摘要为探索不同肥力水平对渭北旱塬连作冬小麦田在长周期免耕/深松轮耕措施下土壤蓄水保墒和作物增产效应的影响, 在模拟精度验证基础上, 应用WinEPIC模型长周期定量模拟研究了1980-2009年渭北旱塬免耕/深松轮耕连作麦田5个不同施肥水平下(T1, N 75 kg hm-2+P2O5 60 kg hm-2; T2, N 120 kg hm-2+P2O5 90 kg hm-2; T3, N 150 kg hm-2+P2O5 120 kg hm-2; T4, N 180 kg hm-2+P2O5 150 kg hm-2; T5, N 255 kg hm-2+P2O5 90 kg hm-2)冬小麦产量和土壤水分效应。在30年模拟期间, 各处理的冬小麦产量、年度耗水量和水分利用效率均呈波动下降趋势, 下降幅度表现为T5>T4>T3>T2>T1。0~5 m土层土壤有效含水量呈季节性波动降低趋势, 且随施肥水平的升高而降低, 5个处理的麦田平均干燥化速率依次为每年13.5、17.1、17.4、20.1和23.9 mm。0~1.5 m土层土壤湿度随季节降水波动; 各处理在不同深度形成稳定的土壤干层, 其中T1在1.5~2.0 m, T2和T3在1.5~3.0 m, T4和T5在1.5~4.0 m。上述结果表明, 随着肥力水平的增加, 旱作冬小麦产量和耗水量也增加, 土壤干层加厚。综合考虑认为, 在渭北旱塬免耕/深松轮耕长期连作小麦田适宜的施肥量为纯氮150 kg hm-2+P2O5 120 kg hm-2。
关键词:渭北旱塬; 冬小麦产量; 施肥水平; 保护性耕作; WinEPIC模型模拟; 土壤水分 Simulating Wheat Yield and Soil Moisture under Alternative No-tillage and Subsoil Tillage in Response to Fertilization Levels in Weibei Highlands ZHANG Yu-Jiao1, LI Jun1,*, GUO Zheng2, YUE Zhi-Fang2 1College of Agronomy, Northwest A&F University, Yangling 712100, China
2College of Forestry, Northwest A&F University, Yangling 712100, China
AbstractThis study aimed at understanding the responses of grain yield and soil moisture to fertilization level in dryland winter wheat under long-term alternative no-tillage and subsoil tillage. The WinEPIC model was employed on the basis of precision verification with five fertilization levels (T1, N 75 kg ha-1+P2O5 60 kg ha-1; T2, N 120 kg ha-1+P2O5 90 kg ha-1; T3, N 150 kg ha-1+P2O5 120 kg ha-1; T4, N 180 kg ha-1+P2O5 150 kg ha-1; and T5, N 255 kg ha-1+P2O5 90 kg ha-1) and the simulation period was from 1980 to 2009. During the 30-year period, water consumption in the growing season and water use efficiency of winter wheat tended to decrease in a fluctuating manner at different fertilization levels with the ranking sequence of T5>T4>T3>T2>T1. In the 0-5 m soil depth, the monthly available soil moisture tended to decrease in a seasonally fluctuating manner and reduced with the increase of fertilization amount. The soil desiccation rates from T1 to T5 were 13.5, 17.1, 17.4, 20.1, and 23.9 mm per year, respectively. During the simulation period, the soil humidity in 0-1.5 m soil layer fluctuated with the seasonal rainfall. A stable dry soil layer was found under all fertilization levels which was 1.5-2.0 m under T1, 1.5-3.0 m under T2 and T3, and 1.5-4.0 m under T4 and T5. These results indicate that grain yield and water consumption of winter wheat may increase with more fertilizer input, however, the dried soil layer is thickened. In a comprehensive consideration, we suggest N 150 kg ha-1+P2O5 120 kg ha-1 to be the optimal fertilization rates in winter wheat under long-term alternative no-tillage and subsoil tillage in Weibei Highlands.
Keyword:Weibei Highlands; Yield of winter wheat; Fertilization; Conservation tillage; WinEPIC simulation; Soil moisture Show Figures Show Figures
表1 不同施肥水平下免耕/深松麦田0~3 m土层有效含水量模拟值与观测值变化 Table 1 Variation of simulated and observed available soil water amounts in 0-3 m soil layer of no-tillage/subsoil tillage system under different fertilization levels (mm)
施肥水平 Fertilization level
最小值 Min.
最大值 Max.
