关键词:冬小麦; 土壤质地; 补灌; 旗叶; 籽粒产量; 水分利用效率 Effects of Supplemental Irrigation at Jointing on Flag Leaf Senescence Characteristics and Grain Yield of Winter Wheat Grown in Two Soil Textures SONG Zhao-Yun, ZHAO Yang, WANG Dong*, GU Shu-Bo Shandong Agricultural University / State Key Laboratory of Crop Biology / Key Laboratory of Crop Ecophysiology and Farming System, Ministry of Agriculture, Tai’an 271018, China Fund:This work was supported by the National Natural Science Foundation of China (31271660), the Special Fund for Agro-scientific Research in the Public Interest of China (201503130), and the Key Innovation Project on Agriculture Applied Technology from Shandong Provincial Government (2014-2016). AbstractThe objective of this study was to understand supplemental irrigation on flag leaf senescence, photosynthetic rate, grain yield, and water use efficiency (WUE) of winter wheat in different soil-texture fields. The experiment was carried out in powder- and sandy-loam plots in the 2013-2014 and 2014-2015 growing seasons. Four irrigation treatments and the zero-irrigation control (D0) were designed to determine the optimal wetting soil depth at jointing stage. Variant amounts of water were supplied at jointing stage for 100% relative water content in 0-10 (D1), 0-20 (D2), 0-30 (D3), and 0-40 cm (D4) soil layers. All irrigation treatments were watered again at anthesis stage for 100% relative water content in the 0-20 cm soil layer. In both powder-loam and sandy-loam plots, the irrigation amount at jointing stage increased obviously with the planed depth of wetting layer, whereas the irrigation amount at anthesis stage varied slightly among treatments. After flowering, the soluble protein content, superoxide dismutase activity, catalase activity, and photosynthetic rate of flag leaves showed an increasing trend in response to the increased irrigation amount at jointing stage, in contrast, the malondialdehyde content in flag leaves had a declined trend. In the powder-loam plot, there was no significant difference between D3 and D4. In the sand-loam plot, there was no significant difference among D2, D3, and D4 treatment. In both soil-texture plots, the deeper soil moisturized at jointing resulted in increased water consumption and grain yield of wheat, and no significant difference was found between D3 and D4. However, WUE in D4 treatment was significantly lower than that in D2 or D3 treatment. Our results suggest that the quantity of supplementary irrigation at jointing stage is determined by soil