关键词:耕作模式; 秸秆还田; 氮肥; 产量 Effect of Returning Methods of Maize Straw and Nitrogen Treatments on Soil Physicochemical Property and Yield of Winter Wheat PANG Dang-Wei, CHEN Jin, TANG Yu-Hai, YIN Yan-Ping, YANG Dong-Qing, CUI Zheng-Yong, ZHENG Meng-Jing, LI Yong, WANG Zhen-Lin* 1Agronomy College, Shandong Agricultural University / State Key Laboratory of Crop Biology, Tai’an 271018, China Fund:This study was supported by the National Natural Science Foundation of China (31271661, 31271667, 30871477), the National Basic Research Program of China (2015CB150404), the National Technology Engineering Program for Food Crops Production (2012BAD04B05), the Special Fund for Agro-Scientific Research in the Public Interest (201203100, 201203029), and the Higher Educational Science and Technology Program of Shandong Province (J14LF12) AbstractThe objective of this study was to understand the effect of continuous rotary tillage on soil tilth and wheat yield under straw-return and non-straw return conditions. A three-year field experiment from October 2012 to June 2015 was conducted with three tillage patterns (three-year rotary tillage without maize straw return, RT; three-year rotary tillage with maize straw return, RTS; and two-year rotary tillage plus one-year deep tillage with maize straw returning, RTS-DTS) and four nitrogen application levels (165 kg ha-1, N165; 225 kg ha-1, N225; 300 kg ha-1, N300; 360 kg ha-1, N360). Compared with rotary tillage, deep tillage facilitated decomposition of the maize straw and high N level accelerated the decomposition speed. Under non-straw-return condition, continuous rotary tillage reduced the organic matter content in 0-30 cm soil layer, leading to increased bulk density and decreased soil porosity. Under straw-return condition, continuous rotary tillage increased the organic matter content in 0-10 cm soil layer and soil porosity and decreased bulk density. Moreover, RTS-DTS showed positive effects on tilth soil structure. For example, compared with RTS, RTS-DTS had the effect on increasing organic matter content in 10-30 cm soil layer, decreasing bulk density in 0-20 cm soil layer, and increasing the total porosity in 0-20 cm soil layer and capillary porosity in 10-30 cm soil layer. Three-year rotary tillage resulted in yield decline of wheat, particularly under non-straw return condition. Grain yield of RT in the third year was 5.0%-8.7% more than that in the first year. Although the yield of RTS was 7.3%-8.9% higher than that of RT, it also showed obvious decline in the third year. Compared with RTS, RTS-DTS showed great improvement in yield and yield components, with the increase of 14.5% in spike number, 5.7% in grain number per spike, and 7.6% in final yield. Under maize straw return condition, soil physical property was improved with the increase of N level. However, the final yield in treatments of N225, N300, and N360 was not significantly different. Our results suggest that RTS-DTS plus maize straw return with N application rate of 225 kg ha-1 is a high-yield and high-efficient cultivation pattern in Shandong province.
