
—
30
30
30
—
MSI5
5
150
—
—
30
30
30
30
30
MSI6
6
180
—
30
30
30
30
30
30
MSI: 微喷灌。MSI: micro-sprinkler irrigation.
表2 微喷灌模式下不同处理的灌溉量 Table 2 Irrigation quantities of different micro-sprinkler irrigation treatments during two wheat growing seasons
采用小麦小区播种机(8行)播种, 15 cm等行距种植。出水井口安装变频柜, 供水水压控制为0.1 MPa, 微喷灌模式灌水定额可控, 畦灌模式灌水量以畦(小区)自然灌满为标准。小麦品种为冀麦585, 前茬作物玉米收获后秸秆全部还田。2012年10月9日播种, 2013年6月14日收获, 播种量180 kg hm-2; 2013年10月8日播种, 2014年6月10日收获, 播种量210 kg hm-2。整地播种前施入小麦专用复合肥600 kg hm-2 (N∶ P2O5∶ K2O = 20∶ 26∶ 8), 春季追施尿素270 kg hm-2 (含氮46.4%), 畦灌模式于小麦拔节期随灌水一次性撒施, 微喷灌模式采用水肥一体化技术于拔节期追施189 kg hm-2, 抽穗开花期追施81 kg hm-2。两年度微喷灌模式和畦灌模式各处理均未灌溉底墒水。 1.3 小麦耗水量和水分利用效率测定方法于小麦播种后、收获前和各生育期浇水前用CNC503B型中子土壤水分仪(北京核子仪器公司)测定0~200 cm土层水分含量, 以20 cm为一个土壤层次。作物生育期耗水量ETα = P + U - R - F + Δ W + I [20], 式中Δ W为土壤贮水消耗量, P为该时段降水量(mm), U为地下水通过毛管作用上移补给作物水量(mm), R为地表径流量(mm), F为补给地下水量(mm), I为灌水量(mm)。本试验地块地势平坦, 地下水埋深5 m以下, 降水入渗深度不超过2 m, 因此U、R、F均为0。 水分利用效率WUEy=Y/ETa [21], 式中Y为籽粒产量(kg hm-2), ETa为作物全生育期总耗水量(mm)。 1.4 小麦群体调查指标和产量相关性状测定方法小麦出苗后选取长势均一、有代表性的1 m双行定点, 出苗后计数定点区域的株数, 分别在冬前、起身末期和成熟期计数分蘖数, 开花前后用SunScan冠层分析系统(Delta-T, 英国)测定叶面积指数; 用小区收获机单独收获脱粒, 每小区收获面积33.6 m2, 待籽粒自然风干后分别称重, 采用谷物水分测定仪测定籽粒含水量, 折算为含水量13%的标准产量。 1.5 统计分析用Microsoft Excel 2003处理数据和作图, 采用DPS7.05软件进行方差分析, 用最小极差(LSD)法检验差异显著性。
表3 不同灌水处理籽粒产量、产量构成和水分利用效率 Table 3 Grain yield, yield components and water use efficiency of different irrigation treatments
处理 Treatment
收获穗数 Spike number (× 104 hm-2)
穗粒数 Grain number per spike
千粒重 Thousand-grain weight (g)
籽粒产量 Grain yield (kg hm-2)
水分利用效率 Water use efficiency (kg hm-2 mm-1)
2012-2013
FI1
696 c
29.7 a
34.2 c
7350 d
22.2 c
FI2
739 ab
28.6 ab
35.6 bc
8277 ab
20.7 d
FI3
743 a
28.3 ab
37.5 ab
8287 ab
21.0 cd
MSI1
727 ab
27.6 b
37.1 b
8235 ab
25.2 a
MSI2
731 ab
26.7 b
39.4 a
8352 a
24.1 a
MSI3
739 ab
27.9 b
37.9 ab
8199 ab
23.9 ab
MSI4
752 a
28.2 ab
36.7 b
8313 ab
22.3 c
MSI5
745 a
29.0 a
36.8 b
7950 b
21.2 cd
MSI6
744 a
27.5 b
37.6 ab
7790 c
20.2 d
2013-2014
FI1
819 b
27.9 ab
40.3 d
9032 c
29.3 b
FI2
869 a
26.4 c
43.9 bc
9995 ab
23.6 d
FI3
887 a
26.7 bc
42.2 c
9843 ab
22.6 e
MSI1
738 c
27.0 bc
44.4 bc
8988 c
31.4 a
MSI2
758 c
26.5 bc
45.3 ab
9243 bc
30.7 ab
MSI3
762 c
26.3 c
45.6 ab
9681 abc
28.8 b
MSI4
764 c
28.1 a
46.3 a
10014 ab
27.0 c
MSI5
767 c
28.7 a
46.5 a
10149 a
26.9 c
MSI6
771 c
27.6 ab
44.7 ab
9729 abc
24.4 d
FI: furrow irrigation; MSI: micro-sprinkler irrigation. In the same growing season, values followed by different letters are significantly different at P < 0.05. FI: 畦灌; MSI: 微喷灌。同一年度中, 数据后不同字母表示处理间差异显著(P < 0.05)。
