关键词:麻类作物; ITS; 系统位置; 进化关系 Analysis of Internal Transcribed Spacers (ITS) Sequences and Phylogenetics of Main Bast Fiber Crops ZHANG Li-Lan1,2, WANG Jun1, WAN Xue-Bei1,2, XU Yi1,2, ZHANG Lie-Mei1, FANG Ping-Ping1, QI Jian-Min1,*, ZHANG Li-Wu1,2,* 1 College of Crop Science / Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops of Ministry of Education / Fujian Key Laboratory for Crop Breeding by Design
2 Center for Genomics and Biotechnology of Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
Fund:This study was supported by the Doctoral Program of Higher Education of China (20133515120002), the Introduction Breeding and Varieties Demonstration of Featured Crops between China and Benin (2015I0001), the Distinguished Young Research Fund in Fujian Agriculture and Forestry University (xjq201401), the China Agriculture Research System (nycytx-19-E06), the Experiment Station of Jute and Kenaf in Southeast China (Nongkejiaofa 2011), and the Undergraduate Innovation Training Program in Fujian Agriculture and Forestry University. AbstractSequences comparison of ribosomal internal transcribed spacer (ITS) could provide evidence for the systematic classification and evolutionary relationships of main bast fiber crops and other species. In this study, the ITS sequences of 32 main bast fiber crops and 11 other species with reference genome sequences were obtained from cloning or GenBank database. The whole gene length, G+C content, and the difference of homologous percentage were analysed using MEGE software. The ITS average lengths of sequences from jute ( Corchorus), kenaf ( Hibiscus), ramie ( Boehmeria nivea) and flax ( Linum usitatissimum) were 963, 939, 658, and 686 bp, respectively. And the corresponding G+C contents were 57.87%, 58.03%, 59.05%, and 53.75%, respectively. The variation of jute ( Corchorus) concentrated on a region of 220 to 386 bp, kenaf ( Hibiscus) on two regions of 206 to 347 bp and 599 to 713 bp, ramie ( Boehmeria nivea) on four regions of 158 to 163 bp, 193 to 199 bp, 288 to 333 bp, and 681to 688 bp, and flax ( Linum usitatissimum) on five regions of 219 to 229 bp, 235 to 240 bp, 427 to 432 bp, 468 to 484 bp, and 588 to 594 bp. Phylogenetic analysis showed that jute and kenaf shared a relatively close genetic relationship while the others had a far genetic relationship, which is consistent with the relationship of traditional species classification in systematic botany. In study of comparative genomics, the genome sequecne of cotton might be regarded as a reference for kenaf or jute, and the genome sequence of Populus trichocarpa or Ricinus communis might be regarded as a reference for ramie. We deduced that the evolutionary time of kenaf, jute, ramie and flax could be roughly estimated as 33.7, 65.3, 67.5, and 90.5 million years ago, respectively, showing the longer evolution time the more variation regions of ITS in different species of bast fiber crops in the same genus.
Keyword:Bast fiber crop; ITS; Systematic classification; Evolution relationship Show Figures Show Figures
表1 主要麻类作物与相关测序植物的ITS长度及GC含量变异 Table 1 ITS sequence length and GC contents (bp, %) in main bast fiber crops and related species with reference genome sequences
编号 No.