Keyword:Tillage practices; Straw returning; Nitrogen fertilizer; Yield Show Figures Show Figures
表1 耕作模式和施氮量对玉米秸秆腐解速率的影响 Table 1 Effect of tillage pattern and N application rate on maize straw decomposition speed (kg d-1 hm-2)
耕作模式 Tillage pattern
施氮处理 N treatment
播种-越冬 Sowing- overwintering
越冬-返青 Overwintering- regreening
返青-成熟 Regreening- maturity
小麦全生育期 Wheat growth duration
3年旋耕秸秆还田 Three-year RT plus maize straw return
N165
45.78 b
2.35 e
11.44 c
14.34 d
N225
49.70 ab
2.91 d
11.40 c
15.30 cd
N300
51.19 a
3.75 b
10.00 d
15.36 cd
N360
52.15 a
2.72 d
11.09 cd
15.5 6c
平均 Mean
49.70
2.93
10.98
15.14
2年旋耕秸秆还田1年深耕秸秆还田 Two-year RT and one-year deep tillage plus maize straw return
N165
47.56 ab
2.63 de
14.93 b
16.21 bc
N225
48.59 ab
3.35 c
15.61 ab
16.97 ab
N300
48.93 ab
3.37 c
16.46 a
17.39 a
N360
49.93 ab
4.07 a
16.12 ab
17.72 a
平均 Mean
48.75
3.36
15.78
17.07
Nitrogen treatment is defined with “ N” and application rate (kg hm-2). Multiple comparison was conducted across the eight treatments under two tillage patterns and different letters after values indicate significance at 0.05 probability level (LSD method). 氮处理符号中数字表示施氮量(kg hm-2)。两种耕作模式下8个处理进行多重比较(LSD法), 数据后不同字母表示在0.05概率水平差异显著。
表1 耕作模式和施氮量对玉米秸秆腐解速率的影响 Table 1 Effect of tillage pattern and N application rate on maize straw decomposition speed (kg d-1 hm-2)
氮肥施用量显著影响秸秆的平均腐解速率, 并且增加施氮量能提高秸秆的平均腐解速率。在RTS-DTS模式下, 4个施氮水平N165、N225、N300、N360的平均腐解速率分别为16.21、16.97、17.39和17.72 kg d-1 hm-2 (表1), 与当地推荐施氮量(225 kg hm-2, N225)相比较, N300、N360的平均腐解速率分别提高2.5%、4.4%, 而N165处理降低4.5%。 2.1.2 对秸秆腐解进程的影响 图1表明, 还田玉米秸秆残余量随生育进程而逐渐减少。耕作模式和氮肥处理共同影响秸秆腐解, 表现为深耕以及增施氮肥(N300、N360)均能促进秸秆的腐解。小麦成熟期深耕各施氮量的腐解量分别为3808、3987、4085和4165 kg hm-2, 较旋耕相应施氮量下的腐解量分别提高13.1%、10.9%、13.1%和14.0%, 平均提高12.8%, 差异达到极显著水平。在旋耕条件下, N165、N225、N300和N360四个氮肥水平下成熟期的秸秆腐解量分别为3370、3596、3610和3658 kg hm-2。与当地推荐施氮量N225相比, N300、N360处理的腐解量分别提高0.4%和1.7%, 而N165处理降低6.3%。这说明秸秆腐解不但受耕作方式和氮肥施用量共同影响, 并且耕作方式对秸秆腐解的影响大于氮肥的施用。 2.1.3 对有机质的影响 试验处理3年后成熟期土壤耕层有机质含量如表2所示。不同耕作措施对耕层土壤有机质的分布及影响不同。RT及RTS处理的有机质主要富集在0~20 cm, 并且0~10 cm的有机质含量高于10~20 cm, 而RTS-DTS处理的有机质富集于0~30 cm, 以10~20 cm有机质含量最高。与RT相比, RTS显著增加了0~20 cm土壤的有机质含量, 这是因为旋耕条件下秸秆的腐解产物主要聚集在0~10 cm以及腐解物的向下迁移所致。RTS-DTS较RTS提高了10~30 cm土壤的有机质含量, 这是因为深耕较旋耕更易促进秸秆腐解(图1), 转化较多的有机质。秸秆还田条件下, 有机质含量随氮肥施用量增加而增加(表2), 与增施氮肥能促进秸秆的腐解(图1)相符。 图1 Fig. 1
图1 耕作模式和施氮量对玉米秸秆腐解的影响 氮处理符号中数字表示施氮量(kg hm-2)。RTS: 3年旋耕秸秆还田; RTS-DTS: 2年旋耕秸秆还田1年深耕秸秆还田。Fig. 1 Effects of different tillage patterns and N treatments on maize straw decomposition Nitrogen treatment is defined with “ N” and application rate (kg hm-2). RTS: three-year RT plus maize straw return; RTS-DTS: two-year RT and one-year deep tillage plus maize straw return.
