关键词:灌溉; 水分胁迫; 土壤酶活性; 土壤基础呼吸; 微生物量氮 Response of Soil Microbial Characteristics and Soil Enzyme Activity to Irrigation Method in No-till Winter Wheat Field YE De-Lian**, QI Rui-Juan**, GUAN Da-Hai, LI Jian-Min, ZHANG Ming-Cai*, LI Zhao-Hu Engineering Research Center of Plant Growth Regulator, Ministry of Education / College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
AbstractThe purpose of this study was to understand the effects of conventional (150 mm, W1), water-saving (75 mm, W2), and zero (W3) irrigation on winter wheat yield, soil basal respiration, soil microbial biomass nitrogen (SMBN) and soil enzyme activities under no-till practice in North China Plain. Wheat yields in W1 and W2 were similar and significantly higher than that in W3. Water stress showed great influence on soil basal respiration and SMBN at jointing and filling stages, resulting in a significant decrease of soil basal respiration under W2 and W3 compared with that under W1, and a change of SMBN as W1 > W2 > W3. The activities of soil β-glucosidase, polyphenol oxidase, and urease declined with the decrease of irrigation quantity. Such influence was more sensitive in early growth period of wheat than in late growth period, particularly in the 0-10 cm soil layer. These results suggested that yield formation of winter wheat under no-till practice might result from the regualtion of soil microbial activity that received great impact of irrigation strategy.
Keyword:Irrigation; Water stress; Soil enzyme activity; Soil basal respiration; Microbial biomass nitrogen Show Figures Show Figures
土壤微生物是土壤生态系统中重要且最活跃的组分[1]。土壤微生物参与土壤有机质分解与腐殖质形成、养分转化与循环等过程[2]。土壤酶是一种存在于土壤中并具有催化功能的活性物质[3], 其活性对农作活动和土壤状况变化敏感[4], 既可表征土壤养分循环和能量转移的活跃程度, 也可作为评估土壤微生物活性和土壤肥力的重要参数[5, 6]。近几十年来, 为了提高作物产量, 农业生态系统, 特别是土壤, 受到耕作和灌溉等农事活动的强烈干扰, 直接或间接地影响土壤理化性状和微生物。大部分土壤微生物对耕作措施很敏感, 并表现出不同的反应[7]。与传统耕作方式相比, 保护性耕作有利于增加土壤中的微生物多样性和生物量[8], 在一定程度上提高了土壤系统整体稳定性[9]。土壤水分是影响土壤微生物活性的主要因素之一, 它通过影响土壤渗透势、养分和能量转移、微生物细胞代谢等调节土壤微生物活性[10]。研究发现, 干旱可能改变土壤微生物群落结构并降低微生物活性[11]; 在地中海地区森林中, 土壤水分减少导致土壤脲酶、蛋白酶、β -葡萄糖苷酶和酸性磷酸酶的活性显著降低[12, 13]。 华北平原是我国主要的冬小麦-夏玉米两熟制种植区, 但水资源匮乏、利用效率低、分配不均成为限制当地农业可持续发展的主要因素[14]。发展保护性耕作是华北地区农业可持续发展的可行途径之一。免耕作为保护性耕作的主要方式, 对改善土壤理化性质具有独特优势, 如免耕改善土壤颗粒结构、提高保水性、增加微生物量和提高土壤酶活性等[15, 16]。然而, 有关水分限制条件下免耕土壤微生物特征和土壤酶活性的研究鲜见报道, 探讨免耕条件下水分胁迫对土壤微生物和土壤酶活性的调控, 有助于揭示节水条件下保护性耕作土壤微生物的特征, 并为研究地上部植物生长的生理机制提供重要参考。本文研究华北地区免耕条件下, 水分胁迫对冬小麦不同生育时期土壤酶和土壤微生物活性的影响, 探讨不同土层土壤酶和微生物活性变化响应水分胁迫的应答机制, 研究结果可为该地区建立合理节水灌溉措施提供科学依据。 1 材料与方法1.1 试验地基本情况中国农业大学吴桥实验站(37° 37′ N, 116° 22′ E, 海拔14~21 m)位于华北平原地区, 具暖温带半湿润季风气候, 年均气温12.6℃, 平均降雨量552.6 mm, 多集中在7月至8月, 年均蒸发量1189.8 mm, 年积温4862.9℃, 无霜期192 d。试验地土质为沙壤土, 0~20 cm土层含有机质15.6 g kg-1、全氮1.03 g kg-1、有效钾110.9 mg kg-1、有效磷36.5 mg kg-1。