材料名称 Material name
GenBank ID
ITS1 GC
5.8S GC
ITS2 GC
ITS GC
1
圆果种黄麻 Corchorus capsularis
—
275/60.36
162/54.94
230/60.87
957/57.78
2
长果种黄麻Corchorus olitorius
—
279/63.08
162/54.94
233/62.66
958/59.19
3
假长果种 Corchorus pseudo-olitorius
FJ527602.1
275/60.00
163/54.60
232/58.19
964/57.05
4
三室种Corchorus trilocularis
FJ527601.1
275/60.00
162/54.94
235/62.55
964/58.09
5
假黄麻Corchorus aestuans
FJ527605.1
278/60.79
163/55.21
223/61.43
958/58.14
6
梭状种Corchorus fascicularis
FJ527600.1
277/59.93
162/54.94
237/59.49
970/57.32
7
Corchorus siliquosus
FJ527604.1
281/60.50
162/54.94
238/60.92
975/57.85
8
三齿种Corchorus tridens
FJ527603.1
275/59.27
162/54.94
231/61.04
958/57.52
9
陆地棉Gossypium hirsutum
HQ658359.1
—
—
—
705/60.28
10
雷蒙德氏棉Gossypium raimondii
U12718.1
293/60.41
164/54.88
210/61.43
682/59.53
11
黄槐Hibiscus surattensis
FJ527609.1
252/61.11
162/54.32
227/64.76
932/58.91
12
木槿 Hibiscus radiatus
FJ527606.1
252/60.71
163/53.99
227/64.32
940/58.30
13
红叶槿Hibiscus acetosella
FJ621494.1
257/60.31
163/54.60
227/62.56
939/58.36
14
红麻Hibiscus cannabinus
—
258/58.91
163/54.60
230/63.04
941/58.13
15
H. sabdariffavar.sabdariffa
FJ527608.1
252/57.14
162/54.32
227/62.56
939/57.40
16
变种玫瑰茄Hibiscus sabdariffavar. altissima
JQ609255.1
253/58.10
163/52.76
197/61.93
942/57.11
17
拟南芥Arabidopsis thaliana
DQ528813.1
271/56.46
156/54.49
167/57.49
594/56.23
18
麻疯树Jatropha curcas
EU700458.1
278/65.83
164/56.10
205/68.78
647/64.30
19
蓖麻Ricinus communis
AY918198.1
252/62.30
164/54.27
214/58.88
742/57.82
20
杨树Populus trichocarpa
JQ898636.1
—
—
—
654/65.14
21
苎麻Boehmeria nivea
EU747115.1
215/52.56
163/55.83
233/60.94
704/55.97
22
青叶苎麻Boehmeria niveavar. tenacissima
DQ813303.1
217/53
161/55.9
233/60.94
801/56.05
23
大叶苎麻Boehmeria longispica
KF137809.1
165/60.61
157/50.32
220/66.82
603/60.36
24
细野麻Boehmeria gracilis
KF835859.1
—
—
—
628/59.55
25
悬铃叶苎麻Boehmeria tricuspis
KF137821.1
166/60.24
157/50.32
220/66.36
636/59.59
26
赤麻 Boehmeria silvestrii
FJ750380.1
165/60.61
176/52.84
230/66.09
571/60.42
27
长叶苎麻Boehmeria penduliflora
KF137816.1
163/61.35
157/50.32
223/68.16
682/59.68
28
束序苎麻Boehmeria siamensis
FJ980384.1
—
—
—
656/58.84
29
帚序苎麻Boehmeria zollingerianavar. blinii
KF137824.1
162/61.73
157/50.32
224/67.41
683/59.44
30
密球苎麻Boehmeria densiglomerata
KF835868.1
—
—
—
623/60.19
31
滇黔苎麻Boehmeria pseudotricuspis
KF835880.1
—
—
—
623/59.71
32
阴地苎麻Boehmeria umbrosa
KF137822.1
162/61.11
157/50.32
310/64.19
681/58.74
33
大豆Glycine max
EF517917.1
227/59.91
164/54.27
204/58.82
619/57.67
34
蒺藜苜蓿Medicago truncatula
DQ311983.1
237/49.37
164/50.61
215/47.44
732/48.97
35
可可Theobroma cacao
JQ228377.1
426/60.09
138/57.97
201/56.22
765/56.49
36
大麻 Cannabis sativaL.
KM586391.1
215/58.14
163/55.21
209/59.33
606/57.59
37
野亚麻Linum stelleroides
FJ169516.1
—
—
—
622/54.02
38
亚麻Linum usitatissimum
EU307117.1
213/56.81
169/51.48
205/60.00
687/53.99
39
宿根亚麻Linum perenne
FJ169524.1
—
—
—
632/54.11
40
短柱亚麻 Linum pallescens
FJ169521.1
—
—
—
628/52.87
41
蕉麻Musa textilisNee
JF977097.1
—
—
—
599/65.11
42
葡萄 Vitis vinifera
KF544886.1
—
—
—
747/61.45
43
水稻 Oryza sativa
KF761391.1
—
—
—
566/47.00
表1 主要麻类作物与相关测序植物的ITS长度及GC含量变异 Table 1 ITS sequence length and GC contents (bp, %) in main bast fiber crops and related species with reference genome sequences