water condition, and 0-30 cm soil layer with 100% field capacity at jointing stage is the optimal standard under the experimental condition. Besides, keeping 0-20 cm soil layer with 100% field capacity at anthesis by a small amount irrigation is also important. This irrigation regime has the advantages of late senescence, enhanced photosynthesis, and finally increased yield and WUE in both powder-loam and sand-loam fields.
Keyword:Winter wheat; Soil texture; Supplemental irrigation; Flag leaf; Grain yield; Water use efficiency Show Figures Show Figures
我国农业用水约占全国总用水量的70%以上, 灌区灌溉用水占农业用水量的90%。随着工业化和城市化进程的加快, 部分农业灌溉用水将会被挤占[1]。当前小麦生产中仍以传统的大水漫灌和畦灌为主, 水资源浪费较重, 灌溉水有效利用率低[2]。在河南新乡采用定额灌溉方法研究表明, 小麦拔节期、抽穗期和灌浆期每次灌水量由90 mm减少至45.0~67.5 mm, 不会对产量造成很大影响[3]。在华北平原, 小麦全生育期总灌水量为120 mm的条件下, 2次灌溉处理(拔节期和抽穗期各60 mm)的籽粒产量和水分利用效率明显高于一次性灌溉(拔节期或抽穗期)和分3次等量灌溉处理(拔节期、抽穗期和灌浆期各40 mm)处理[4]; 孙宏勇等[5]和秦欣等[6]针对不同降水年型, 提出干旱年灌3次水, 平水年灌2次水, 丰水年灌1水, 每次60~70 mm是华北平原优化的冬小麦灌溉制度。可见, 小麦生育期内补灌频次和灌水量与年度自然降水条件、大田土壤水分状况等有密切关系, 在不同年份、不同生态区和地块存在较大差异。 针对复杂环境条件, 充分考虑自然降水和土壤蓄水状况, 以及小麦生育期需水特性, 我们采用测墒补灌策略实施冬小麦关键生育期水分管理, 充分利用土壤贮水和自然降水, 达到小麦高产和高水分利用效率的目标, 即在补灌前先测定一定深度土层含水量, 根据土壤水的亏缺程度, 利用灌水定额公式计算需补灌水量。前期研究发现, 将拟湿润层深度设定为0~140 cm, 拔节期和开花期补灌的目标土壤相对含水量为75%, 或者将拟湿润层深度设定为0~40 cm, 拔节期和开花期补灌的目标土壤相对含水量为70%, 均获得了较高的籽粒产量和水分利用效率[7, 8]。然而, 土壤质地对田间持水率的大小、水分入渗过程等影响很大[9, 10], 因而在不同土壤质地麦田适宜补灌参数也应存在差异。迄今, 这方面的试验研究还很少, 不同土壤质地的适宜补灌量, 以及补灌后对冬小麦产量的调控效果有待进一步分析。我国黄淮海地区土壤质地多属壤土, 其中以沙粉土最多, 而黏土所占比例很小[11]。本试验选择粉壤土和沙壤土地块, 在拔节期设置不同的拟湿润层深度, 探索补灌对冬小麦旗叶衰老的调节作用及其与籽粒产量的关系, 为冬小麦节水高产栽培提供理论依据。 1 材料与方法1.1 试验设计试验于2013— 2014和2014— 2015年冬小麦生长季分别在山东省济宁市小孟镇史家王子村(35° 40′ N, 116° 41′ E)和泰安市道朗镇玄庄村(36° 12′ N, 116° 54′ E)大田进行。供试冬小麦品种为济麦22。在两试验点均选择粉壤土和沙壤土地块, 以全生育期不灌水处理为对照(D0), 设置4个补灌水处理, 于拔节期和开花期补灌。设置拔节期补灌的拟湿润层深度为0~10 cm (D1)、0~20 cm (D2)、0~30 cm (D3)和0~40 cm (D4), 目标相对含水量均为100%, 开花期各补灌水处理均以0~20 cm土层相对含水量达到100%为目标进行补灌。依据灌水定额公式计算补灌量。 [7] 式中, Dh为拟湿润层深度(cm), γ bd为该拟湿润层土壤容重(g cm-3), θ t为目标土壤质量含水量(mg g-1), 即田间持水量乘以目标土壤相对含水量, θ n为灌水前拟湿润层土壤质量含水量(mg g-1)。以井水为水源, 灌溉时采用输水带供水, 通过小麦专用微喷带(ZL201220356553.7)[12]均匀喷洒在试验小区内, 微喷带进水端装有水表和闸阀, 用以计量和控制灌水量。 播种前测定试验地0~200 cm土壤质地(表1)和耕层基础肥力(表2), 0~200 cm各土层分别测定土壤容重、田间持水量, 以及播种前和拔节期补灌前土壤相对含水量(表3)。不同处理冬小麦生育期内补灌水量如表4所示。冬小麦生长季总降水量2013— 2014年度为155.0 mm, 2014— 2015年度为161.2 mm, 降水量分布如图1。 小区面积4 m × 10 m = 40 m2, 随机区组排列, 3次重复。小区间设1.0 m隔离带, 防止水分侧渗影响。播种前底肥施纯氮105 kg hm-2、P2O5 150 kg hm-2、K2O 150 kg hm-2, 拔节期追施纯氮135 kg hm-2。使用的肥料为尿素(含N 46%)、磷酸二铵(含P2O5 46%, 含N 18%)和氯化钾(含K2O 60%)。播种期为2013年10月10日和2014年10月6日; 四叶期定苗, 基本苗为180株 m-2; 收获期为2014年5月31日和2015年6月10日。其他管理措施同一般高产田。 表1 Table 1 表1(Table 1)