表2 Table 2 表2(Table 2)
表2 耕作模式和施氮量对不同土层土壤有机质的影响 Table 2 Effects of tillage patterns and nitrogen application amount on organic matter in different soil layers (g kg-1)
耕作模式 Tillage pattern
施氮处理 Nitrogen treatment
土层 Soil layer
0-10 cm
10-20 cm
20-30 cm
3年旋耕秸秆不还田 Three-year rotary tillage (RT) with no straw return
N165
13.77 c
12.76 f
9.41 f
N225
13.97 c
13.19 f
9.47 f
N300
14.30 c
13.38 f
11.06 de
N360
14.58 c
13.47 f
10.20 ef
3年旋耕秸秆还田 Three-year RT plus maize straw return
N165
16.59 ab
14.46 de
12.20 cd
N225
16.80 ab
15.26 de
12.31 cd
N300
17.02 a
15.33 de
12.76 c
N360
17.15 a
15.68 cd
12.83 c
2年旋耕秸秆还田1年深耕秸秆还田 Two-year RT and one-year deep tillage plus maize straw return
N165
15.93 b
16.40 bc
13.35 bc
N225
16.05 b
16.85 ab
14.26 ab
N300
17.17 a
17.19 ab
14.54 ab
N360
17.21 a
17.52 a
15.36 a
Nitrogen treatment is defined with “ N” and application rate (kg hm-2). Multiple comparison was conducted across the 12 treatments under three tillage patterns and different letters after values indicate significance at the 0.05 probability level (LSD method). 氮处理符号中数字表示施氮量(kg hm-2)。3种耕作模式下12个处理进行多重比较(LSD法), 数据后不同字母表示在0.05概率水平差异显著。
表2 耕作模式和施氮量对不同土层土壤有机质的影响 Table 2 Effects of tillage patterns and nitrogen application amount on organic matter in different soil layers (g kg-1)
图2 耕作模式和施氮量对土壤容重的影响(2014-2015) 氮处理符号中数字表示施氮量(kg hm-2)。RT: 3年旋耕不还田; RTS: 3年旋耕秸秆还田; RTS-DTS: 2年旋耕秸秆还田1年深耕秸秆还田。Fig. 2 Effects of different tillage patterns and N treatments on the soil bulk density (2014-2015) Nitrogen treatment is defined with “ N” and application rate (kg hm-2). RT: Three-year rotary tillage (RT) with no straw return; RTS: Three-year RT plus maize straw return; RTS-DTS: Two-year RT and one-year deep tillage plus maize straw return.
表3 耕作模式和施氮量对土壤毛管孔隙度、非毛管孔隙度和总孔隙度的影响 Table 3 Effects of different tillage patterns and N treatments on capillary porosity, non-capillary porosity, and total porosity
耕作模式 Tillage pattern
施氮处理 Nitrogen treatment
毛管孔隙度 Capillary porosity
非毛管孔隙度 Non-capillary porosity
总孔隙度 Total porosity
0-10 cm
10-20 cm
20-30 cm
0-10 cm
10-20 cm
20-30 cm
0-10 cm
10-20 cm
20-30 cm
RT
N165
41.71 cd
37.21 d
36.37 e
2.74 g
4.62 f
3.84 abc
44.46 f
41.83 c
40.21 e
N225
42.17 bc
38.49 b
37.14 cde
3.44 e
5.00 e
3.57 bc
45.60 ef
43.49 b
40.70 cde
N300
41.96 cd
38.48 b
36.97 cde
3.18 f
4.67 f
3.42 ce
45.14 f
43.15 b
40.39 de
N360
41.93 cd
37.61 cd
36.84 cde
2.75 g
4.34 g
3.40 c
44.67 f
41.95 c
40.24 de
RTS
N165
43.13 ab
38.09 bc
36.44 de
3.65 d
5.00 e
4.21 a
46.77 de
43.09 b
40.65 cde
N225
43.32 a
38.30 bc
36.69 de
3.72 d
5.14 cd
4.04 ab
47.03 cd
43.44 b
40.72 cd
N300
43.48 a
38.49 b
37.27 cde
4.11 b
5.05 de
3.75 abc
47.59 bcd
43.54 b
41.01 bc
N360
43.82 a
38.63 b
37.34 cd
3.88 c
5.25 c
4.08 ab
47.70 bcd
43.88 b
41.41 ab
RTS-DTS
N165
40.51 e
39.75 a
37.66 bc
7.50 a
5.28 bc
3.37 c
48.01 abc
45.03 a
41.03 bc