图3 基于ITS序列构建系统进化树(植物名称的编号见表1)Fig. 3 Systematic classification of bast fiber crops based on sequences of ITS (the number for plant name corresponds with that given in Table 1)
熊和平. 麻类作物育种学. 北京: 中国农业科学技术出版社, 2008Xiong H P. Beijing: China Agricultural Scientific and Technical Publishers, 2008 (in Chinese with English abstract)[本文引用:2]
[2]
粟建光. 我国麻类资源的多样性及其保护利用对策. , 2002, 3(3): 41-46Su JG. Strategies for protection and sustainable utilization of genetic diversity of bast fiber crops in China. , 2002, 3(3): 41-46 (in Chinese with English abstract)[本文引用:3]
[3]
陶爱芬, 祁建民, 李木兰, 方平平, 林荔辉, 徐建堂. SRAP结合ISSR方法分析黄麻属的起源与演化. , 2012, 45: 16-25Tao AF, Qi JM, Li ML, Fang PP, Lin LH, Xu JT. SRAP combined with ISSR method to analyze the origin and evolution of Corchorus. , 2012, 45: 16-25 (in Chinese with English abstract)[本文引用:2]
[4]
Zhang LW, Li AQ, Wang XF, Xu JT, Zhang GQ, Su JG, Qi JM, Guan CY. Genetic diversity of kenaf( Hibiscus cannabinus) evaluated by inter-simple sequence repeat (ISSR). , 51: 800-810[本文引用:2]
[5]
张波, 郑长清, 赵立宁, 臧巩固. 中国苎麻近缘野生种的种类、分布与评价. , 1998, (4): 1-2ZhangB, Zheng CQ, Zhao LN, Zang GG. Species, distribution and evaluation of wild species of ramie in China. , 1998, (4): 1-2 (in Chinese with English abstract)[本文引用:2]
[6]
史全良, 赵卫国. 桑树ITS序列测定及特点的初步分析. , 2001, 27: 140-141Shi QL, Zhao WG. Preliminary study on ITS sequence in gand characteristics of mulberry. , 2001, 27: 140-142 (in Chinese with English abstract)[本文引用:2]
[7]
陈仁芳, 余茂德, 刘秀群, 陈龙清. 桑种质资源ITS序列与系统进化分析. , 2010, 43: 1771-1781Chen RF, Yu MD, Liu XQ, Chen LQ. Analysis on the internal transcribed spacers (ITS) sequences and phylogenetics of mulberry (, 2010, 43: 1771-1781 (in Chinese with English abstract)[本文引用:2]
[8]
Wu CC, Wang SJ, Zhang HB. Interactions among genomic structure, function, and evolution revealed by comprehensive analysis of the Arabidopsis thaliana genome. , 2006, 88: 394-406[本文引用:1]
[9]
Li FG, Fan GY, Lu CR, Xiao GH, Zou CS, Kohel RussellJ, Ma ZY, Shang HH, Ma XF, Wu JY, Liang XM, HuangG, Percy RG, LiuK, Yang WH, Chen WB, Du XM, Shi CC, Yuan YL, Ye WW, LiuX, Zhang XY, Liu WQ, Wei HL, Wei SJ, Huang GD, Zhang XL, Zhu SJ, ZhangH, Sun FM, Wang XF, LiangJ, Wang JH, HeQ, Huang LH, WangJ, Cui JJ, Song GL, Wang KB, XuX, Yu JZ, Zhu YX, Yu SX. Genome sequence of cultivated Upland cotton ( Gossypium hirsutum TM-1) provides insights into genome evolution. , 2015, 33: 524-530[本文引用:1]
[10]
Wang KB, Wang ZW, Li FG, Ye WW, Wang JY, Song GL, YueZ, CongL, Shang HH, Zhu SL, Zou CS, LiQ, Yuan YL, Lu CR, Wei HL, Gou CY, Zheng ZQ, YinY, Zhang XY, LiuK, WangB, SongC, ShiN, Kohel RJ, Percy RG, Yu JZ, Zhu YX, WangJ, Yu SX. The draft genome of a diploid cotton Gossypium raimondii. , 2012, 44: 1098-1103[本文引用:3]
[11]
Wullschleger SD, Weston DJ, Difazio SP, Tuskan GA. Revisiting the sequencing of the first tree genome: Populus trichocarpa. , 2012, 33: 357-364[本文引用:1]
[12]
Couch JA, Zintel HA, Fritz PJ. The genome of the tropical tree Theobroma cacao L. , 1993, 237: 123-128[本文引用:1]
KrishnakumarV, KimM, Rosen BD, KaramychevaS, Bidwell SL, TangH, Town CD. MTGD: The Medicago truncatula genome database. , 2015, 56: e1[本文引用:1]
[15]
