摘要以籼粳交超级稻甬优12和甬优15为试材, 比较研究了不同硅肥施用量(0、75、150、225、300 kg hm-2)对甬优籼粳交超级稻产量及其形态生理特征的影响。结果表明: (1)甬优12和甬优15产量均随硅肥施用量的增加呈先增加后降低的趋势, 且均以硅肥用量225 kg hm-2处理的产量最高。产量构成因素穗数随硅肥施用量增加而递增, 结实率和千粒重则随之递减。(2)甬优12和甬优15在拔节、抽穗和成熟期的茎蘖数均随硅肥施用量的增加而增加, 茎蘖成穗率则呈先增加后降低的趋势, 以225 kg hm-2处理最高。(3)与对照(0 kg hm-2)相比, 施硅处理显著增加了拔节、抽穗和成熟期的干物重和叶面积指数, 拔节至抽穗期、抽穗至成熟期的干物质积累量和光合势也随硅肥施用量增加而递增。(4)随硅肥施用量的增加, 倒一、倒二、倒三叶的叶长和叶宽随之递增, 倒一、倒二、倒三叶的叶基角和披垂度随之递减。此外, 与对照(0 kg hm-2)相比, 施硅处理显著提高了茎、鞘干重及单位节间干重。文章还讨论了甬优籼粳交超级稻硅肥高效施用技术。
关键词:硅; 甬优籼粳交超级稻; 产量; 产量形成特征 Effects of Silicon Fertilizer Rate on Grain Yield and Related morphological and Physiological Characteristics in Super Rice of Yongyou Japonica/ indica Hybrids Series WEI Huan-He1, MENG Tian-Yao1, LI Chao1, ZHANG Hong-Cheng1,*, SHI Tian-Yu1, MA Rong-Rong2, WANG Xiao-Yan3, YANG Jun-Wen4, DAI Qi-Gen1,*, HUO Zhong-Yang1, XU Ke1, WEI Hai-Yan1, GUO Bao-Wei1 1 Innovation Center of Rice Cultivation Technology in Yangtze River Valley, Ministry of Agriculture / Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
2 Crop Research Institute, Ningbo Academy of Agricultural Sciences of Zhejiang Province, Ningbo 315101, China
3Ningbo Seed Company of Zhejiang Province, Ningbo 315101, China
4Agricultural Technology Extension and Service, Yinzhou District, Ningbo City, Zhejiang Province, Ningbo 315100, China
Fund:This research was supported by the Special Program of Super Rice of the Ministry of Agricultural (02318802013231), China Special Fund for Agro-scientific Research in the Public Interest (201303102), the Great Technology Project of Ningbo City (2013C11001), the Key Projects of Jiangsu Province (BE2015340) and Innovative Training Program for Jiangsu University (KYLX15_1371) AbstractA field experiment was conducted using Yongyou 12 and Yongyou 15 with five treatments of 0, 75, 150, 225, and 300 kg ha-1 silicon application. Results indicated that grain yield of Yongyou 12 and Yongyou 15 increased firstly and then decreased with increase of the silicon application rate. The highest grain yield of both Yongyou 12 and Yongyou 15 achieved at the silicon rate of 225 kg ha-1. Analysis on yield components showed that number of panicles of Yongyou 12 and Yongyou 15 increased with the increase of silicon application rate, while 1000-grain weight and seed-setting rate were both decreased with the increased silicon application rate. With the increase of silicon application rate, number of tillers and stems of Yongyou 12 and Yongyou 15 at jointing, heading, and maturity stages increased synchronously. Panicle rate of Yongyou 12 and Yongyou 15 increased firstly and then decreased with the increase of silicon application rate, and the peak value was at the silicon rate of 225 kg ha-1. With the increase of silicon application rate, dry matter weight and leaf area index at jointing, heading, and maturity stages as well as dry matter accumulation and leaf area duration from jointing to heading and from heading to maturity increased. With the increase of silicon application rate, leaf length and leaf width of the 1st leaf, 2nd leaf, and 3rd leaf of Yongyou 12 and Yongyou 15 increased synchronously, while leaf basal angle and dropping angle of the 1st leaf, 2nd leaf, and 3rd leaf of Yongyou 12 and Yongyou 15 decreased synchronously. Moreover, compared with check (0 kg ha-1), silicon application significantly increased dry matter per stem, per sheath, and per length of stem. At last, the technology on the effective application of silicon was discussed.