平均值 Mean
标准差 SD
变异系数 CV (%)
T1
模拟值 Simulated
178.9
265.2
208.0
25.8
12.39
实测值 Observed
170.4
246.6
202.8
20.7
10.19
T3
模拟值 Simulated
82.3
167.1
114.7
26.0
22.66
实测值 Observed
84.9
155.3
111.7
23.0
20.58
T5
模拟值 Simulated
81.5
156.8
109.4
22.3
20.38
实测值 Observed
88.3
148.2
108.8
20.3
18.66
T1: N 75 kg hm-2+P2O5 60 kg hm-2; T3: N 150 kg hm-2+P2O5 120 kg hm-2; T5: N 255 kg hm-2+P2O5 90 kg hm-2.
表1 不同施肥水平下免耕/深松麦田0~3 m土层有效含水量模拟值与观测值变化 Table 1 Variation of simulated and observed available soil water amounts in 0-3 m soil layer of no-tillage/subsoil tillage system under different fertilization levels (mm)
图1 不同施肥水平下免耕/深松麦田产量和0~3 m土壤有效含水量模拟值与观测值比较Fig. 1 Comparison of simulated and observed wheat yields and available soil water amounts in 0-3 m soil layer under different fertilization levels in no-tillage/subsoil tillage system
表2 Table 2 表2(Table 2)
表2 不同施肥水平下免耕/深松麦田冬小麦产量与0~3 m土层有效含水量模拟值与观测值 Table 2 Simulated and observed wheat yields and available soil water amount in 0-3 m soil layer under different fertilization levels in no-tillage/subsoil tillage system
指标 Indicator
施肥水平 Fertilization level
模拟值 Simulated
观测值 Observed
相对误差 Relative error (%)
RMSE
回归方程 Regress equation
相关系数 r
小麦产量 Wheat yield (t hm-2)
T1
2.40
2.73
-12.03
0.507
y=0.9273x+0.5028
0.87* *
T3
3.57
3.69
-3.12
1.412
y=1.2434x-0.6985
0.86* *
T5
4.01
4.21
-4.91
0.818
y=0.9745x+0.3089
0.83* *
土壤有效含水量 Available soil water amount (mm)
T1
208.0
202.8
2.59
21.551
y=0.7540x+45.9170
0.89* *
T3
114.7
111.7
2.64
9.964
y=0.8412x+15.269
0.90* *
T5
109.4
108.8
0.50
8.575
y=0.8737x+13.267
0.92* *
T1: N 75 kg hm-2+P2O5 60 kg hm-2; T3: N 150 kg hm-2+P2O5 120 kg hm-2; T5: N 255 kg hm-2+P2O5 90 kg hm-2. Relative error = (simulated - observed)/observed; RMSE: root mean square error. * * indicates a significant correlation at P< 0.01. 相对误差=(模拟值-观测值)/观测值; RMSE: 均方根误差; * * 表示相关性在P< 0.01水平显著。
表2 不同施肥水平下免耕/深松麦田冬小麦产量与0~3 m土层有效含水量模拟值与观测值 Table 2 Simulated and observed wheat yields and available soil water amount in 0-3 m soil layer under different fertilization levels in no-tillage/subsoil tillage system
2 结果与分析2.1 不同施肥处理下免耕/深松轮耕麦田耗水量30年模拟期内年度降水量平均值为569.8 mm, 变化范围为369.7~836.3 mm, 变异系数为21.9%, 且呈波动性下降趋势(图2-A)。前10年(1980— 1989)平均降水量为628.0 mm, 后10年(2000— 2009)平均降水量为573.3 mm, 后期较前期减少54.7 mm。 图2 Fig. 2
图2 模拟期间年度降水量(A)及各处理0~5 m土层耗水量模拟值(B)年度指小麦生长季, 如1981表示1980年7月至1981年6月期间。土壤耗水量数据来自合阳试验点; 降水量为邻近的白水县数据, 由白水气象站提供。Fig. 2 Annual precipitation during the simulation period (A) and simulated water consumption in 0-5 m soil layer (B)Annual refers to wheat growing season, for example, the period from July 1980 to June 1981 is abbreviated with 1981. The water consumption data were from Heyang site and the precipitations were from neighboring Baishui, provided by Baishui weather station. T1: N 75 kg hm-2+P2O5 60 kg hm-2; T2: N 120 kg hm-2+P2O5 90 kg hm-2; T3: N 150 kg hm-2+P2O5 120 kg hm-2; T4: N 180 kg hm-2+P2O5 150 kg hm-2; T5: N 255 kg hm-2+P2O5 90 kg hm-2.