SatoS, HirakawaH, IsobeS, FukaiE, WatanabeA, KatoM, KawashimaK, MinamiC, MurakiA, NakazakiN, TakahashiC, NakayamaS, KishidaY, KoharaM, YamadaM, TsuruokaH, SasamotoSi, TabataS, AizuT, ToyodaA, Shin-i T, Minakuchi Y, Kohara Y, Fujiyama A, Tsuchimoto S, Kajiyama S, Makigano E, Ohmido N, Shibagaki N, Cartagena J A, Wada N, Kohinata T. Sequence analysis of the genome of an oil-bearing tree ( Jatropha curcas L. ). , 2010, 18: 65-76[本文引用:1]
[16]
Chan AP, CrabtreeJ, ZhaoQ, LorenziH, OrvisJ, PuiuD, Melake-BerhanA, Jones KM, RedmanJ, ChenG, Cahoon EB, GedilM, StankeM, Haas BJ, Wortman JR, Fraser-Liggett C M, Ravel J, Rabinowicz P D. Draft genome sequence of the oilseed species, 2010, 28: 951-966[本文引用:2]
[17]
Cunff LL, Fournier-LevelA, LaucouV, VezzulliS, LacombeT, Adam-Blondon A F, Boursiquot J M, This P. Construction of nested genetic core collections to optimize the exploitation of natural diversity in, 2008, 8: 31[本文引用:1]
[18]
YuJ, Hu SN, WangJ, Wong Gane Ka-Shu, Li S G, Liu B, Deng Y J, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Huang X, Li W, Li J, Liu Z, Li L, Liu J, Qi Q, Liu J, Li L, Li T, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu Z, Zhang J, He S, Zhang J, Xu J, Zhang K, Zheng X, Dong J, Zeng W, Tao L, Ye J, Tan J, Ren X, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Wang J, Zhao W, Li P, Chen W, Wang X, Zhang Y, Hu J, Wang J, Liu S, Yang J, Zhang G, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R, Hao B, Zheng W, Chen S, Guo W, Li G, Liu S, Tao M, Wang J, Zhu L, Yuan L, Yang H. A draft sequence of the rice genome ( Oryza sativa L. ssp. , 2002, 296: 79-92[本文引用:1]
[19]
张立武, 袁民航, 何雄威, 刘星, 方平平, 林荔辉, 陶爱芬, 徐建堂, 祁建民. GenBank数据库中黄麻EST-SSR标记的开发及其通用性评价. , 2014, 40: 1213-1219Zhang LW, Yuan MH, He XW, LiuX, Fang PP, Lin LH, Tao AF, Xu JT, Qi JM. Development and universality evaluation of EST-SSR markers from GenBank in jute. , 2014, 40: 1213-1219 (in Chinese with English abstract)[本文引用:1]
[20]
Thompson JD, Gibson TJ, Higgins D G. Multiple sequence alignment using ClustalW and ClustalX. , 2002, Chapter 2: 2. 3. 1-2. 3. 22[本文引用:1]
ChenP, Ran SM, LiR, Huang ZP, Qian JH, Yu ML, Zhou RY. Transcriptome de novo assembly and differentially expressed genes related to cytoplasmic male sterility in kenaf ( Hibiscus cannabinus L. ). , 2014, 34: 1879-1891[本文引用:1]
[23]
Zhang LW, Wan XB, Xu JT, Lin LH, Qi JM. De novo assembly of kenaf ( Hibiscus cannabinus) transcriptome using Illumina sequencing for gene discovery and marker identification. , 2015, 35: 192-202[本文引用:1]
[24]
LiuT, Tang SW, Zhu SY, Tang QM, ZhengX. Transcriptome comparison reveals the patterns of selection in domesticated and wild ramie ( Boehmeria nivea L. Gaud). , 2014, 86: 85-92[本文引用:1]
[25]
ChenJ, YuR, LiuL, WangB, PengD. Large-scale developing of simple sequence repeat markers and probing its correlation with ramie ( Boehmeria nivea L. ) fiber quality. , 2016, 291: 1-9[本文引用:1]
[26]
祁建民, 李维明, 吴为人. 黄麻的起源与进化研究. , 1997, 23: 677-682Qi JM, Li WM, Wu WR. Study on the origin and evolution of jute. , 1997, 23: 677-682 (in Chinese with English abstract)[本文引用:1]
[27]
Zhang LW, MingR, ZhangJ, Tao AF, Fang PP, Qi JM. De novo transcriptome sequence and identification of major bast-related genes involved in cellulose biosynthesis in jute ( Corchorus capsularis L. ). , 2015, 16: 1062-1074[本文引用:1]
[28]