Keyword:Silicon; Super rice of Yongyou japonica/indica hybrids series; Grain yield; Characteristics of yield formation Show Figures Show Figures
表3 产量及其构成因素 Table 3 Grain yield and its components of the tested variety
品种 Variety
硅肥处理 Treatment (kg hm-2)
穗数 No. of panicles (× 104 hm-2)
每穗粒数 Spikelets per panicle
颖花量 Total spikelets (× 104 hm-2)
结实率 Seed-setting rate (%)
千粒重 1000-grain weight (g)
实际产量 Actual yield (t hm-2)
增产率 Yield increased (%)
2012
甬优12 Yongyou 12
0
168.6 c
351.1 c
59195.5 d
88.3 a
23.3 a
11.5 d
—
75
178.7 b
362.9 b
64832.1 c
87.6 a
23.1 a
12.1 c
5.5
150
185.3 b
368.5 a
68264.6 b
87.3 a
22.9 a
12.3 b
6.7
225
190.1 a
372.7 a
70831.6 a
87.0 b
22.8 a
12.6 a
9.3
300
191.0 a
364.1 ab
69524.9 a
86.4 c
22.8 b
12.6 a
9.2
甬优15 Yongyou 15
0
157.7 d
346.4 d
54610.0 d
87.5 a
25.4 a
11.2 d
—
75
173.6 c
357.2 b
61992.1 c
86.8 b
25.3 a
11.8 c
5.8
150
179.1 b
351.7 c
62989.5 b
86.3 b
25.1 a
12.0 b
7.2
225
184.1 a
355.9 b
65503.4 ab
86.1 b
24.9 ab
12.3 a
9.8
300
182.7 a
362.2 a
66173.9 a
85.6 c
24.7 b
12.1 b
8.6
2013
甬优12 Yongyou 12
0
178.7 c
356.3 c
63653.0 d
87.7 a
23.1 a
11.7 c
—
75
191.9 b
370.4 a
71061.2 c
87.1 a
22.9 a
12.1 b
3.1
150
194.0 a
364.9 b
70772.4 b
86.7 ab
22.8 a
12.3 b
5.6
225
199.1 a
369.3 a
73509.2 a
86.3 ab
22.6 a
12.7 a
8.9
300
199.2 a
374.3 a
74560.6 a
85.6 b
22.4 b
12.6 a
8.2
甬优15 Yongyou 15
0
168.5 d
344.6 b
58047.9 d
86.4 a
25.3 a
11.5 d
—
75
179.7 c
350.9 a
63056.7 c
85.8 a
25.1 a
12.1 c
5.1
150
182.6 b
347.3 a
63399.6 b
85.4 ab
24.9 a
12.2 c
6.2
225
187.4 a
352.8 a
66097.1 a
85.2 ab
24.8 b
12.6 a
9.4
300
188.0 a
348.4 a
65481.8 a
84.8 b
24.6 b
12.4 b
8.0
Values followed by different letters are significantly different at the 5% probability level in the same variety under the same year. 标以不同字母的值在同一年份同一品种5%水平差异显著。
表3 产量及其构成因素 Table 3 Grain yield and its components of the tested variety
2.2 茎蘖动态及成穗率甬优12和甬优15在拔节期、抽穗期和成熟期各处理的茎蘖数均随硅用量的增加而递增。茎蘖成穗率随硅用量的增加呈先增加后降低的趋势, 以硅用量225 kg hm-2为拐点(表4)。 表4 Table 4 表4(Table 4)
表4 关键生育时期的茎蘖数和成穗率 Table 4 Number of tillers at the main growth stages and the panicle rate
品种 Variety
硅肥处理 Treatment (kg hm-2)
茎蘖数 Number of tillers and stems (× 104 hm-2)
成穗率 Panicle rate (%)
拔节期 Jointing stage
抽穗期 Heading stage
成熟期 Maturity stage
2012
甬优12 Yongyou 12
0
265.1 c
172.1 b
168.6 c
63.6 c
75
268.9 c
182.4 ab
178.7 b
66.4 b
150
270.7 b
188.9 a
185.3 b
68.4 ab
225
275.5 a
193.8 a
190.1 a
69.0 a
300
276.3 a
194.4 a
191.0 a
69.1 a
甬优15 Yongyou 15
0
249.4 b
161.1 d
157.7 d
63.2 d
75
257.4 ab
177.0 c
173.6 c
67.4 c
150
258.4 b
182.5 b
179.1 b
69.3 b
225
258.8 b
187.4 a
184.1 a
71.1 a
300
262.6 a
185.9 b
182.7 a
69.6 b
2013
甬优12 Yongyou 12
0
280.7 b
182.1 b
178.7 c
63.7 c
75
286.0 ab
195.0 ab
191.9 b
67.1 b
150
286.6 ab
197.4 a
194.0 a
67.7 b
225
291.4 a
202.4 a
199.1 a
68.3 a
300
292.4 a
202.5 a
199.2 a
68.1 a
甬优15 Yongyou 15
0
265.5 b
171.7 c
168.5 d
63.5 c
75
273.9 ab
183.2 b
179.7 c
65.6 bc
150
274.7 a
185.7 ab
182.6 b
66.5 b
225
275.1 a
190.8 a
187.4 a
68.1 a
300
278.9 a