2010年开始试验前, 试验地已实施10年以上的小麦季翻耕、玉米季免耕的耕作措施。 1.2 试验设计冬小麦节水省肥栽培理论“ 吴桥模式” 及其他研究结果表明, 在华北平原地区冬小麦生长季灌水2次、总灌溉量150 mm基本可以满足冬小麦生长的水分需求[17, 18]。2010— 2011年度设常规(W1)和节水灌溉(W2) 2个处理, 其中W1全生育期灌水150 mm, 于越冬期和拔节期各灌75 mm, 而W2仅在拔节期灌水75 mm; 为探索该地区冬小麦季雨养的可能性, 2011— 2012年度增设无灌溉处理(W3)。每个处理3个重复小区, 采用随机区组设计。小区面积5 m × 4 m = 20 m2。冬小麦品种为济麦22, 分别在2010年10月6日和2011年10月8日播种, 播种量为300 kg hm-2, 小麦行距为15 cm。播种前一次性施入全部氮磷钾肥, 用量为纯氮185 kg hm-2、P2O5 90 kg hm-2和K2O 75 kg hm-2。按当地常规生产进行田间管理。2010— 2011和2011— 2012年度冬小麦生育期内降雨量分别为93.1 mm和143.7 mm, 月降水量分布和平均气温如图1。 图1 Fig. 1
表1 不同灌溉处理对冬小麦产量和产量因子的影响 Table 1 Effect of different irrigation treatments on winter wheat grain yield and yield components
年份 Year
处理 Treatment
穗数 Spike number (m-2)
穗粒数 Kernel number per spike
千粒重 1000-kernel weight (g)
产量 Grain yield (kg hm-2)
2010-2011
W1
537.7 a
31.9 a
40.4 b
6571 a
W2
503.3 b
34.4 a
41.6 a
6456 a
2011-2012
W1
730.0 a
31.4 a
38.3 a
8330 a
W2
711.8 a
32.2 a
39.0 a
8066 a
W3
604.0 b
31.8 a
39.8 a
6489 b
W1: conventional irrigation (150 mm); W2: water-saving irrigation (75 mm); W3: no irrigation. In each growing year, means followed by different letters are significantly different at P < 0.05. W1: 常规灌溉; W2: 节水灌溉; W3: 无灌溉。同一年份, 数据后不同字母表示处理间存在显著差异(P < 0.05)。
表1 不同灌溉处理对冬小麦产量和产量因子的影响 Table 1 Effect of different irrigation treatments on winter wheat grain yield and yield components
W1: conventional irrigation (150 mm); W2: water-saving irrigation (75 mm); W3: no irrigation. Data are shown in mean ± SD of three replicates. Different letters after SD indicate significant difference among treatments at P < 0.05. W1: 常规灌溉; W2: 节水灌溉; W3: 无灌溉。数据为3次重复的平均值± 标准差。数据后不同字母表示处理间有显著差异(P< 0.05)。
表2 灌溉对土壤微生物特征的影响(2011-2012) Table 2 Effect of irrigation method on soil microbial properties (2011-2012)
ZellesL. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterization of microbial communities in soil: a review. , 1999, 29: 111-129[本文引用:1][JCR: 3.396]
[3]
Marx MC, WoodM, Jarvis SC. A microplate fluorimetric assay for the study of enzyme diversity in soils. , 2001, 33: 1633-1640[本文引用:1][JCR: 4.41]
[4]
Dick RP. , 1994. pp 107-124[本文引用:1]
[5]
BenitezE, MelgarR, SainzH, GomezM, NogalesR. Enzyme activities in the rhizosphere of pepper (Capsicum annuum L. ) grown with olive cakemulches. , 2000, 32: 1829-1835[本文引用:1][JCR: 4.41]
[6]
Paz Jimenez MD, Horra AM, PeuzzoL, Palma MR. Soil quality: a new index based on microbiological and biochemical parameters. , 2002, 35: 302-306[本文引用:1][JCR: 3.396]
[7]
Spedding TA, HamelC, Mehuys GR, Madramootoo CA. Soil microbial dynamics in maize-growing soil under different tillage and residue management systems. , 2004, 36: 499-512[本文引用:1][JCR: 4.41]
[8]