表3 不同降水年型免耕/深松麦田平均耗水量模拟值比较 Table 3 Comparison of average simulated water consumptions in different rainfall years under no-tillage/subsoil tillage (mm)
施肥水平 Fertilization level
干旱年 Dry year
平水年 Normal year
丰水年 Rainy year
T1
518.1 b
633.7 a
652.7 b
T2
520.5 b
636.5 a
664.6 ab
T3
521.3 b
638.7 a
658.0 b
T4
526.1 b
631.6 a
687.4 a
T5
537.0 a
633.6 a
664.8 ab
T1: N 75 kg hm-2+P2O5 60 kg hm-2; T2: N 120 kg hm-2+P2O5 90 kg hm-2; T3: N 150 kg hm-2+P2O5 120 kg hm-2; T4: N 180 kg hm-2+P2O5 150 kg hm-2; T5: N 255 kg hm-2+P2O5 90 kg hm-2. Values followed by different letters within the same column are significantly different at P< 0.05. 同一列中数据后不同字母表示施肥水平间有显著差异(P< 0.05)。
表3 不同降水年型免耕/深松麦田平均耗水量模拟值比较 Table 3 Comparison of average simulated water consumptions in different rainfall years under no-tillage/subsoil tillage (mm)
表4 不同施肥水平0~5 m土层年度耗水量模拟值的变化 Table 4 Variation of simulated water consumption in 0-5 m soil layer during winter wheat growing season under different fertilization levels (mm)
施肥水平 Fertilization level
最小值 Min.
最大值 Max.
平均值 Mean
标准差 SD
变异系数 CV(%)
T1
320.2
853.6
577.0 b
151.6
26.3
T2
321.3
873.1
582.7 ab
155.3
26.6
T3
317.8
873.1
583.0 ab
156.1
26.8
T4
319.2
913.5
599.2 a
157.5
26.3
T5
313.5
933.4
608.8 a
162.5
26.7
T1: N 75 kg hm-2+P2O5 60 kg hm-2; T2: N 120 kg hm-2+P2O5 90 kg hm-2; T3: N 150 kg hm-2+P2O5 120 kg hm-2; T4: N 180 kg hm-2+P2O5 150 kg hm-2; T5: N 255 kg hm-2+P2O5 90 kg hm-2. Means followed by different letters are significantly different at P< 0.05. 平均值后不同字母表示施肥水平间有显著差异(P< 0.05)。
表4 不同施肥水平0~5 m土层年度耗水量模拟值的变化 Table 4 Variation of simulated water consumption in 0-5 m soil layer during winter wheat growing season under different fertilization levels (mm)
2.2 不同施肥水平下冬小麦产量和水分利用效率模拟期内5个施肥水平的旱作麦田冬小麦产量均随降水量年际变化呈现剧烈同步波动性变化趋势, 且施肥量越高, 冬小麦产量相应也越高(图3和表5)。T2、T3、T4和T5较T1分别增产39.9%、77.7%、88.7%和102.4%, 各施肥水平间产量有显著差异。但是各施肥水平的小麦产量随时间均呈现明显的减产趋势, T1~T5前10年的平均产量分别为2.62、3.55、4.45、4.69和5.01 t hm-2, 而后10年的平均产量分别为1.81、2.56、3.16、3.37和3.60 t hm-2, 减产率依次为31.1%、27.9%、29.1%、28.0%和28.1%。 图3 Fig. 3
图3 不同施肥水平下冬小麦产量和水分利用效率模拟值动态Fig. 3 Dynamics of simulated average yield and water use efficiency in winter wheat under different fertilization levelsT1: N 75 kg hm-2+P2O5 60 kg hm-2; T2: N 120 kg hm-2+P2O5 90 kg hm-2; T3: N 150 kg hm-2+P2O5 120 kg hm-2; T4: N 180 kg hm-2+P2O5 150 kg hm-2; T5: N 255 kg hm-2+P2O5 90 kg hm-2.
表5 Table 5 表5(Table 5)
表5 不同施肥处理下冬小麦产量和水分利用效率模拟值变化 Table 5 Variation of simulated yield and water use efficiency in winter wheat under different fertilization levels
指标 Indicator
施肥水平 Fertilization level
最小值 Min.
最大值 Max.