表3 不同灌水处理籽粒产量、产量构成和水分利用效率 Table 3 Grain yield, yield components and water use efficiency of different irrigation treatments
表4 不同灌水处理耗水组成及其占总耗水量的比例 Table 4 Water consumption composition and its proportion to total water consumption in different irrigation treatments
处理 Treatment
总耗水量 Total water consumption (mm)
土壤水 Soil water
灌溉 Irrigation
降水 Precipitation
消耗量 Consumption (mm)
比例 Proportion (%)
灌水量 Amount (mm)
比例 Proportion (%)
降水量 Amount (mm)
比例 Proportion (%)
2012-2013
FI1
312.6 d
100.5 a
32.1 a
73.5
23.5
138.6
44.3
FI2
364.0 a
87.4 b
24.0 b
138.0
37.9
138.6
38.1
FI3
404.1 a
98.5 a
24.4 bc
167.0
41.3
138.6
34.3
MSI1
326.9 d
98.3 a
30.1 a
90.0
27.5
138.6
42.4
MSI2
346.0 c
87.4 b
25.3 b
120.0
34.7
138.6
40.0
MSI3
350.1 c
91.5 b
26.1 b
120.0
34.3
138.6
39.6
MSI4
348.2 c
89.6 b
25.8 b
120.0
34.5
138.6
39.7
MSI5
375.5 b
86.9 b
23.1 c
150.0
39.9
138.6
37.0
MSI6
384.8 b
66.2 c
17.2 d
180.0
46.8
138.6
36.0
2013-2014
FI1
307.9 d
165.7 a
53.8 a
74.6
24.2
67.6
22.0
FI2
424.0 a
164.9 a
38.9 e
191.5
45.2
67.6
15.9
FI3
435.6 a
138.7 c
31.8 f
229.3
52.6
67.6
15.6
MSI1
286.4 e
158.8 ab
55.4 a
60.0
21.0
67.6
23.6
MSI2
301.2 d
151.1 b
50.2 b
82.5
27.4
67.6
22.4
MSI3
336.2 c
163.6 a
48.7 b
105.0
31.2
67.6
20.1
MSI4
346.1 c
158.5 ab
45.8 c
120.0
34.7
67.6
19.5
MSI5
377.7 b
160.1 ab
42.4 d
150.0
39.7
67.6
17.9
MSI6
398.9 b
151.3 b
37.9 e
180.0
45.1
67.6
17.0
FI: furrow irrigation; MSI: micro-sprinkler irrigation. In the same growing season, values followed by different letters are significantly different at P < 0.05. FI: 畦灌; MSI: 微喷灌。同一年度中, 数据后不同字母表示处理间差异显著(P < 0.05)。
表4 不同灌水处理耗水组成及其占总耗水量的比例 Table 4 Water consumption composition and its proportion to total water consumption in different irrigation treatments
表5 不同灌水处理冬小麦群体的变化 Table 5 Changes of winter wheat population in different irrigation treatments
处理 Treatment
基本苗 Seedlings (× 104 hm-2)
冬前分蘖 Tillers before winter (× 104 hm-2)
起身末期分蘖 Tillers at end of erecting stage (× 104 hm-2)
成穗率 Spike setting rate (%)
2012-2013
FI1
361 a
982 ab
1742 a
39.9 g
FI2
365 a
975 ab
1709 ab
43.2 de
FI3
362 a
993 a
1773 a
41.9 f
MSI1
362 a
965 b
1505 de
48.3 b
MSI2
357 a
957 b
1475 e
48.7 b
MSI3
363 a
970 ab
1591 c
46.5 c
MSI4
359 a
984 ab
1451 e
53.2 a
MSI5
365 a
991 a
1598 c
46.6 c
MSI6
361 a
969 ab
1449 e
51.4 a
2013-2014
FI1
421 a
1576 ab
1708 e
48.0 a
FI2
418 a
1605 ab
1807 de
49.9 a