表1 试验田0~200 cm各土层土壤质地 Table 1 Soil texture in 0-200 cm depth of experimental plot (%)
土层 Soil layer
2013-2014
2014-2015
粉壤土 Powder loam
沙壤土 Sandy loam
粉壤土 Powder loam
沙壤土 Sandy loam
黏粒 Clay
沙粒 Sand
粉粒 Silt
黏粒 Clay
沙粒 Sand
粉粒 Silt
黏粒 Clay
沙粒 Sand
粉粒 Silt
黏粒 Clay
沙粒 Sand
粉粒 Silt
0-20 cm
2.8
25.9
71.4
10.3
54.6
35.1
20.1
22.0
57.9
6.8
69.6
23.6
20-40 cm
9.5
18.0
72.5
10.8
53.9
35.3
21.2
19.8
59.0
7.7
72.1
20.2
40-60 cm
10.1
13.9
76.0
11.2
53.3
35.5
22.6
17.7
59.7
7.5
75.4
17.1
60-80 cm
10.6
15.0
74.4
10.1
53.8
36.1
22.5
14.3
63.3
6.9
45.6
47.4
80-100 cm
12.3
20.5
67.2
6.7
55.1
38.2
14.0
21.7
64.4
6.5
41.4
52.1
100-120 cm
12.5
15.3
72.2
5.9
54.5
39.6
21.8
19.6
58.6
9.6
55.3
35.1
120-140 cm
10.8
16.8
72.4
4.9
71.6
23.5
15.1
19.4
65.5
5.7
82.5
11.8
140-160 cm
10.8
17.2
72.1
3.0
94.8
2.1
18.7
16.1
65.2
6.2
85.8
8.0
160-180 cm
12.9
13.8
73.4
2.5
95.8
1.8
8.4
24.9
66.6
5.6
84.6
9.8
180-200 cm
12.7
23.5
63.8
2.5
95.7
1.8
14.9
25.2
59.9
4.7
89.9
5.3
The experimental plots were located at Shijiawangzi village (35° 40′ N, 116° 41′ E) in 2013-2014 and Xuanzhuang village (36° 12′ N, 116° 54′ E) in 2014-2015. Soil texture was classified in the USA system[13]. 两年度试验地分别位于史家王子村(35° 40′ N, 116° 41′ E)和玄庄村(36° 12′ N, 116° 54′ E)。土壤质地按美国制[13]划分。
表1 试验田0~200 cm各土层土壤质地 Table 1 Soil texture in 0-200 cm depth of experimental plot (%)
表2 Table 2 表2(Table 2)
表2 试验田0~20 cm土层播种前土壤养分含量 Table 2 Soil nutrient contents in 0-20 cm soil layer of experimental field before sowing
年度 Year
土壤质地 Soil texture
有机质 Organic matter (g kg-1)
全氮 Total nitrogen (g kg-1)
碱解氮 Hydrolysable nitrogen (mg kg-1)
速效磷 Available phosphorus (mg kg-1)
速效钾 Available potassium (mg kg-1)
2013-2014
粉壤土 Powder loam
15.17
1.27
117.36
45.07
140.73
沙壤土 Sandy loam
10.68
1.00
103.67
52.97
92.70
2014-2015
粉壤土 Powder loam
14.23
0.72
94.33
42.84
112.77
沙壤土 Sandy loam
13.25
0.70
88.55
43.21
70.77
表2 试验田0~20 cm土层播种前土壤养分含量 Table 2 Soil nutrient contents in 0-20 cm soil layer of experimental field before sowing
表3 Table 3 表3(Table 3)
表3 试验田0~200 cm各土层土壤容重、田间持水量和土壤相对含水量 Table 3 Soil bulk density, field capacity, soil relative water content in 0-200 cm soil layers of experimental plots
土层 Soil layer
粉壤土 Powder loam
沙壤土 Sandy loam
土壤容重 SBD (g cm-3)
田间持水量 FC (%)
相对含水量 RSWC (%)
土壤容重 SBD (g cm-3)
田间持水量 FC (%)
相对含水量 RSWC (%)
播前 Pre-sowing
拔节期 Jointing
播前 Pre-sowing
拔节期 Jointing
2013-2014
0-10 cm
1.32
34.8
43.4
23.9
1.38
30.1
50.2
31.2
10-20 cm
1.38
30.6
49.4
30.0
1.44
27.5
56.7
38.2
20-30 cm
1.51
25.9
57.1
40.2
1.47
26.6
60.5
50.3
30-40 cm
1.52
25.1
67.3
53.5
1.48
26.4
58.7
69.2