平均值 Mean
标准差 SD
变异系数 CV (%)
产量 Yield (t hm-2)
T1
0.26
5.01
1.99 e
1.17
58.6
T2
0.51
6.12
2.78 d
1.39
50.0
T3
0.78
7.06
3.53 c
1.53
43.3
T4
0.87
7.36
3.75 b
1.58
42.1
T5
1.07
7.70
4.03 a
1.61
40.0
水分利用效率 Water use efficiency (kg hm-2 mm-1)
T1
3.02
16.60
6.82 e
3.03
44.4
T2
3.16
18.42
7.79 d
3.41
43.8
T3
3.78
19.88
8.68 c
3.71
42.8
T4
4.03
20.93
9.42 b
3.86
41.0
T5
4.13
21.43
10.01 a
4.13
41.3
T1: N 75 kg hm-2+P2O5 60 kg hm-2; T2: N 120 kg hm-2+P2O5 90 kg hm-2; T3: N 150 kg hm-2+P2O5 120 kg hm-2; T4: N 180 kg hm-2+P2O5 150 kg hm-2; T5: N 255 kg hm-2+P2O5 90 kg hm-2. Means followed by different letters are significantly different at P< 0.05. 平均值后不同字母表示施肥水平间有显著差异(P< 0.05)。
表5 不同施肥处理下冬小麦产量和水分利用效率模拟值变化 Table 5 Variation of simulated yield and water use efficiency in winter wheat under different fertilization levels
表6 不同降水年型冬小麦产量和水分利用效率模拟值比较 Table 6 Comparison of simulated wheat yield and water use efficiency (WUE) in different precipitation years
施肥水平 Fertilization level
产量Yield (t hm-2)
水分利用效率WUE (kg hm-2 mm-1)
干旱年 Dry year
平水年 Normal year
丰水年 Rainy year
干旱年 Dry year
平水年 Normal year
丰水年 Rainy year
T1
1.55
2.01
2.50
5.79
6.74
8.05
T2
2.20
2.83
3.45
6.64
7.84
9.12
T3
2.80
3.68
4.30
7.45
8.71
10.11
T4
3.03
3.94
4.54
8.12
9.73
10.87
T5
3.31
4.24
4.81
8.66
10.25
11.53
T1: N 75 kg hm-2+P2O5 60 kg hm-2; T2: N 120 kg hm-2+P2O5 90 kg hm-2; T3: N 150 kg hm-2+P2O5 120 kg hm-2; T4: N 180 kg hm-2+P2O5 150 kg hm-2; T5: N 255 kg hm-2+P2O5 90 kg hm-2.
表6 不同降水年型冬小麦产量和水分利用效率模拟值比较 Table 6 Comparison of simulated wheat yield and water use efficiency (WUE) in different precipitation years
表7 不同施肥水平下冬小麦水分胁迫日数和氮素胁迫日数模拟值变化 Table 7 Variations in simulated water stress days and nitrogen stress days of winter wheat field under different fertilization levels (d)
指标 Indicator
施肥水平 Fertilization level
最小值 Min.
最大值 Max.
平均值 Mean
标准差 SD
水分胁迫日数 Water stress days
T1
0
76
23.4
18.9
T2
0
83
28.3
21.0
T3
0
84
31.1
21.9
T4
0
87
35.1
22.4
T5
0
93
42.2
24.7
氮素胁迫日数 Nitrogen stress days
T1
0
73
35.3
23.1
T2
0
65
30.7
21.5
T3
0
63
27.6
20.2
T4
0
61
25.5
19.6
T5
0
58
21.1
18.0
T1: N 75 kg hm-2+P2O5 60 kg hm-2; T2: N 120 kg hm-2+P2O5 90 kg hm-2; T3: N 150 kg hm-2+P2O5 120 kg hm-2; T4: N 180 kg hm-2+P2O5 150 kg hm-2; T5: N 255 kg hm-2+P2O5 90 kg hm-2.
表7 不同施肥水平下冬小麦水分胁迫日数和氮素胁迫日数模拟值变化 Table 7 Variations in simulated water stress days and nitrogen stress days of winter wheat field under different fertilization levels (d)
图4 不同施肥水平下免耕/深松麦田水分胁迫和氮素胁迫天数模拟值动态Fig. 4 Dynamics of simulated water stress days and nitrogen stress days in different fertilization levels under no-tillage/subsoil tillage systemT1: N 75 kg hm-2+P2O5 60 kg hm-2; T2: N 120 kg hm-2+P2O5 90 kg hm-2; T3: N 150 kg hm-2+P2O5 120 kg hm-2; T4: N 180 kg hm-2+P2O5 150 kg hm-2; T5: N 255 kg hm-2+P2O5 90 kg hm-2.
表8 不同施肥水平下0~5 m土层逐月土壤有效含水量模拟值变化 Table 8 Variation of simulated monthly available soil water amount in 0-5 m soil layer under different fertilization levels (mm)
施肥水平 Fertilization level
最小值 Min.
最大值 Max.