FI3
426 a
1627 a
2148 a
37.8 d
MSI1
423 a
1549 b
1921 b
38.5 cd
MSI2
419 a
1555 b
1792 de
44.3 b
MSI3
424 a
1596 ab
1905 bc
40.5 c
MSI4
420 a
1578 ab
1839 cde
42.8 bc
MSI5
422 a
1602 ab
1936 b
37.8 d
MSI6
425 a
1585 ab
1854 bcd
41.6 bc
FI: furrow irrigation; MSI: micro-sprinkler irrigation. In the same growing season, values followed by different letters are significantly different at P < 0.05. FI: 畦灌; MSI: 微喷灌。同一年度中, 数据后不同字母表示处理间差异显著(P < 0.05)。
表5 不同灌水处理冬小麦群体的变化 Table 5 Changes of winter wheat population in different irrigation treatments
图1 不同灌水处理小麦叶面积指数的变化(2013-2014)MSI: 微喷灌; FI: 畦灌。数据为2014年4月24日和5月5日测得叶面积指数的平均值。Fig. 1 Changes of leaf area index of wheat in different irrigation treatments (2013-2014)MSI: micro-sprinkler irrigation; FI: furrow irrigation. Data are the means of measurements on April 24 and May 5, 2014.
3 讨论减少灌水量或实施亏缺灌溉是降低小麦生育期耗水和提高水分利用效率的有效方法[22, 23, 24]。在一定范围内增加冬小麦的灌水量具有增产作用, 但灌水量过多会导致籽粒产量显著降低[25]。冬小麦的供水量与总耗水量呈线性正相关, 回归斜率为0.67~ 0.71[26]。灌水量越多, 冬小麦耗水量和生物量越高, 籽粒最高产量却是在适度水分亏缺情况下获得的[27]。受灌水方式的限制, 畦灌模式单次灌水额至少为70 mm, 实施节水灌溉只能减少灌水次数。经多年试验研究与示范推广, 目前华北山前平原推广畦灌模式小麦节水灌溉技术一般年份春季灌拔节水(或起身水)和开花水, 干旱年份根据降水情况增加越冬水或灌浆水, 全生育期灌2~3次水。与畦灌模式相比, 微喷灌水肥一体化模式单次灌水定额大幅下降, 从畦灌模式75~105 mm降至30~45 mm, 从而可以通过减少单次灌水额来进一步挖掘小麦的节水潜力。微喷灌克服了地面漫灌易造成土壤板结且氮素向深层土壤渗漏的不足, 从而提高小麦对氮素的吸收利用, 改善土壤物理性质, 这些因素均对小麦的生长发育产生综合有利影响, 在灌水量相近情况下可提高小麦产量与水分利用效率(待发表)。本试验结果表明, 两年度微喷灌模式冬小麦籽粒产量均随灌水量增加先增大后减小, 平水年、枯水年产量最大值对应的灌水量分别为120 mm和150 mm; 畦灌模式籽粒产量均随灌水量增加逐渐增大, 当灌水量高于或等于150 mm时产量增幅变缓。在灌水量较小情况下(≤ 90 mm), 微喷灌模式小麦籽粒产量高于畦灌模式; 在灌水量较大情况下(≥ 180 mm), 微喷灌模式产量低于畦灌模式。同等产量水平下, 平水年、枯水年微喷灌模式较畦灌模式可分别节省灌溉水20~50 mm和70~110 mm。 郭增江等[28]试验表明, 0~40 cm土层平均土壤相对含水量拔节期65%和开花期70%的处理小麦籽粒产量最高, 同时获得较高的水分利用效率。小麦拔节期和开花期各灌溉60 mm的处理成熟期干物质积累量显著高于仅拔节期灌溉处理, 每株增加2.4 g[29]。本研究结果与上述结论相同, 平水年、枯水年畦灌模式拔节期和开花期各灌溉60~85 mm的处理冬小麦籽粒产量和水分利用效率均较高。 冬小麦产量和水分利用效率与耗水量之间均呈二次函数关系[27, 30], 耗水量为350~490 mm时冬小麦籽粒产量和水分利用效率较优[30, 31]。本研究结果表明, 平水年、枯水年微喷灌模式冬小麦耗水量分别为330~360 mm和340~400 mm, 畦灌模式分别为360~410 mm和390~440 mm时籽粒产量和水分利用效率均较高, 两年度畦灌模式冬小麦耗水量均在上述研究结论范围内, 微喷灌模式耗水量远小于畦灌模式。随着灌水次数的增加, 灌溉量从80 mm增加至240 mm, 冬小麦生育期耗水量增加80~90 mm, 水分利用效率降低0.3~0.4 kg m-3 [32]。本研究中, 平水年畦灌模式灌溉量从74 mm增加至167 mm, 冬小麦生育期耗水量增加92 mm, 水分利用效率降低0.1~0.2 kg m-3, 这与上述结论基本相同。微喷灌模式灌溉量从90 mm增加至180 mm, 冬小麦生育期耗水量增加58 mm, 水分利用效率降低0.5 kg m-3; 枯水年畦灌模式灌溉量从75 mm增加至229 mm, 冬小麦生育期耗水量增加127 mm, 水分利用效率降低0.6~0.7 kg m-3, 与上述结论存在一定差异。微喷灌模式灌溉量从60 mm增加至180 mm, 冬小麦生育期耗水量增加98 mm, 水分利用效率降低0.6~0.7 kg m-3。关于丰水年畦灌模式和微喷灌模式冬小麦籽粒产量随灌水量增加的变化、最大值对应的灌水量及不同灌水处理耗水量及水分利用效率的变化有待进一步的试验研究。 4 结论平水年冬小麦生育期微喷灌模式灌溉90~ 120 mm、耗水量325~355 mm和畦灌模式灌溉135~ 170 mm、耗水量360~410 mm可获得较高籽粒产量和水分利用效率; 枯水年微喷灌模式灌溉105~ 150 mm、耗水量335~380 mm和畦灌模式灌溉190~ 230 mm、耗水量420~440 mm可获得较高籽粒产量和水分利用效率。微喷灌模式与畦灌模式相比, 在同等产量水平下平水年节水潜力为20~50 mm, 枯水年为70~110 mm, 该模式可在我国华北水资源匮乏地区因地制宜推广应用。 The authors have declared that no competing interests exist.