40-60 cm
1.55
25.0
72.4
56.5
1.52
26.6
65.0
72.9
60-80 cm
1.60
23.1
78.4
64.3
1.53
25.3
68.8
75.7
80-100 cm
1.60
23.4
79.1
66.6
1.52
25.9
70.4
76.8
100-120 cm
1.64
22.0
91.8
78.6
1.52
26.3
76.1
79.6
120-140 cm
1.61
23.0
90.9
90.2
1.52
25.4
81.1
84.2
140-160 cm
1.62
22.2
96.0
94.1
1.64
20.2
67.8
19.4
160-180 cm
1.63
21.5
99.4
97.1
1.63
20.7
42.0
19.3
180-200 cm
1.65
20.8
99.9
96.9
1.64
20.3
48.3
20.4
2014-2015
0-10 cm
1.41
28.8
69.8
47.9
1.63
22.4
67.0
33.1
10-20 cm
1.41
29.0
64.9
50.1
1.62
21.4
58.7
32.9
20-30 cm
1.56
23.6
80.1
59.4
1.67
19.7
56.9
31.6
30-40 cm
1.63
22.5
89.3
70.9
1.70
18.8
50.1
42.1
40-60 cm
1.39
27.4
77.3
64.6
1.64
20.2
60.6
48.2
60-80 cm
1.49
27.4
85.5
77.0
1.68
21.5
72.5
48.7
80-100 cm
1.54
26.0
91.2
87.5
1.68
21.1
77.9
49.2
100-120 cm
1.60
24.5
88.9
84.6
1.66
21.9
87.8
84.0
120-140 cm
1.62
23.9
94.3
88.4
1.67
22.2
90.6
88.4
140-160 cm
1.62
23.5
94.2
92.5
1.66
21.9
96.9
92.9
160-180 cm
1.61
23.7
90.7
93.8
1.65
22.0
95.4
93.4
180-200 cm
1.62
24.0
88.9
94.3
1.66
22.1
99.0
95.7
SBD: soil bulk density; FC: field capacity; RSWC: relative soil water content. RSWC at jointing was measured before irrigation. 拔节期相对含水量为补灌前测定值。
表3 试验田0~200 cm各土层土壤容重、田间持水量和土壤相对含水量 Table 3 Soil bulk density, field capacity, soil relative water content in 0-200 cm soil layers of experimental plots
表4 Table 4 表4(Table 4)
表4 拔节和开花期不同处理的补灌水量 Table 4 Irrigation amounts at jointing and anthesis stage in different treatments (mm)
土壤质地 Soil texture
处理 Treatment
拔节期 Jointing
开花期 Anthesis
总量 Total
2013-2014
2014-2015
2013-2014
2014-2015
2013-2014
2014-2015
粉壤土 Powder loam
D0
0
0
0
0
0
0
D1
35.0
21.2
47.8
33.1
82.7
54.3
D2
64.5
41.6
47.2
32.7
111.8
74.3
D3
87.9
56.5
39.6
29.8
127.4
86.3
D4
105.6
67.2
37.1
32.8
142.7
100.0
沙壤土 Sandy loam
D0
0
0
0
0
0
0
D1
28.6
24.4
40.8
42.4
69.5
66.8
D2
53.1
47.7
38.4
43.2
91.5
90.9
D3
72.5
70.2
39.3
39.4
111.9
109.6
D4
84.5
88.7
37.8
37.6
122.3
126.3
At jointing, the target soil layers were 0-10 cm for D1, 0-20 cm for D2, 0-30 cm for D3, and 0-40 cm for D4. At anthesis, the target soil layer was 0-20 cm. Irrigation water was supplied until the 100% of relative soil water content in the target layer. D1、D2、D3、D4处理拔节期补灌的拟湿润层分别为0~10、0~20、0~30和0~40 cm, 开花期补灌的拟湿润层均为0~20 cm; 目标土壤相对含水量均为100%。
表4 拔节和开花期不同处理的补灌水量 Table 4 Irrigation amounts at jointing and anthesis stage in different treatments (mm)
图2 不同处理小麦开花后旗叶可溶性蛋白含量(2013-2014)Fig. 2 Soluble protein content of flag leaf after wheat flowering in different treatments (2013-2014)* 表示处理间差异显著(P < 0.05)。* Significant among treatments at P< 0.05.