平均值 Mean
标准差 SD
变异系数 CV (%)
夏闲期 Summer fallow
T1
513.0
936.4
592.3 a
72.2
12.2
597.9 a
T2
410.0
936.4
505.5 b
86.5
17.1
509.7 b
T3
402.0
936.4
493.5 b
87.8
17.8
498.0 b
T4
322.0
936.4
420.1 c
101.2
24.1
420.0 c
T5
213.0
936.4
315.4 d
121.6
38.6
308.9 d
T1: N 75 kg hm-2+P2O5 60 kg hm-2; T2: N 120 kg hm-2+P2O5 90 kg hm-2; T3: N 150 kg hm-2+P2O5 120 kg hm-2; T4: N 180 kg hm-2+P2O5 150 kg hm-2; T5: N 255 kg hm-2+P2O5 90 kg hm-2. Values followed by different letters within the same column are significantly different at P< 0.05. 同一列中数据后不同字母表示施肥水平间有显著差异(P< 0.05)。
表8 不同施肥水平下0~5 m土层逐月土壤有效含水量模拟值变化 Table 8 Variation of simulated monthly available soil water amount in 0-5 m soil layer under different fertilization levels (mm)
图5 不同施肥水平的麦田0~5 m土层逐月土壤有效含水量模拟值动态Fig. 5 Dynamics of simulated monthly available soil water amount in 0-5 m soil layer under different fertilization levels
图6 模拟初、中、后期不同施肥水平下0~5 m土壤剖面分布特征变化Fig. 6 Dynamics of soil moisture distribution in 0-5 m soil profile under different fertilization levels during initial, metaphase, and telophase simulations
李军, 邵明安, 张兴昌. 黄土高原旱塬地冬小麦水分生产潜力与土壤水分动态的模拟研究. 自然资源学报, 2004, 19: 738-746LiJ, Shao MA, Zhang XC. Simulation of water potential productivity of winter wheat and soil water dynamics on rainfed highland of the Loess Plateau. J Nat Res, 2004, 19: 738-746 (in Chinese with English abstract)[本文引用:1]
[4]
高焕文, 李问盈, 李洪文. 中国特色保护性耕作技术. 农业工程学报, 2003, 19(3): 1-4Gao HW, Li WY, Li HW. Conservation tillage technology with Chinese characteristics. Trans CSAE, 2003, 19(3): 1-4 (in Chinese with English abstract)[本文引用:1]
[5]
李军, 王立祥, 邵明安, 樊廷录. 黄土高原地区小麦生产潜力模拟研究. 自然资源学报, 2001, 16: 161-165LiJ, Wang LX, Shao MA, Fan TL. Simulation of wheat potential productivity on Loess Plateau region of China. J Nat Resour, 2001, 16: 161-165 (in Chinese with English abstract)[本文引用:1]
[6]
曹阳, 杨婕, 熊伟, 武永锋, 冯灵芝, 杨晓光. 1962-2010年潜在干旱对中国冬小麦产量影响的模拟分析. 农业工程学报, 2014, 30(7): 128-139CaoY, YangJ, XiongW, Wu YF, Feng LZ, Yang XG. Simulation of winter wheat yield influenced by potential drought in China during 1962-2010Trans CSAE, 2014, 30(7): 128-139 (in Chinese with English abstract)[本文引用:1]
[7]
高会议, 郭胜利, 刘文兆, 车升国. 黄土旱塬区冬小麦不同施肥处理的土壤呼吸及土壤碳动态. 生态学报, 2009, 29: 2551-2559Gao HY, Guo SL, Liu WZ, Che SG. Soil respiration and carbon fractions in winter wheat cropping system under fertilization practices in arid-highland of the Loess Plateau. Acta Ecol Sin, 2009, 29: 2551-2559 (in Chinese with English abstract)[本文引用:1]
[8]
赵鹏, 陈阜. 秸秆还田配施化学氮肥对冬小麦氮效率和产量的影响. 作物学报, 2008, 34: 1014-1018ZhaoP, ChenF. Effects of straw mulching plus nitrogen fertilizer on nitrogen efficiency and grain yield in winter wheat. Acta Agron Sin, 2008, 34: 1014-1018 (in Chinese with English abstract)[本文引用:1]
[9]
陈毓君, 陈黎岭, 同延安, 杨宪龙, 王少杰, 马海洋, 梁连友. 不同施肥水平对冬小麦群体动态和产量形成的影响. 西北农业学报, 2012, 21(4): 47-53Chen YJ, Chen LL, Tong YA, Yang XL, Wang SJ, Ma HY, Liang LY. Effect of different fertilizer levels on population dynamics and grain yield formation of winter wheat. Acta Agric Boreali-Occident Sin, 2012, 21(4): 47-53 (in Chinese with English abstract)[本文引用:2]