作者已声明无竞争性利益关系。The authors have declared that no competing interests exist.
中国农业年鉴编辑委员会. , 北京: 中国农业出版社, 2006. pp 78-82Compilation Committee of China Agriculture Yearbook. Beijing: China Agriculture Press, 2006. pp 78-82(in Chinese)[本文引用:1]
[2]
王淑芬, 张喜英, 裴冬. 不同供水条件对冬小麦根系分布、产量及水分利用效率的影响. 农业工程学报, 2006, 22(2): 27-32Wang SF, Zhang XY, PeiD. Impacts of different water supplied conditions on root distribution, yield and water utilization efficiency of winter wheat. Trans CSAE, 2006, 22(2): 27-32 (in Chinese)[本文引用:1]
[3]
Liu CM, Zhang XY, Zhang YQ. Determination of daily evaporation and evapotranspiration of winter wheat and maize by large-scale weighing lysimeter and micro-lysimeter. Agric For Meteorol, 2002, 111: 109-120[本文引用:1]
[4]
Zhang XY, PeiD, Hu CS. Conserving groundwater for irrigation in the North China Plain. , 2003, 21: 159-166[本文引用:1]
[5]
居辉, 李三爱, 严昌荣. 我国北方旱区雨养小麦生产潜力研究. 中国生态农业学报, 2008, 16: 728-731JuH, Li SA, Yan CR. Potential productivity of rain-fed wheat in dry farmland s of North China. Chin J Eco-Agric, 2008, 16: 728-731 (in Chinese with English abstract)[本文引用:1]
[6]
康绍忠, 胡笑涛, 蔡焕杰, 冯绍元. 现代农业与生态节水的理论创新及研究重点. 水利学报, 2004, 12: 1-7Kang SZ, Hu XT, Cai HJ, Feng SY. New ideas and development tendency of theory for water saving in modern agriculture and ecology. J Hydraulic Eng, 2004, 12: 1-7 (in Chinese with English abstract)[本文引用:1]
[7]
Stone LR, Schlegel AJ. Yield-water supply relationships of grain sorghum and winter wheat. Agron J, 2006, 98: 1359-1366[本文引用:1]
[8]
Sun HY, Liu CM, Zhang XY, Shen YJ, Zhang YQ. Effects of irrigation on water balance, yield and WUE of winter wheat in the North China Plain. Agric Water Manag, 2006, 85: 211-218[本文引用:1]
[9]
RajalaA, HakalaK, MäkeläP, MuurinenS, Peltonen-SainioP. Spring wheat response to timing of water deficit through sink and grain filling capacity. Field Crops Res, 2009, 114: 263-271[本文引用:1]
[10]
门洪文, 张秋, 代兴龙, 曹倩, 王成雨, 周晓虎, 贺明荣. 不同灌水模式对冬小麦籽粒产量和水、氮利用效率的影响. 应用生态学报, 2011, 22: 2517-2523Men HW, ZhangQ, Dai XL, CaoQ, Wang CY, Zhou XH, He MR. Effects of different irrigation modes on winter wheat grain yield and water-and nitrogen use efficiency. Chin J Appl Ecol, 2011, 22: 2517-2523 (in Chinese with English abstract)[本文引用:1]