Al-Kaisi MM, Yin XH. Tillage and crop residue effects on soil carbon and dioxide emission in corn-soybean rotations. , 2005, 34: 437-445[本文引用:1][JCR: 2.345]
[9]
Adl SM, Coleman DC, ReadF. Slow recovery of soil biodiversity in sand y loam soils of Georgia after 25 years of no-tillage management. , 2006, 114: 323-334[本文引用:1]
[10]
Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN. Living with water stress: evolution of osmolyte systems. , 1982, 217: 1214-1222[本文引用:2]
[11]
Schimel JP, Gulledge JM, Clein-Curley J S, Lindstrom J E, Braddock J F. Moisture effects on microbial activity and community structure in decomposing birch litter in the Alaskan taiga. , 1999, 31: 831-838[本文引用:2][JCR: 4.41]
[12]
SardansJ, PenuelasJ. Drought decreases soil enzyme activity in a Mediterranean Quercus ilex L. forest. , 2005, 37: 455-461[本文引用:2][JCR: 4.41]
[13]
SardansJ, PenuelasJ. Soil enzyme activity in a Mediterranean forest after six years of drought. , 2010, 74: 838-851[本文引用:2][JCR: 2.0]
[14]
MengQ, SunQ, ChenX, CuiZ, YueS, ZhangF, RömheldV. Alternative cropping systems for sustainable water and nitrogen use in the North China Plain. , 2012, 146: 93-102[本文引用:1]
[15]
李素娟, 陈继康, 陈阜, 李琳, 张海林. 华北平原免耕冬小麦生长发育特征研究. , 2008, 34: 290-296Li SJ, Chen JK, ChenF, LiL, Zhang HL. Characteristics of growth and development of winter wheat under zero tillage in North China Plain. , 2008, 34: 290-296 (in Chinese with English abstract)[本文引用:1][CJCR: 1.681]
[16]
Bergstrom DW, Monreal CM, Tomlin AD, Miller JJ. Interpretation of soil enzyme activities in a comparison of tillage practices along a topographic and textural gradient. , 2000, 80: 71-79[本文引用:1][JCR: 1.0]
[17]
王志敏, 王璞, 李绪厚, 李建民, 鲁来清. 冬小麦节水省肥高产简化栽培理论与技术. , 2006, 8(5): 38-44Wang ZM, WangP, Li XH, Li JM, Lu LQ. Principle and technology of water-saving, fertilizer-saving, high-yielding and simple cultivation in winter wheat. , 2006, 8(5): 38-44 (in Chinese with English abstract)[本文引用:1]
[18]
秦欣, 刘克, 周丽丽, 周顺利, 鲁来清, 王润政. 华北地区冬小麦-夏玉米轮作节水体系周年水分利用特征. , 2012, 45: 4014-4024QinX, LiuK, Zhou LL, Zhou SL, Lu LQ, Wang RZ. Characteristics of annual water utilization in winter wheat-summer maize rotation system in North China Plain. , 2012, 45: 4014-4024 (in Chinese with English abstract)[本文引用:1][CJCR: 1.4]
[19]
GuanD, ZhangY, Al-Kaisi M M, Wang Q, Zhang M, Li Z. Tillage practices effect on root distribution and water use efficiency of winter wheat under rain-fed condition in the North China Plain. , 2015, 146: 286-295[本文引用:1][JCR: 2.575]
[20]
Bardgett RD, Ovell RD, Hobbs PJ, Jarvis SC. Seasonal changes in soil microbial communities along a fertility gradient of temperate grassland s. , 1999, 31: 1021-1030[本文引用:1][JCR: 4.41]