[10]
郝明德, 来璐, 王改玲. 黄土高原塬区旱地长期施肥对小麦产量的影响. 应用生态学报, 2003, 14: 1893-1896Hao MD, LaiL, Wang GL. Effect of yield wheat with long-term fertilization in table dry-land of the Loess Plateau. Chin J Appl Ecol, 2003, 14: 1893-1896 (in Chinese with English abstract)[本文引用:1]
[11]
张少民, 郝明德, 陈磊. 黄土高原长期施肥对小麦产量及土壤肥力的影响. 干旱地区农业研究, 2006, 11(6): 85-89Zhang SM, Hao MD, ChenL. Effects of long-term fertilization on yield of wheat and soil fertility in dry-land of Loess Plateau. Agric Res Arid Areas, 2006, 11(6): 85-89 (in Chinese with English abstract)[本文引用:1]
[12]
王学春, 李军, 郝明德. 施肥水平对冬小麦田土壤水分影响的模拟. 农业工程学报, 2008, 24(9): 38-43Wang XC, LiJ, Hao MD. Effects of fertilization levels on soil water in winter wheat field. Trans CSAE, 2008, 24(9): 38-43 (in Chinese with English abstract)[本文引用:3]
[13]
江晓东, 李增嘉, 侯连涛, 王芸, 王雪, 颜红. 少免耕对灌溉农田冬小麦/夏玉米作物水、肥利用的影响. 农业工程学报, 2005, 21(7): 20-24Jiang XD, Li ZJ, Hou LT, WangY, WangX, YanH. Impacts of minimum tillage and no-tillage systems on soil NO3--N content and water use efficiency of winter wheat/summer corn cultivation. Trans CSAE, 2005, 21(7): 20-24 (in Chinese with English abstract)[本文引用:1]
[14]
Blevins RL, Frye WW, Baldwin PL, Robertson SD. Tillage effects on sediment and soluble nutrient losses from a maury silt loam soil. , 1990, 19: 683-686[本文引用:1]
[15]
Edwards WM, Shipitalo MJ, Traina SJ, Edwards CA, Owens LB. Role of Lumbricus terrestris (L. ) burrows on quality of infiltrating water. Soil Biol Biochem, 1992, 24: 1555-1561[本文引用:1]
[16]
李娟, 李军, 尚金霞, 贾志宽. 轮耕对渭北旱塬春玉米田土壤理化性状和产量的影响. 中国生态农业学报, 2012, 20: 867-873LiJ, LiJ, Shang JX, Jia ZK. Effects of rotational tillage on soil physicochemical properties and spring maize yield in Weibei Highland s. Chin J Eco-Agric, 2012, 20: 867-873 (in Chinese with English abstract)[本文引用:1]
[17]
孙国锋, 陈阜, 肖小平, 伍芬琳, 张海林. 轮耕对土壤物理性状及水稻产量影响的初步研究. 农业工程学报, 2007, 23(12): 109-113Sun GF, ChenF, Xiao XP, Wu FL, Zhang HL. Preliminary study on effects of rotational tillage on soil physical properties and rice yield. Trans CSAE, 2007, 23(12): 109-113 (in Chinese with English abstract)[本文引用:2]
[18]
柏炜霞, 李军, 王玉玲, 王丽. 渭北旱塬小麦玉米轮作区不同耕作方式对土壤水分和作物产量的影响. 中国农业科学, 2014, 47: 880-894Bai WX, LiJ, Wang YL, WangL. Effects of different tillage methods on soil water and crop yield of winter wheat -spring maize rotation region in Weibei Highland . Sci Agric Sin, 2014, 47: 880-894 (in Chinese with English abstract)[本文引用:2]
李军, 邵明安, 张兴昌. EPIC模型中农田水分运移与利用的数学模拟. 干旱地区农业研究, 2004, 22(2): 72-75LiJ, Shao MA, Zhang XC. Simulation equations for soil water transfer and use in the EPIC model. Agric Res Arid Areas, 2004, 22(2): 72-75 (in Chinese with English abstract)[本文引用:1]
[21]
李军, 邵明安, 张兴昌, 李世清. 黄土高原旱塬区高产玉米田土壤干燥化与产量波动趋势模拟研究. 中国生态农业学报, 2007, 15(2): 54-58LiJ, Shao MA, Zhang XC, Li SQ. Simulation of soil desiccation and yield fluctuation of high yield maize field on rain-fed highland of the Loess Plateau. Chin J Eco-Agric, 2007, 15(2): 54-58 (in Chinese with English abstract)[本文引用:1]