图3 不同处理小麦开花后旗叶SOD活性、CAT活性和MDA含量(2013-2014)Fig. 3 SOD activity, CAT activity, and MDA content of flag leaf after wheat flowering in different treatments (2013-2014)* 表示处理间差异显著(P < 0.05)。* Significant among treatments at P < 0.05.
表5 不同处理冬小麦耗水量、籽粒产量和水分利用效率 Table 5 Water consumption, grain yield, water use efficiency of winter wheat in different treatment
处理 Treatment
粉壤土 Powder loam
沙壤土 Sandy loam
耗水量 Water consumption (mm)
籽粒产量 Grain yield (kg hm-2)
水分利用效率 Water use efficiency (kg hm-2 mm-1)
耗水量 Water consumption (mm)
籽粒产量 Grain yield (kg hm-2)
水分利用效率 Water use efficiency (kg hm-2 mm-1)
2013-2014
D0
335.5 c
6558.7 d
19.5 c
267.9 c
5298.4 c
19.8 c
D1
384.8 b
8253.2 c
21.4 b
323.4 b
6805.4 b
21.0 ab
D2
388.6 b
8797.5 b
22.6 a
334.0 ab
7223.5 a
21.6 a
D3
405.9 ab
9127.1 a
22.5 a
346.4 ab
7191.5 a
20.8 ab
D4
430.8 a
9194.0 a
21.3 b
352.9 a
7251.8 a
20.5 bc
2014-2015
D0
410.6 d
8081.9 d
19.7 c
356.3 d
6361.9 c
17.9 c
D1
434.5 cd
9407.8 c
21.7 a
374.4 cd
8350.7 b
22.3 a
D2
448.9 bc
9492.2 bc
21.1 ab
390.5 c
8599.7 b
22.0 a
D3
454.6 abc
9728.5 ab
21.4 a
433.4 b
9501.5 a
21.9 a
D4
480.4 a
9814.1 a
20.4 bc
464.0 a
9473.3 a
20.4 b
In each growing year, different letters after data indicate significant difference among treatments in the same soil texture (P< 0.05). 数据后不同字母表示同一年度相同土壤质地下的各处理间有显著差异(P < 0.05)。
表5 不同处理冬小麦耗水量、籽粒产量和水分利用效率 Table 5 Water consumption, grain yield, water use efficiency of winter wheat in different treatment
3 讨论入渗特性是土壤固有的属性。土壤质地通过对土粒的表面能、土壤孔隙尺度和分布的影响, 对土壤水分运动的驱动力和水力传导度产生影响, 进而影响土壤的入渗能力; 土壤质地由轻变重, 土壤入渗能力减小[9]。另外, 土壤质地对田间持水量也有重要影响, 黏粒含量越多, 田间持水量越大, 且两者符合正对数关系; 沙粒含量越多, 田间持水量越小, 两者符合负对数关系[10]。本试验2014— 2015年度(玄庄村)在两种质地土壤上得到基本一致的结果; 2013— 2014年度(史家王子村)在粉壤土地块上, 0~20 cm土层田间持水量较沙壤土地块高, 而20~160 cm土层田间持水量则偏低。相关分析显示, 两地块田间持水量与土壤容重呈极显著负相关(y = -37.488x + 82.615, r = -0.978, P < 0.01, n = 24), 说明不同质地土壤田间持水量除受土壤颗粒结构影响外, 还与土壤容重有密切关系。