Sinsabaugh RL, Antibus RK, Linkins AE, McClaugherty C A, Rayburn L, Repert D, Weiland T. Wood decomposition: nitrogen and phosphorus dynamics in relation to extracellular enzyme activity. , 1993, 74: 1586-1593[本文引用:1][JCR: 5.0]
[24]
Allison SD, Czimczik CI, Treseder KK. Microbial activity and soil respiration under nitrogen addition in Alaskan boreal forest. , 2008, 14: 1156-1168[本文引用:1][JCR: 8.224]
[25]
王彬彬, 林启美, 陈源泉, 隋鹏, 高旺盛. 微池板比色法在多酚氧化酶和β-葡萄糖苷酶研究中的应用. , 2012, 49: 773-779Wang BB, Lin QM, Chen YY, SuiP, Gao WS. Application of microplate colorimetric method in determining activities of polyphenol oxidase and β-glucosidase in soil. , 2012, 49: 773-779 (in Chinese with English abstract)[本文引用:1][CJCR: 1.336]
[26]
ZhangX, ChenS, SunH, PeiD, WangY. Dry matter, harvest index, grain yield and water use efficiency as affected by water supply in winter wheat. , 2008, 27: 1-10[本文引用:2][JCR: 2.843]
[27]
HanH, LiZ, NingT, ZhangX, ShanY, BaiM. Radiation use efficiency and yield of winter wheat under deficit irrigation in North China. , 2008, 54: 313-319[本文引用:1][JCR: 1.113]
SunH, ShenY, YuQ, Flerchinger GN, ZhangY, LiuC, ZhangX. Effect of precipitation change on water balance and WUE of the winter wheat-summer maize rotation in the North China Plain. , 2010, 97: 1139-1145[本文引用:1]
[30]
SardansJ, PeñuelasJ, EstiarteM. Changes in soil enzymes related to C and N cycle and in soil C and N content under prolonged warming and drought in a Mediterranean shrubland . , 2008, 39: 223-235[本文引用:1][JCR: 2.206]
[31]
HuesoS, GarcíaC, HernándezT. Severe drought conditions modify the microbial community structure, size and activity in amended and unamended soils. , 2012, 50: 167-173[本文引用:1][JCR: 4.41]
[32]
SanaullahM, BlagodatskayaE, ChabbiA, RumpelC, KuzyakovY. Drought effects on microbial biomass and enzyme activities in the rhizosphere of grasses depend on plant community composition. , 2011, 48: 38-44[本文引用:1][JCR: 2.206]
[33]
Yao XH, MinH, Lü ZH, Yuan HP. Influence of acetamiprid on soil enzymatic activities and respiration. , 2006, 42: 120-126[本文引用:1][JCR: 2.146]
[34]
KatoS, HarutaS, Cui ZJ, IshiiM, IgarashiY. Effective cellulose degradation by a mixed-culture system composed of a cellulolytic Clostridium and aerobic non-cellulolytic bacteria. , 2004, 51: 133-142[本文引用:1][JCR: 3.875]
LiF, YuJ, NongM, KangS, ZhangJ. Partial root-zone irrigation enhanced soil enzyme activities and water use of maize under different ratios of inorganic to organic nitrogen fertilizers. , 2010, 97: 231-239[本文引用:1]
[37]
Steinweg JM, Jeffrey SD, Matthew DW. Modeling the effects of temperature and moisture on soil enzyme activity: linking laboratory assays to continuous field data. , 2012, 55: 85-92[本文引用:1][JCR: 4.41]