N225
40.89 de
39.82 a
38.59 ab
7.53 a
5.39 ab
2.65 d
48.43 ab
45.21 a
41.24 ab
N300
41.10 cde
39.94 a
38.84 a
7.51 a
5.50 a
2.55 d
48.62 ab
45.44 a
41.39 ab
N360
41.76 cd
40.31 a
38.91 a
7.36 a
5.21 c
2.71 d
49.11 a
45.52 a
41.62 a
Nitrogen treatment is defined with “ N” and application rate (kg hm-2). RT: three-year rotary tillage (RT) with no straw return; RTS: three-year RT plus maize straw return; RTS-DTS: two-year RT and one-year deep tillage plus maize straw return. Multiple comparisons were conducted across the 12 treatments under three tillage patterns and different letters after values indicate significance at the 0.05 probability level (LSD method). 氮处理符号中数字表示施氮量(kg hm-2)。RT: 3年旋耕不还田; RTS: 3年旋耕秸秆还田; RTS-DTS: 2年旋耕秸秆还田1年深耕秸秆还田。3种耕作模式下12个处理进行多重比较(LSD法), 数据后不同字母表示在0.05概率水平差异显著。
表3 耕作模式和施氮量对土壤毛管孔隙度、非毛管孔隙度和总孔隙度的影响 Table 3 Effects of different tillage patterns and N treatments on capillary porosity, non-capillary porosity, and total porosity
图3 耕作模式和施氮量对冬小麦产量及产量构成因素的影响 横坐标中1~3表示同一耕作模式实施年份, 分别为2012-2013、2013-2014和2014-2015年度。RTS-DTS表示连续旋耕还田模式的第3年改为深耕还田。N165、N225、N300、N360表示不同施氮处理, 数字代表施氮量(kg hm-2)。Fig. 3 Effects of different tillage patterns and N treatments on yield and yield components of winter wheat In the X-axis, numbers 1 to 3 indicate years conducted in the same tillage pattern, in 2012-2013, 2013-2014, and 2014-2015 wheat seasons. RTS-DTS indicates RTS with deep-tillage in the third year. N165, N225, N300, and N360 stand for N treatment and the number indicates the amount of N applied (kg hm-2).
4 结论无论秸秆还田与否, 连续3年旋耕均造成有机质富集于表层, 下层土壤容重增加、孔隙度降低。连续2年旋耕还田后进行深耕还田均衡耕层的有机质分布, 降低容重、改善孔隙度空间分布, 有利于创造适于作物生长发育的耕层结构, 从而实现冬小麦年度间稳产增产。在配施纯氮225 kg hm-2的基础上增加施氮量并不能显著提高产量, 因此, 连续2年旋耕还田1年深耕还田并配施225 kg hm-2纯氮可以作为实现山东省冬小麦稳产增产的有效途径。 The authors have declared that no competing interests exist.
作者已声明无竞争性利益关系。The authors have declared that no competing interests exist.
武雪萍, 徐明岗, 潘根兴. 土壤管理与可持续利用. , 2015, 48: 4603-4606Wu XP, Xu MG, Pan GX. Soil management and sustainable use of soils. , 2015, 48: 4603-4606 (in Chinese with English abstract)[本文引用:1]
[2]
赵其国. 21世纪土壤科学展望. 地球科学进展, 2010, 16: 704-709Zhao QG. Prospects of soil science in the 21st century. Adv Earth Sci, 2010, 16: 704-709 (in Chinese with English abstract)[本文引用:1]
[3]
梅旭荣, 康绍忠, 于强, 黄元仿, 钟秀丽, 龚道枝, 霍再林, 刘恩科. 协同提升黄淮海平原作物生产力与农田水分利用效率途径. 中国农业科学, 2013, 46: 1149-1157Mei XR, Kang SZ, YuQ, Huang YF, Zhong XL, Gong DZ, Huo ZL, Liu EK. Pathways to synchronously improving crop productivity and field water use efficiency in the North China Plain. Sci Agric Sin, 2013, 46: 1149-1157 (in Chinese with English abstract)[本文引用:1]
[4]
陈丽, 郝晋珉, 艾东, 朱传民, 李牧, 袁凌波. 黄淮海平原粮食均衡增产潜力及空间分异. 农业工程学报, 2015, 31(2): 288-297ChenL, Hao JM, AiD, Zhu CM, LiM, Yuan LB. Balanced yield increasing potential of grain and its spatial differentiation in Huang-Huai-Hai Plain. Trans CSAE, 2015, 31(2): 288-297 (in Chinese with English abstract)[本文引用:1]