李潮海等[20]通过池栽试验, 发现玉米根系全生育期平均生长速率和根量最大值, 在中壤土中显著高于在轻壤土和轻黏土中。本试验粉壤土地块小麦耗水量和产量均显著高于沙壤土地块(P < 0.05), 而两地块小麦水分利用效率无显著差异, 说明粉壤土与沙壤土的土壤颗粒组成差异可引起小麦耗水量和产量的明显变化, 但对水分利用效率影响较小。 拔节期至灌浆期是冬小麦需水的重要时期, 需水量占全生育期总需水量的60%~70%[21]。孙旭生等[22]试验表明, 拔节期和灌浆期分别灌水60 mm, 冬小麦产量提高, 继续增加灌溉次数, 灌溉越冬水+拔节水+灌浆水或越冬水+起身水+拔节水+灌浆水, 则产量下降。据戴忠民等[23]报道, 在耕层土壤碱解氮、有效磷、速效钾含量分别为87.9、22.3和101.5 mg kg-1的条件下, 于拔节期和开花期各灌水75 mm, 冬小麦产量可达7782~8155 kg hm-2; 王德梅和于振文[24]在相近土壤肥力和生态条件下, 于拔节期和开花期各灌水60 mm, 两年度冬小麦产量分别为7411.6 kg hm-2和7565.7 kg hm-2。Wang等[7]基于测墒补灌策略, 采用动态补灌的方法, 以拔节期和开花期土壤相对含水量75%为目标, 拟湿润层深度设为0~140 cm, 结果全生育期仅灌水47.2~81.3 mm, 产量达到9371~9536 kg hm-2, 水分利用效率为23.7 kg hm-2 mm-1。同样采用测墒补灌方法, Guo等[8]将拟湿润层深度设为0~40 cm, 拔节期和开花期补灌的目标土壤相对含水量设为70%, 全生育期灌水62.4~118.2 mm, 产量达到9648.4~10 032.2 kg hm-2, 水分利用效率达到20.7~22.2 kg hm-2 mm-1。可见, 在本试验生态区为获得小麦高产, 拔节期和开花期灌水很关键, 采用定量灌水模式, 适宜灌水量为每次60~75 mm, 全生育期120~150 mm; 而采用测墒补灌模式, 总灌水量明显减少, 而且可获得较高的产量和水分利用效率; 同时目标湿润层的设定应与其相对含水量相匹配, 二者结合才能确定适宜的补灌水量。本试验依据灌溉水在土壤中入渗的特点[25], 在小麦拔节期和开花期均以一定深度土层土壤饱和水的亏缺程度确定补灌水量, 将补灌的目标土壤相对含水量设定为100%。在开花期拟湿润层为0~20 cm的条件下, 拔节期拟湿润层为0~30 cm时, 在粉壤土和沙壤土麦田均获得了较高的籽粒产量和水分利用效率。 小麦籽粒中超过30%的碳水化合物来源于花后旗叶的光合同化[26, 27], 而旗叶的光合功能在籽粒灌浆中后期逐渐衰退, 维持旗叶较高的光合速率和功能期对提高籽粒产量非常重要。土壤水分状况对小麦开花后的干物质同化、积累与分配有显著影响[28]。赵长星等[29]在防雨池栽培条件下, 土壤相对含水量60%~70%处理的小麦旗叶SPAD值、可溶性蛋白含量、SOD活性、过氧化氢酶活性和光合速率均高于其他处理; 土壤含水量过高或过低均导致旗叶早衰, 影响籽粒灌浆, 降低粒重。本试验在田间自然降水条件下, 在两个小麦需水关键生育期通过补灌来调控目标湿润层的相对含水量(100%), 发现目标湿润层深度不同导致的补灌水量差异亦对小麦旗叶衰老特性有显著调节作用, 表现为开花后旗叶SOD和CAT活性随湿润层深度的增加呈增大趋势。然而, 无论是在粉壤土还是在沙壤土地块, 拟湿润层设定过深, 补灌水量过多, 均无益于进一步延缓旗叶衰老、提高其光合同化能力。 4 结论粉壤土与沙壤土土壤颗粒组成的差异能引起小麦耗水量和籽粒产量的明显变化, 但对水分利用效率无显著影响。在补灌的目标土壤相对含水量设定为100%, 开花期拟湿润层为0~20 cm的条件下, 拔节期拟湿润层深度不同导致的补灌水量的差异对小麦开花后旗叶SOD、CAT活性和光合速率均有显著调节作用。拔节期以0~30 cm为拟湿润层, 粉壤土和沙壤土小麦旗叶可溶性蛋白含量、SOD和CAT活性、光合速率均保持较高水平, 获得了较高的籽粒产量和水分利用效率。 The authors have declared that no competing interests exist.
作者已声明无竞争性利益关系。The authors have declared that no competing interests exist.