[22]
李军, 邵明安, 张兴昌, Williams JR. EPIC模型中作物生长与产量形成的数学模拟. 西北农林科技大学学报(自然科学版), 2004, 32(增刊): 25-30LiJ, Shao MA, Zhang XC, Williams JR. Simulation equations for crop growth and yield formation in the EPIC model. J Northwest Sci-Tech Univ Agric For (Nat Sci Edn), 2004, 32(suppl): 25-30 (in Chinese with English abstract)[本文引用:2]
[23]
王学春, 李军, 郝明德. 施肥水平对长武旱塬地冬小麦产量影响的模拟. 农业工程学报, 2008, 24(8): 45-50Wang XC, LiJ, Hao MD. Simulation of fertilization effect on winter wheat yield in Changwu dry highland . Trans CSAE, 2008, 24(8): 45-50 (in Chinese with English abstract)[本文引用:3]
[24]
李军, 邵明安, 张兴昌. EPIC模型中土壤氮磷运转和作物营养的数学模拟. 植物营养与肥料学报, 2005, 11: 166-173LiJ, Shao MA, Zhang XC. Simulation equations for soil nitrogen and phosphorus transfer and crop nutrition in the EPIC model. Plant Nutr Fert Sci, 2005, 11: 166-173 (in Chinese with English abstract)[本文引用:1]
[25]
张玉娇, 李军, 郭正, 岳志芳. 渭北旱塬小麦产量和土壤水分对保护性耕作的响应模拟. , 2015, 26: 800-808Zhang YJ, LiJ, GuoX, Yue ZF. Simulated responses of winter wheat yield and soil moisture to different conservation tillage practices in Weibei Highland s, Northwest China. , 2015, 26: 800-808 (in Chinese with English abstract)[本文引用:1]
[26]
王学春, 李军, 樊廷录. 黄土旱塬不同施肥水平下小麦玉米轮作的产量和土壤水分效应模拟研究. 植物营养与肥料学报, 2008, 14: 242-251Wang XC, LiJ, Fan TL. Modeling the effects of winter wheat and spring maize rotation under different fertilization treatments on yield and soil water in rain-fed highland of Loess Plateau. Plant Nutr Fert Sci, 2008, 14: 242-251 (in Chinese with English abstract)[本文引用:2]
王亚莉, 李军, 王学春, 张社红. 陇东旱塬旱作苹果园水分生产力与土壤干燥化效应模拟. 西北农林科技大学学报(自然科学版), 2011, 39(8): 131-140Wang YL, LiJ, Wang XC, Zhang SH. Simulation of water productivity and soil desiccation effects of dryland apple orchard on the plateau of eastern Gansu. J Northwest Sci-Tech Univ Agric For (Nat Sci Edn), 2011, 39(8): 131-140 (in Chinese with English abstract)[本文引用:1]
[29]
张社红, 李军, 王学春, 王亚莉. 渭北旱塬苹果园地产量和深层土壤水分效应模拟. 生态学报, 2011, 31: 3767-3777Zhang SH, LiJ, Wang XC, Wang YL. Modeling the changes of yield and deep soil water in apple orchards in Weibei rainfed highland . Acta Ecol Sin, 2011, 31: 3767-3777 (in Chinese with English abstract)[本文引用:1]
[30]
王学春, 李军, 胡伟, 蒋斌. 黄土高原晋中半干旱区不同肥力水平下连作春玉米产量与干燥化效应模拟. , 2008, 26(1): 1-11Wang XC, LiJ, HuW, JiangB. Simulation of and yield soil desiccation effects of continuous spring maize under different level fertilization treatments in Jinzhong semiarid areas of areas of the Loess Plateau. , 2008, 26(1): 1-11 (in Chinese with English abstract)[本文引用:4]
[31]
王学春, 李军, 郝明德. 长武旱塬草粮轮作田土壤水分可持续利用模式模拟. 农业工程学报, 2011, 27(增刊1): 257-266Wang XC, LiJ, Hao MD. Simulation of sustainable use of soil water in dry land for alfalfa-grain rotation system at Changwu arid-plateau of China. Trans CSAE, 2011, 27(suppl-1): 257-266 (in Chinese with English abstract)[本文引用:1]
[32]