[5]
Hammel JE. Long-term tillage and crop rotation effects on bulk density and soil impedance in northern Idaho. Soil Sci Soc Am J, 1989, 53: 1515-1919[本文引用:2]
[6]
孔凡磊, 陈阜, 张海林, 黄光辉. 轮耕对土壤物理性状和冬小麦产量的影响. 农业工程学报, 2010, 26(8): 150-155Kong FL, ChenF, Zhang HL, Huang GH. Effects of rotational tillage on soil physical properties and winter wheat yield. Trans CSAE, 2010, 26(8): 150-155 (in Chinese with English abstract)[本文引用:2]
[7]
周虎, 吕贻忠, 杨志臣, 李保国. 保护性耕作对华北平原土壤团聚体特征的影响. 中国农业科学, 2007, 40: 1973-1979ZhouH, Lü YZ, Yang ZC, Li BG. Effects of conservation tillage on soil aggregates in Huabei Plain, China. Sci Agric Sin, 2007, 40: 1973-1979 (in Chinese with English abstract)[本文引用:3]
[8]
尹宝重, 张永升, 甄文超. 海河低平原渠灌区麦田深松的节水增产效应研究. 中国农业科学, 2015, 48: 1311-1320Yin BZ, Zhang YS, Zhen WC. Effects of sub-soiling tillage on wheat field water-saving and yield-increasing in canal irrigation district of Haihe lowland plain. Sci Agric Sin, 2015, 48: 1311-1320 (in Chinese with English abstract)[本文引用:2]
[9]
杨雪, 逄焕成, 李轶冰, 任天志, 董国豪, 郭智慧, 王湘峻. 深旋松耕作法对华北缺水区壤质黏潮土物理性状及作物生长的影响. 中国农业科学, 2013, 46: 3401-3412YangX, Pang HC, Li YB, Ren TZ, Dong GH, Guo ZH, Wang XJ. Effects of deep rotary sub-soiling tillage on the physical properties and crop growth of the sticky loamy soil in North China. Sci Agric Sin, 2013, 46: 3401-3412 (in Chinese with English abstract)[本文引用:2]
[10]
Soon YK, Lupwayi NZ. Straw management in a cold semi-arid region: Impact on soil quality and crop productivity. Field Crops Res, 2012, 139: 39-46[本文引用:1]
[11]
HuangS, Zeng YJ, Wu JF, Shi QH, Pan XH. Effect of crop residue retention on rice yield in China: A meta-analysis. Field Crops Res, 2013, 154: 188-194[本文引用:1]
[12]
BiL, ZhangB, LiuG, LiZ, LiuY, YeC, YuX, LaiT, ZhangJ, YinJ, LiangY. Long-term effects of organic amendments on the rice yields for double rice cropping systems in subtropical China. Agric Ecosyst Environ, 2009, 129: 534-541[本文引用:1]
[13]
Yadvinder-Singh, GuptaRK, Gurpreet-Singh, Jagmohan-Singh, Sidhu HS, Bijay-Singh. Nitrogen and residue management effects on agronomic productivity and nitrogen use efficiency in rice-wheat system in Indian Punjab. Nutr Cycl Agroecosyst, 2009, 84: 141-154[本文引用:1]
[14]
BossuytH, DenefK, SixJ, FreyS, MerckxR, PaustianK. Influence of microbial populations and residue quality on aggregate stability. Appl Soil Ecol, 2001, 16: 195-208[本文引用:1]
[15]
Álvaro-FuentesJ, Cantero-MartínezC, LópezM, PaustianK, DenefK, StewartC, ArrúeJ. Soil aggregation and soil organic carbon stabilization: effects of management in semiarid Mediterranean agroecosystems. Soil Sci Soc Am J, 2009, 73: 1519-1529[本文引用:1]
[16]
Elliott ET, Coleman DC. Let the soil work for us. , 1988, 39: 23-32[本文引用:1]
[17]