刘愿英, 代世伟, 范永贵, 万亮婷. 我国灌区农业水资源可持续利用问题探讨. , 2007, 25(6): 157-162Liu YY, Dai SW, Fan YG, Wan LT. Research on sustainable utilization of agricultural water resources in certain irrigation areas in China. , 2007, 25(6): 157-162 (in Chinese with English abstract)[本文引用:1]
[2]
李幸珍. 农业水资源的合理利用分析. , 2015, 43(1): 191-193Li XZ. The analysis of rational use of agricultural water resources. , 2015, 43(1): 191-193 (in Chinese with English abstract)[本文引用:1]
[3]
Huo ZL, Feng SY, Huang GH, Zheng YY, Wang YH, GuoP. Effect of groundwater level depth and irrigation amount on water fluxes at the groundwater table and water use of wheat. , 2012, 61: 348-356[本文引用:1]
[4]
Li QQ, Dong BD, Qiao YZ, Liu MY, Zhang JW. Root growth, available soil water, and water-use efficiency of winter wheat under different irrigation regimes applied at different growth stages in North China. , 2010, 97: 1676-1682[本文引用:1]
[5]
孙宏勇, 张喜英, 陈素英, 邵立威, 王艳哲, 刘克桐. 亏缺灌溉对冬小麦生理生态指标的影响及应用. , 2011, 19: 1086-1090Sun HY, Zhang XY, Chen SY, Shao LW, Wang YZ, Liu KT. Effects of deficit irrigation on physio-ecological indices of winter wheat. , 2011, 19: 1086-1090 (in Chinese with English abstract)[本文引用:1]
[6]
秦欣, 刘克, 周丽丽, 周顺利, 鲁来清, 王润政. 华北地区冬小麦-夏玉米轮作节水体系周年水分利用特征. , 2012, 45: 4014-4024QinX, LiuK, Zhou LL, Zhou SL, Lu QL, Wang RZ. Characteristics of annual water utilization in winter wheat-summer maize rotation system in North China Plain. , 2012, 45: 4014-4024 (in Chinese with English abstract)[本文引用:1]
[7]
WangD, Yu ZW, Philip JW. The effect of supplemental irrigation after jointing on leaf senescence and grain filling in wheat. , 2013, 151: 35-44[本文引用:3]
[8]
Guo ZJ, Yu ZW, WangD, ShiY, Zhang YL. Photosynthesis and winter wheat yield responses to supplemental irrigation based on measurement of water content in various soil layers. , 2014, 166: 102-111[本文引用:2]
[9]
解文艳, 樊贵盛. 土壤质地对土壤入渗能力的影响. , 2004, 35: 537-540Xie WY, Fan GS. Influence of soil structure on infiltration characteristics in field soils. , 2004, 35: 537-540 (in Chinese with English abstract)[本文引用:2]
[10]
贾芳, 樊贵盛. 土壤质地与田间持水率关系的研究. , 2007, (3): 17-19JiaF, Fan GS. The study of the relationship between soil texture and water-holding capacity. , 2007, (3): 17-19 (in Chinese with English abstract)[本文引用:2]
[11]
熊毅, 李庆逵. 中国土壤. 北京: 科学出版社, 1978. pp 329-335XiongY, Li Q K. China Soil. Beijing: Science Press, 1978. pp 329-335(in Chinese)[本文引用:1]
[12]
山东农业大学. 小麦专用微喷带: 中国专利号: 201220356553. 7. 2013 -02-06Shand ong Agricultural University. Micro-sprinkling hose special for wheat. Chinese Patent, No. 201220356553. 7. 2013 -[本文引用:1]
[13]
秦耀东. 土壤物理学. 北京: 高等教育出版社, 2003. p 7Qin Y D. Soil Physics. Beijing: Higher Education Press, 2003. p 7 (in Chinese)[本文引用:1]
[14]
刘增进, 李宝萍, 李远华, 崔远来. 冬小麦水分利用效率与最优灌溉制度的研究. , 2004, 20(4): 58-63Liu ZJ, Li BP, Li YH, Cui YL. Research on the water use efficiency and optimal irrigation schedule of the winter wheat. , 2004, 20(4): 58-63 (in Chinese with English abstract)[本文引用:1]
[15]
BeauchampC, FridovichI. Superoxide dismutase: improved assay and an assay applicable to acrylamide gels. , 1971, 44: 276-287[本文引用:1]