[11]
Liu HJ, Yu LP, LuoY, Wang XP, Huang GH. Responses of winter heat (Triticum aestivum L. ) evapotranspiration and yield to sprinkler irrigation regimes. Agric Water Manag, 2011, 98: 483-492[本文引用:1]
[12]
Kang YH, ChenM, Wan SQ. Effects of drip irrigation with aline water on waxy maize (Zea mays L. var. ceratina Kulesh) in North China Plain. Agric Water Manag, 2010, 97: 1303-1309[本文引用:1]
[13]
宫飞, 陈阜, 杨晓光, 苑丽娟. 喷灌对冬小麦水分利用的影响. 中国农业大学学报, 2001, 6(5): 30-34GongF, ChenF, Yang XG, Yuan LJ. Effects of sprinkler irrigation on water use of winter wheat. J China Agric Univ, 2001, 6(5): 30-34 (in Chinese with English abstract)[本文引用:1]
[14]
刘海军, 龚时宏, 王广兴. 喷灌条件下小麦生长及耗水规律的研究. , 2000, 19(1): 26-29Liu HJ, Gong SH, Wang GX. Study on plant growth and water use in winter wheat under sprinkler irrigation. , 2000, 19(1): 26-29 (in Chinese with English abstract)[本文引用:1]
[15]
中华人民共和国农业部. . 北京: 中国农业出版社, 2007Ministry of Agriculture of the People’s Republic of China. Agricultural Irrigation Equipment: Micro- Sprinkling Hose. Beijing: China Agriculture Press, 2007 (in Chinese)[本文引用:1]
[16]
周斌, 封俊, 张学军, 吴政文, 沈雪民. 微喷带单孔喷水量分布的基本特征研究. 农业工程学报, 2003, 19(4): 101-103ZhouB, FengJ, Zhang XJ, Wu ZW, Shen XM. Characteristics and indexes of water distribution of punched thin-soft tape for spray. Trans CSAE, 2003, 19(4): 101-103 (in Chinese)[本文引用:1]
[17]
史宏志, 高卫锴, 常思敏, 邸慧慧, 王廷晓, 杨素琴, 王太运, 王广胜. 微喷灌水定额对烟田土壤物理性状和养分运移的影响. 河南农业大学学报, 2009, 43: 485-490Shi HZ, Gao WK, Chang SM, Di HH, Wang TX, Yang SQ, Wang TY, Wang GS. Effect of irrigating water quota with micro-irrigation on soil physical properties and nutrient transport in different layers of tobacco soil. J Henan Agric Univ, 2009, 43: 485-490 (in Chinese)[本文引用:1]
[18]
Home PG, Pand a RK, KarS. Effect of method and scheduling of irrigation on water and nitrogen use efficiencies of Okra (Abelmoschus esculentus). Agric Water Manag, 2002, 55: 159-170[本文引用:1]
[19]
满建国, 王东, 张永丽, 石玉, 于振文. 不同喷射角微喷带灌溉对土壤水分布与冬小麦耗水特性及产量的影响. 中国农业科学, 2013, 46: 5098-5112Man JG, WangD, Zhang YL, ShiY, Yu ZW. Effects of irrigation with micro-sprinkling hoses of different sprinkling angles on soil water distribution and water consumption characteristics and grain yield of winter wheat. Sci Agric Sin, 2013, 46: 5098-5112 (in Chinese with English abstract)[本文引用:1]
[20]