张先凤, 朱安宁, 张佳宝, 杨文亮, 闫惊涛. 耕作管理对潮土团聚体形成及有机碳累积的长期效应. 中国农业科学, 2015, 48: 4639-4648Zhang XF, Zhu AN, Zhang JB, Yang WL, Yan JT. The long-term effect research of various tillage managements on the soil aggregates and organic carbon in Fluvo-Aquic soil. Sci Agric Sin, 2015, 48: 4639-4648 (in Chinese with English abstract)[本文引用:1]
[18]
孔凡磊, 袁继超, 张海林, 陈阜. 耕作方式对华北两熟区冬小麦生长发育和产量的影响. 作物学报, 2013, 39: 1612-1618Kong FL, Yuan JC, Zhang HL, ChenF. Effect of tillage practice on growth and development and yield of winter wheat in double cropping area in North China. Acta Agron Sin, 2013, 39: 1612-1618 (in Chinese with English abstract)[本文引用:2]
[19]
赵亚丽, 郭海斌, 薛志伟, 穆心愿, 李潮海. 耕作方式与秸秆还田对冬小麦-夏玉米轮作系统中干物质生产和水分利用效率的影响. 作物学报, 2014, 40: 1797-1807Zhao YL, Guo HB, Xue ZW, Mu XY, Li CH. Effects of tillage and straw returning on biomass and water use efficiency in a winter wheat and summer maize rotation system. Acta Agron Sin, 2014, 40: 1797-1807 (in Chinese with English abstract)[本文引用:2]
[20]
赵红香, 迟淑筠, 宁堂原, 田慎重, 王丙文, 李增嘉. 科学耕作与留茬改良小麦-玉米两熟农田土壤物理性状及增产效果. 农业工程学报, 2013, 29(9): 113-122Zhao HX, Chi SY, Ning TY, Tian SZ, Wang BW, Li ZJ. Covering farming pattern to improve soil physical properties and crop yield in wheat-maize cropping system. Trans CSAE, 2013, 29(9): 113-122 (in Chinese with English abstract)[本文引用:1]
[21]
李少昆, 王克如, 冯聚凯, 谢瑞芝, 高世菊. 玉米秸秆还田与不同耕作方式下影响小麦出苗的因素. 作物学报, 2006, 32: 463-465Li SK, Wang KR, Feng JK, Xie RZ, Gao SJ. Factors affecting seeding emergence in winter wheat under different tillage patterns with maize stalk mulching returned to the field. Acta Agron Sin, 2006, 32: 463-465 (in Chinese with English abstract)[本文引用:2]
[22]
王爱玲, 高旺盛, 黄进勇. 秸秆直接还田的生态效应. 中国农业资源与区化, 2000, 21(2): 41-45Wang AL, Gao WS, Huang JY. Study on the ecological effect of returning stalks into soil with different methods. J China Agric Resour Region Plant, 2000, 21(2): 41-45[本文引用:1]
[23]
赵鹏, 陈阜. 秸秆还田配施化学氮肥对冬小麦氮效率和产量的影响. 作物学报, 2008, 34: 1014-1018ZhaoP, ChenF. Effects of straw mulching plus nitrogen fertilizer on nitrogen efficiency and grain yield in winter wheat. Acta Agron Sin, 2008, 34: 1014-1018 (in Chinese with English abstract)[本文引用:1]
[24]
孙国峰, 张海林, 徐尚起, 崔思远, 汤文光, 陈阜. 轮耕对双季稻田土壤结构及水贮量的影响. 农业工程学报, 2010, 26(9): 66-71Sun GF, Zhang HL, Xu SQ, Cui SY, Tang WG, ChenF. Effects of rotational tillage treatments on soil structure and water storage in double rice cropping region. Trans CSAE, 2010, 26(9): 66-71 (in Chinese with English abstract)[本文引用:1]
[25]
鲁如坤. . 北京: 中国农业科技出版社, 1999. pp 106-195Lu RK. . Beijing: China Agricultural Science and Technology Press, 1999. pp 106-195(in Chinese)[本文引用:1]
[26]
Varela MF, Scianca CM, Taboada MA, RubioG. Cover crop effects on soybean residue decomposition and P release in no-tillage systems of Argentina. Soil Tillage Res, 2014, 143: 59-66[本文引用:1]
[27]