[16]
TanW, LiuJ, DaiT, JingQ, CaoW, JiangD. Alternations in photosynthesis and antioxidant enzyme activity in winter wheat subjected to post-anthesis water-logging. , 2008, 46: 21-27[本文引用:1]
[17]
Quan RD, ShangM, ZhangH, Zhao YX, Zhang JR. Improved chilling tolerance by transformation with beta gene for the enhancement of glycinebetaine synthesis in maize. , 2004, 166: 141-149[本文引用:1]
[18]
Read SM, Northcote DH. Minimization of variation in the response to different protein of the Coomassic blue G dye binding assay for protein. , 1981, 116: 53-64[本文引用:1]
[19]
Sepaskhah AR, TagaftehA. Yield and nitrogen leaching in rapeseed field under different nitrogen rates and water saving irrigation. , 2012, 112: 55-62[本文引用:1]
[20]
李潮海, 李胜利, 王群, 侯松, 荆棘. 不同质地土壤对玉米根系生长动态的影响. , 2004, 37: 1334-1340Li CH, Li SL, WangQ, HouS, JingJ. Effect of different textural soils on root dynamic growth in corn. , 2004, 37: 1334-1340 (in Chinese with English abstract)[本文引用:1]
[21]
马兴华, 王东, 于振文, 王西芝, 许振柱. 不同施氮量下灌水量对小麦耗水特性和氮素分配的影响. , 2010, 30: 1955-1965Ma XH, WangD, Yu ZW, Wang XZ, Xu ZZ. Effect of irrigation regimes on water consumption characteristics and nitrogen distribution in wheat at different nitrogen applications. , 2010, 30: 1955-1965 (in Chinese with English abstract)[本文引用:1]
[22]
孙旭生, 林琪, 李玲燕, 赵长星, 刘义国. 补灌对旱地小麦花后旗叶和籽粒氮代谢及产量的影响. , 2010, 30: 106-110Sun XS, LinQ, Li LY, Zhao CX, Liu YG. Effect of supplementary irrigation on the nitrogen metabolism at later developing stages and yield of high-yield wheat in dry land . , 2010, 30: 106-110 (in Chinese with English abstract)[本文引用:1]
[23]
戴忠民, 李妍, 张红, 王丽燕, 张秀玲, 李勇, 王振林. 不同灌溉处理对小麦花后氮素积累和转运的影响. , 2015, 35: 1712-1718Dai ZM, LiY, ZhangH, Wang LY, Zhang XL, LiY, Wang ZL. Effects of different irrigation treatments on nitrogen accumulation and translocation after anthesis in wheat. , 2015, 35: 1712-1718 (in Chinese with English abstract)[本文引用:1]
[24]
王德梅, 于振文. 灌溉量和灌溉时期对小麦耗水特性和产量的影响. , 2008, 19: 1965-1970Wang DM, Yu ZW. Efects of irrigation amount and stage on water consumption characteristics and grain yield of wheat. , 2008, 19: 1965-1970 (in Chinese with English abstract)[本文引用:1]
[25]
季志恒, 樊福来. 土壤水消退的时空变化规律分析. , 2003, 23(1): 23-27Ji ZH, Fan FL. Analysis on the law of temporal and spatial variation for soil moisture subsiding. , 2003, 23(1): 23-27 (in Chinese with English abstract)[本文引用:1]
徐恒永, 赵君实. 高产冬小麦的冠层光合能力及不同器官的贡献. , 1995, 21: 204-209Xu HJ, Zhao JS. Canopy photosynthesis capacity and contribution from different organs in high yielding winter wheat. , 1995, 21: 204-209 (in Chinese with English abstract)[本文引用:1]
[28]
Ziaei AN, Sepaskhah AR. Model for simulation of winter wheat yield under dryland and irrigated conditions. , 2003, 58: 1-17[本文引用:1]
[29]
赵长星, 马东辉, 王月福, 林琪. 施氮量和花后土壤含水量对小麦旗叶衰老及粒重的影响. , 2008, 19: 2388-2393Zhao CX, Ma DH, Wang YF, LinQ. Effects of nitrogen application rate and post-anthesis soil moisture content on the flag leaf senescence and kernel weight of wheat. , 2008, 19: 2388-2393 (in Chinese with English abstract)[本文引用:1]