吴建忠, 赵东升, 黄文功, 刘岩, 于莹, 姜卫东, 赵茜, 康庆华, 程莉莉, 袁红梅, 吴广文, 关凤芝. 12个亚麻品种亲缘关系的SRAP分析. , 2012, (4): 153-156Wu JZ, Zhao DS, Huang WG, LiuY, YuY, Jiang WD, ZhaoQ, Kang QH, Cheng LL, Yuan HM, Wu GW, Guan FZ. Genetic relationship analysis of 12 flax cultivars with SRAP marker. , 2012, (4): 153-156 (in Chinese with English abstract)[本文引用:1]
[29]
ZhangL, WanX, XuJ, LinL, QiJ. De novo assembly of kenaf ( Hibiscus cannabinus) transcriptome using Illumina sequencing for gene discovery and marker identification. , 2015, 35: 192-202[本文引用:1]
[30]
BiswasC, DeyP, Karmakar PG, SatpathyS. Discovery of large-scale SNP markers and construction of linkage map in a RIL population of jute ( Corchorus capsularis). , 2015, 35: 1-10[本文引用:1]
[31]
KunduA, ChakrabortyA, Mand al NA, DasD, Karmakar PG, Singh NK, SarkarD. A restriction-site-associated DNA (RAD) linkage map, comparative genomics and identification of QTL for histological fibre content coincident with those for retted bast fibre yield and its major components in jute ( Corchorus olitorius L. , Malvaceae s. l. ). , 2015, 35: 1-17[本文引用:1]
[32]
KunduA, TopdarN, SarkarD, Sinha MK, GhoshA, BanerjeeS, DasM, Balyan HS, Mahapatra BS, Gupta PK. Origins of white ( Corchorus capsularis L. ) and dark( C. olitorius L. ) jute: a reevaluation based on nuclear and chloroplast microsatellites. , 2013, 22: 372-381[本文引用:1]
[33]
ChenJ, PeiZ, DaiL, WangB, LiuL, AnX, PengD. Transcriptome profiling using pyrosequencing shows genes associated with bast fiber development in ramie ( Boehmeria nivea L. ). , 2014, 15: 919[本文引用:1]
[34]
LiuT, ZhuS, TangQ, PingC, YuY, TangS. De novo assembly and characterization of transcriptome using Illumina paired-end sequencing and identification of CesA gene in ramie ( Boehmeria nivea L. Gaud). , 2013, 14: 125[本文引用:1]
陈晓蓉, 潘其辉, 龚秋林, 王富强, 雷雪芳, 谭陈菊, 龚礼萍, 张萍, 刘齐元. 基于苎麻属野生近缘种形态变异类型的系统关系研究. , 2014, (5): 217-223Chen XR, Pan QH, Gong QL, Wang FQ, Lei XF, Tan CJ, Gong LP, ZhangP, Liu QY. Systematic relationship on morphological variation types of wild relative species of Boehmeria. , 2014, (5): 217-223 (in Chinese with English abstract)[本文引用:1]
[37]
张波, 赵立宁, 臧巩固, 郑长清, 熊和平. 中国苎麻属植物野生种考察报告. , 1995, (4): 1-6ZhangB, Zhao LN, Zang GG, Zheng CQ, Xiong HP. Investigation report on wild species of ramie in China. , 1995, (4): 1-6 (in Chinese with English abstract)[本文引用:1]
[38]
潘其辉, 高海军, 龚秋林, 陈勇玲, 陈晓蓉, 欧阳爱平, 刘上信, 刘灵燕. 中国苎麻属野生种资源多样性保护现状与对策. , 2012, (6): 153-156Pan QH, Gao HJ, Gong QL, Chen YL, Chen XR, Ou-Yang A P, Liu S X, Liu L Y. Conservation status and Countermeasures of wild species resources of ramie in China. , 2012, (6): 153-156 (in Chinese with English abstract)[本文引用:1]
[39]
YuR, Baloch SU, LiuL, PanQ, GongS, ZhongX, WangB, PengD. The phylogenetic relationships among germplasm resources of wild ramie ( Boehmeria nivea L. Gaud) in China based on trnL-F and its sequences. , 2015, 47: 1451-1457[本文引用:2]
[40]
Van BH, Stout JM, Cote AG, Tallon CM, Sharpe AG, Hughes TR, Page JE. The draft genome and transcriptome of Cannabis sativa. , 2011, 12: R102[本文引用:2]
[41]
WangZ, HobsonN, GalindoL, ZhuS, ShiD, McDill J, Yang L, Hawkins S, Neutelings G, Datla R, Lambert G, Galbraith D W, Grassa C J, Geraldes A, Cronk Q C, Cullis C, Dash P K, Kumar P A, Cloutier S, Sharpe A, Wong G, Wang J, Deyholos M K. The genome of flax ( Linum usitatissimum) assembled de novo from short shotgun sequence reads. , 2012, 72: 461-473[本文引用:2]