刘世平, 陈文林, 聂新涛, 张洪程, 戴其根, 霍中洋, 许轲. 麦稻两熟地区不同埋深对还田秸秆腐解进程的影响. 植物营养与肥料学报, 2007, 13: 1049-1053Liu SP, Chen WL, Nie XT, Zhang HC, Dai QG, Huo ZY, XuK. Effect of embedding depth on decomposition course of crop residues in rice-wheat system. Plant Nutr Fert Sci, 2007, 13: 1049-1053 (in Chinese with English abstract)[本文引用:1]
[28]
CurtinD, Francis GS. Decomposition rate of cereal straw as affected by soil placement. , 2008, 46: 152-160[本文引用:1]
[29]
张宇, 陈阜, 张海林, 陈继康. 耕作方式对玉米秸秆腐解影响的研究. , 2009, 17(6): 68-73ZhangY, ChenF, Zhang HL, Chen JK. Tillage effects of decomposed ratio on corn straw. , 2009, 17(6): 68-73 (in Chinese with English abstract)[本文引用:1]
[30]
NiklińskaM, MaryasskiM, LaskowskiR. Effect of temperature on humus respiration rate and nitrogen mineralization: implication for global climate change. , 1999, 44: 239-257[本文引用:2]
[31]
Chong SK, Cowsert PT. Infiltration in reclaimed mined land ameliorated with deep tillage treatments. Soil Tillage Res. , 1997, 44: 255-264[本文引用:1]
[32]
李萍, 熊伟, 冯平, 薛会英, 蔡晓布. 秸秆还田对西藏中部退化农田土壤的影响. 土壤, 2004, 36: 685-687LiP, XiongW, FengP, Xue HY, Cai XB. Effect of straw application on degraded soil in central Tibet. Soils, 2004, 36: 685-687 (in Chinese with English abstract)[本文引用:1]
[33]
潘剑玲, 代万安, 尚占环, 郭瑞英. 秸秆还田对土壤有机质和氮素有效性影响及机制研究进展. , 2013, 21: 526-535Pan JL, Dai WA, Shang ZH, Guo RY. Review of research progress on the influence and mechanism of field straw residue incorporation on soil organic matter and nitrogen availability. , 2013, 21: 526-535 (in Chinese with English abstract)[本文引用:1]
[34]
Luo ZK, Wang EL, Sun OsbertJ. Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments. Agric Ecosyst Environ, 2010, 139: 224-231[本文引用:2]
[35]
马祥华, 焦菊英, 温仲明, 白文娟, 焦峰. 黄土丘陵沟壑区退耕地植被恢复中土壤物理特性变化研究. 水土保持研究, 2005, 2(1): 17-21Ma XH, Jiao JY, Wen ZM, Bai WJ, JiaoF. The changes of soil physical properties in aband oned land s during vegetation restoration in hilly and gully regions on the Loess Plateau. Res Soil Water Conserv, 2005, 2(1): 17-21 (in Chinese with English abstract)[本文引用:1]
[36]
McVay KA, Budde JA, FabrizziK, Mikha MM, Rice CW, Schlegel AJ, Peterson DE, Sweeney DW, ThompsonC. Management effects on soil physical properties in long-term tillage studies in Kansas. Soil Sci Soc Am J, 2006, 70: 434-438[本文引用:1]
[37]
Ning TY, HanB, Jiao NY, Tian SZ, Li ZJ. Effects of conservation tillage on soil porosity in maize-wheat cropping system. , 2009, 55: 327-333[本文引用:1]
[38]
ZhangP, WeiT, Jia ZK, Han QF, Ren X L. Soil aggregate and crop yield changes with different rates of straw incorporation in semiarid areas of northwest China. Geoderma, 2014, 230-231: 41-49[本文引用:1]
[39]
李凤博, 牛永志, 高文玲, 刘金根, 卞新民. 耕作方式和秸秆还田对直播稻田土壤理化性质及其产量的影响. 土壤通报, 2008, 39: 549-552Li FB, Niu YZ, Gao WL, Liu JG, Bian XM. Effect of tillage styles and straw return on soil properties and crop yield in direct seeding rice. Chin J Soil Sci, 2008, 39: 549-552 (in Chinese with English abstract)[本文引用:1]
[40]