191.3 a
188.0 a
67.4 b
Values followed by different letters are significantly different at the 5% probability level in the same variety under the same year. 标以不同字母的值在同一年份同一品种5%水平差异显著。
表4 关键生育时期的茎蘖数和成穗率 Table 4 Number of tillers at the main growth stages and the panicle rate
2.3 主要生育时期干物重及阶段积累量由表5可知, 施硅处理显著增加了拔节期、抽穗期和成熟期的干物重, 如甬优12施硅处理225 kg hm-2在拔节期、抽穗期和成熟期的干物重分别较对照(0 kg hm-2)高6.9%、5.7%和7.9%。就阶段干物重积累量而言, 甬优12拔节至抽穗期以硅用量225 kg hm-2处理最高, 甬优15则以硅用量300 kg hm-2处理最高。甬优12和甬优15抽穗至成熟期的干物重积累量均以硅用量225 kg hm-2处理最高(表5)。 表5 Table 5 表5(Table 5)
表5 关键生育时期的干物重及阶段干物重积累量 Table 5 Dry matter weight and dry matter accumulation at the main growth stages
品种 Variety
硅肥处理 Treatment (kg hm-2)
干物重 Dry matter weight (t hm-2)
干物重积累量 Dry matter accumulation (t hm-2)
收获指数 Harvest index
拔节期 Jointing stage
抽穗期 Heading stage
成熟期 Maturity stage
拔节至抽穗期 Jointing to heading
抽穗至成熟期 Heading to maturity
甬优12 Yongyou 12
0
5.36 c
11.46 d
19.90 c
6.11 c
8.43 d
0.4994 a
75
5.49 b
11.77 c
20.74 b
6.28 b
8.97 c
0.4941 a
150
5.59 b
12.01 b
21.19 a
6.42 a
9.18 c
0.4950 a
225
5.79 a
12.16 a
21.64 a
6.37 a
9.49 a
0.4998 a
300
5.93 a
12.23 a
21.62 a
6.30 b
9.39 b
0.4971 a
甬优15 Yongyou 15
0
4.83 d
11.38 d
19.78 d
6.55 c
8.40 c
0.4931 a
75
5.10 c
11.60 c
20.37 c
6.49 c
8.78 b
0.5039 a
150
5.27 b
11.95 b
20.83 b
6.68 b
8.88 b
0.4976 a
225
5.52 a
12.21 b
21.33 a
6.69 b
9.12 a
0.5010 a
300
5.66 a
12.53 a
21.60 a
6.87 a
9.07 a
0.4983 a
Values followed by different letters are significantly different at the 5% probability level in the same variety. 标以不同字母的值在同一品种5%水平差异显著。
表5 关键生育时期的干物重及阶段干物重积累量 Table 5 Dry matter weight and dry matter accumulation at the main growth stages
2.4 主要生育时期叶面积指数和光合势与对照(0 kg hm-2)相比, 施硅处理显著增加了拔节期、抽穗期和成熟期的叶面积指数, 甬优12施硅处理225 kg hm-2在拔节期、抽穗期和成熟期的叶面积指数分别较对照高15.1%、7.5%和9.5%。与对照(0 kg hm-2)相比, 施硅处理也增加了拔节至抽穗期、抽穗至成熟期的光合势, 差异显著(表6)。 表6 Table 6 表6(Table 6)
表6 关键生育时期的叶面积指数和阶段光合势 Table 6 Leaf area index and leaf area duration at the main stages
品种 Variety
硅肥处理 Treatment (kg hm-2)
叶面积指数 Leaf area index
光合势 Leaf area duration (m2 d hm-2)
拔节期 Jointing stage
抽穗期 Heading stage
成熟期 Maturity stage
拔节至抽穗期 Jointing to heading
抽穗至成熟期 Heading to maturity
甬优12 Yongyou 12
0
4.5 d
7.4 c
3.8 c
241.0 c
414.4 c
75
4.9 c
7.7 b
4.1 b
255.2 b
436.6 b
150
5.2 b
7.8 b
4.2 ab
263.3 ab
444.0 ab
225
5.3 b
8.0 ab
4.2 ab
269.3 b
451.4 a
300
5.5 a
8.1 a
4.3 a
275.4 a
458.8 a
甬优15 Yongyou 15
0
4.3 b
7.6 c
3.6 b
235.0 c
386.4 c
75
4.7 ab
7.9 b
3.8 a
248.9 c
403.7 b
150
5.0 a
8.1 ab
3.8 a
258.7 b
410.6 b
225
5.2 a
8.4 a
3.9 a
268.6 b
424.4 a
300
5.4 a
8.5 a
3.9 a
274.5 a
427.8 a
Values followed by different letters are significantly different at the 5% probability level in the same variety. 标以不同字母的值在同一品种5%水平差异显著。
表6 关键生育时期的叶面积指数和阶段光合势 Table 6 Leaf area index and leaf area duration at the main stages
4 结论施硅处理使甬优12增产3.1%~9.3%, 甬优15增产在5.1%~9.8%, 均以硅肥用量225 kg hm-2处理下的产量最高。施硅处理显著增加了主要生育时期的干物重和叶面积指数, 以及主要生育阶段的干物质积累量和光合势, 且改善了植株受光姿态, 提高了茎秆抗折力。 The authors have declared that no competing interests exist.