陶毓汾, 王立祥, 韩仕峰. . 北京: 中国气象出版社, 1993. pp 63-157Tao YF, Wang LX, Han SF. Beijing: China Meteorological Press, 1993. pp 63-157(in Chinese)[本文引用:1]
[21]
HussainG, Al-Jaloud A A. Effect of irrigation and nitrogen on water use efficiency of wheat in Saudi Arabia. Agric Water Manag, 1995, 27: 143-153[本文引用:1]
[22]
EliasF, Marıa AS. Deficit irrigation for reducing agricultural water use. , 2007, 58: 147-159[本文引用:1]
[23]
Du TS, Kang SZ, Sun JS, Zhang XX, Zhang JH. An improved water use efficiency of cereals under temporal and spatial deficit irrigation in North China. Agric Water Manag, 2010, 97: 66-74[本文引用:1]
[24]
SamG, DirkR. Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agric Water Manag, 2009, 96: 1275-1284[本文引用:1]
[25]
Zhang XY, Chen SY, Sun HY. Dry matter, harvest index, grain yield and water use efficiency as affected by water supply in winter wheat. , 2008, 7: 1-10[本文引用:1]
Kang SZ, ZhangL, Liang YL, Hu XT, Cai HJ, Gu BJ. Effects of limited irrigation on yield and water use efficiency of winter wheat in the Losses Plateau of China. Agric Water Manag, 2002, 55: 203-216[本文引用:2]
[28]
郭增江, 于振文, 石玉, 赵俊晔, 张永丽, 王东. 不同土层测墒补灌对小麦旗叶光合特性和干物质积累与分配的影响. 作物学报, 2014, 40: 731-738Guo ZJ, Yu ZW, ShiY, Zhao JY, Zhang YL, WangD. Photosynthesis characteristics of flag leaf and dry matter accumulation and allocation in winter wheat under supplemental irrigation after measuring moisture content in different soil layers. Acta Agron Sin, 2014, 40: 731-738 (in Chinese with English abstract)[本文引用:1]
[29]
张胜全, 方保停, 张英华, 周顺利, 王志敏. 冬小麦节水栽培三种灌溉模式的水氮利用与产量形成. 作物学报, 2009, 35: 2045-2054Zhang SQ, Fang BT, Zhang YH, Zhou SL, Wang ZM. Utilization of water and nitrogen and yield formation under three limited irrigation schedules in winter wheat. Acta Agron Sin, 2009, 35: 2045-2054 (in Chinese with English abstract)[本文引用:1]
[30]
于利鹏, 黄冠华, 刘海军, 王相平, 王明强. 喷灌灌水量对冬小麦生长、耗水与水分利用效率的影响. 应用生态学报, 2010, 21: 2031-2037Yu LP, Huang GH, Liu HJ, Wang XP, Wang MQ. Effects of sprinkler irrigation amount on winter wheat growth, water consumption, and water use efficiency. Chin J Appl Ecol, 2010, 21: 2031-2037 (in Chinese with English abstract)[本文引用:2]
[31]
Li JM, InanagaS, Li ZH. Optimizing irrigation scheduling for winter wheat in the North China Plain. Agric Water Manag, 2005, 76: 8-23[本文引用:1]
[32]
Shao LW, Zhang XY, Sun HY, Chen SY, WangY. Yield and water use response of winter wheat to winter irrigation in the North China Plain. J Soil Water Conserv, 2011, 66: 104-113[本文引用:1]