宫亮, 孙文涛, 王聪翔, 刘艳, 汪仁. 玉米秸秆还田对土壤肥力的影响. , 2008, 16(2): 122-124GongL, Sun WT, Wang CX, LiuY, WangR. Effects of application maize straw on soil physical characteristics and yield. , 2008, 16(2): 122-124 (in Chinese with English abstract)[本文引用:1]
[41]
幕平, 张恩和, 王汉宁, 方永丰. 连续多年秸秆还田对玉米耕层土壤理化性状及微生物量的影响. , 2011, 25(5): 81-85MuP, Zhang EH, Wang HN, Fang YF. Effects of continuous returning straw to maize tilth soil on chemical character and microbial biomass. , 2011, 25(5): 81-85 (in Chinese with English abstract)[本文引用:1]
[42]
潘根兴, 赵其国. 我国农田土壤碳库演变研究: 全球变化和国家粮食安全. 地球科学进展, 2005, 20: 384-393Pan GX, Zhao QG. Study on evolution of organic carbon stock in agricultural soils of China: The challenge of global change and food security. Adv Earth Sci, 2005, 20: 384-393 (in Chinese with English abstract)[本文引用:1]
[43]
丁雪丽, 何红波, 李小波, 白震, 解宏图, 张旭东. 不同供氮水平对玉米秸秆降解初期碳素矿化及微生物量的影响. 土壤通报, 2008, 39: 784-788Ding XL, He HB, Li XB, BaiZ, Xie HT, Zhang XD. Effect of nitrogen level on carbon mineralization and microbial biomass during initial decomposition of maize straw. Chin J Soil Sci, 2008, 39: 784-788 (in Chinese with English abstract)[本文引用:1]
[44]
郑成岩, 崔世明, 王东, 于振文, 张永丽, 石玉. 土壤耕作方式对小麦干物质生产和水分利用效率的影响. 作物学报, 2011, 37: 1432-1440Zheng CY, Cui SM, WangD, Yu ZW, Zhang YL, ShiY. Effects of soil tillage practice on dry matter production and water use efficiency in wheat. Acta Agron Sin, 2011, 37: 1432-1440[本文引用:1]
[45]
秦红灵, 高旺盛, 马月存, 马丽, 尹春梅. 两年免耕后深松对土壤水分的影响. , 2008, 41: 78-85Qin HL, Gao WS, Ma YC, MaL, Yin CM. Effects of subsoiling on soil moisture under no-tillage 2 years later. , 2008, 41: 78-85 (in Chinese with English abstract)[本文引用:1]
[46]
李友军, 吴金芝, 黄明, 姚宇卿, 张灿军, 蔡典雄, 金轲. 不同耕作方式对小麦旗叶光合特性和水分利用效率的影响. 农业工程学报, 2006, 22(12): 44-48Li YJ, Wu JZ, HuangM, Yao YQ, Zhang CJ, Cai DX, JinK. Effects of different tillage systems on photosynthesis characteristics of flag leaf and water use efficiency in winter wheat. Trans CSAE, 2006, 22(12): 44-48 (in Chinese with English abstract)[本文引用:1]
[47]
侯贤清, 贾志宽, 韩清芳, 王维, 丁瑞霞, 聂俊峰, 李永平. 轮耕对宁南旱区冬小麦花后旗叶光合性能及产量的影响. 中国农业科学, 2011, 44: 3108-3117Hou XQ, Jia ZK, Han QF, WangW, Ding RX, Nie JF, Li YP. Effects of rotational tillage on flag leaf photosynthetic characteristics and yield after anthesis of winter wheat in arid areas of southern Ningxia. Sci Agric Sin, 2011, 44: 3108-3177 (in Chinese with English abstract)[本文引用:1]
[48]
王敬国, 林杉, 李保国. 氮循环与中国农业氮管理. 中国农业科学2016, 49: 503-517Wang JG, LinS, Li BG. Nitrogen cycling and management strategies in Chinese agriculture. Sci Agric Sin, 2016, 49: 503-517 (in Chinese with English abstract)[本文引用:1]
[49]
徐国伟, 吴长付, 刘辉, 王志琴, 杨建昌. 秸秆还田与氮肥管理对水稻养分吸收的影响. 农业工程学报, 2007, 23(7): 191-195Xu GW, Wu CF, LiuH, Wang ZQ, Yang JC. Effects of straw residue return and nitrogen management on nutrient absorption of rice. Trans CSAE, 2007, 23(7): 191-195 (in Chinese with English abstract)[本文引用:1]