陶林威, 马洪, 葛芬莉. 陕西省降水特性分析. 陕西气象, 2000, (5): 6-9Tao LW, MaH, Ge FL. Analysis on the characteristics of precipitation in Shaanxi province. Shaanxi Meteorol, 2000, (5): 6-9[本文引用:1]
[33]
顾炽明, 郑险峰, 黄婷苗, 侯仰毅, 王朝辉. 秸秆还田配施氮肥对冬小麦产量及氮素调控的影响. 干旱地区农业研究, 2013, 31(5): 48-53Gu CM, Zheng XF, Huang TM, Hou YY, Wang CH. Effects of straw returning combined with nitrogen fertilizer application on yield of winter wheat and nitrogen regulation. Agric Res Arid Areas, 2013, 31(5): 48-53 (in Chinese with English abstract)[本文引用:1]
[34]
李玲玲, 黄高宝, 张仁陟, 晋小军, LiG, Chan KY. 不同保护性耕作措施对旱作农田土壤水分的影响. 生态学报, 2005, 25: 2326-2332Li LL, Huang GB, Zhang RZ, Jin XJ, LiG, Chan KY. Effects of conservation tillage on soil water regimes in rainfed areas. Acta Ecol Sin, 2005, 25: 2326-2332 (in Chinese with English abstract)[本文引用:1]
[35]
付国占, 李潮海, 王俊忠, 王振林, 曹鸿鸣, 焦念元, 陈明灿. 残茬覆盖与耕作方式对土壤性状及夏玉米水分利用效率的影响. 农业工程学报, 2005, 21(1): 52-56Fu GZ, Li CH, Wang JZ, Wang ZL, Cao HM, Jiao NY, Chen MC. Effects of stubble mulch and tillage managements on soil physical properties and water use efficiency of summer maize. Trans CSAE, 2005, 21(1): 52-56 (in Chinese with English abstract)[本文引用:1]
[36]
方日尧, 同延安, 赵二龙, 梁东丽. 渭北旱塬不同保护性耕作方式水肥增产效应研究. , 2003, 21(1): 54-57Fang RY, Tong YA, Zhao EL, Liang DL. Effect of conservation tillage on moisture, fertility and yield in Weibei Highland . , 2003, 21(1): 54-57 (in Chinese with English abstract)[本文引用:1]
[37]
彭文英, 张雅彬. 免耕对粮食产量及经济效益的影响评述. 干旱地区农业研究, 2006, 24(4): 114-118Peng WY, Zhang YB. Review of impacts of no-tillage on crop yield and economic benefit. Agric Res Arid Areas, 2006, 24(4): 114-118 (in Chinese with English abstract)[本文引用:2]
[38]
蒋斌, 李军, 王学春, 胡伟. 不同施肥水平下宝鸡旱塬连作冬小麦产量与深层土壤水分效应的模拟研究. 西北农林科技大学学报(自然科学版), 2008, 36(8): 73-83JiangB, LiJ, Wang XC, HuW. Simulation of yield and deep soil water effects of winter wheat field under different fertilization levels in Baoji dry-land of the Loess Plateau. J Northwest Sci-Tech Univ Agric For (Nat Sci Edn), 2008, 36(8): 73-83 (in Chinese with English abstract)[本文引用:3]
[39]
陈洪松, 邵明安, 王克林. 黄土区深层土壤干燥化与土壤水分循环特征. 生态学报, 2005, 25: 2491-2497Chen HS, Shao MA, Wang KL. Desiccation of deep soil layer and soil water cycle characteristics on the Loess Plateau. Acta Ecol Sin, 2005, 25: 2491-2497 (in Chinese with English abstract)[本文引用:1]
[40]
樊军, 郝明德, 邵明安. 黄土高原沟壑区草地土壤深层干燥化与氮素消耗. 自然资源学报, 2004, 19: 201-206FanJ, Hao MD, Shao MA. Soil desiccation and nitrogen consumption of artificial meadow in the Loess Plateau. J Nat Resour, 2004, 19: 201-206 (in Chinese with English abstract)[本文引用:1]
[41]
侯贤清, 贾志宽, 韩清芳, 孙红霞, 王维, 聂俊峰, 杨宝平. 不同轮耕模式对旱地土壤结构及入渗蓄水特性的影响. 农业工程学报, 2012, 28(5): 85-94Hou XQ, Jia ZK, Han QF, Sun HX, WangW, Nie JF, Yang BP. Effects of different rotational tillage patterns on soil structure, infiltration and water storage characteristics in dryland . Trans CSAE, 2012, 28(5): 85-94 (in Chinese with English abstract)[本文引用:1]
[42]
Qin HL, Gao WS, Ma YC, MaL, Yin CM, ChenZ, Chen CL. Effects of subsoiling on soil moisture under no-tillage for two years. Agric Sci China, 2008, 7: 88-95[本文引用:1]