作者已声明无竞争性利益关系。The authors have declared that no competing interests exist.
YsujimotoY, MuranakaS, SaitoK, AsaiH. Limited Si-nutrient status of rice plants in relation to plant-available Si of soils, nitrogen fertilizer application, and rice-growing environments across Sub-Saharan Africa. Field Crops Res, 2014, 155: 1-9[本文引用:1]
[2]
陈伟, 蔡昆争, 陈基宁. 硅和干旱胁迫对水稻叶片光合特性和矿质养分吸收的影响. 生态学报, 2012, 32: 2620-2628ChenW, Cai KZ, Chen JN. Effects of silicon application and drought stress on photosynthetic traits and mineral nutrient absorption of rice leaves. Acta Ecol Sin, 2012, 32: 2620-2628 (in Chinese with English abstract)[本文引用:1]
[3]
陈健晓, 屠乃美, 易镇邪, 朱红林. 硅肥对超级早稻茎叶形态与抗倒伏特性的影响. 作物研究, 2011, 25: 209-212Chen JX, Tu NM, Yi ZX, Zhu HL. Effects of silicon fertilizer on morphology of stem and leaves and lodging resistance in early super hybrid rice. Crop Res, 2011, 25: 209-212 (in Chinese with English abstract)[本文引用:2]
[4]
商全玉, 张文忠, 韩亚东, 荣蓉, 徐海, 徐正进, 陈温福. 硅肥对北方粳稻产量和品质的影响. 中国水稻科学, 2009, 23: 661-664Shang QY, Zhang WZ, Han YD, RongR, XuH, Xu ZJ, Chen WF. Effect of silicon fertilizer application on yield and quality of japonica rice from Northeast China. Chin J Rice Sci, 2009, 23: 661-664 (in Chinese with English abstract)[本文引用:4]
[5]
张国良, 丁原, 王清清, 戴其根, 黄慧宇, 霍中洋, 张洪程. 硅对水稻几丁质酶和β-1, 3-葡聚糖酶活性的影响及其与抗纹枯病的关系. 植物营养与肥料学报, 2010, 16: 598-604Zhang GL, DingY, Wang QQ, Dai QG, Huang HY, Huo ZY, Zhang HC. Effects of silicon on chitinase and β-1, 3-glucananse activities of rice infected by Rhizoctonia solani and its relation to resistance. Plant Nutr Fert Sci, 2010, 16: 598-604 (in Chinese with English abstract)[本文引用:1]
[6]
葛少彬, 刘敏, 骆世明, 蔡昆争. 硅和稻瘟病菌接种对水稻植株有机酸含量的影响. 生态学杂志, 2014, 33: 3002-3009Ge SB, LiuM, Luo SM, Cai KZ. Influence of silicon application and Magnaporthe oryzae infection on organic acids contents. Chin J Ecol, 2014, 33: 3002-3009 (in Chinese with English abstract)[本文引用:1]
[7]
韩永强, 刘川, 侯茂林. 硅介导的水稻对二化螟幼虫钻蛀行为的影响. 生态学报, 2010, 30: 5967-5974Han YQ, LiuC, Hou ML. Silicon-mediated effects of rice plants on boring behavior of Chilo suppressalis larvae. Acta Ecol Sin, 2010, 30: 5967-5974 (in Chinese with English abstract)[本文引用:2]
[8]
明东风, 袁红梅, 王玉海, 宫海军, 周伟军. 水稻胁迫下硅对水稻苗期根系生理生化性状的影响. 中国农业科学, 2012, 45: 2510-2519Ming DF, Yuan HM, Wang YH, Gong HJ, Zhou WJ. Effects of silicon on the physiological and biochemical characteristics of roots of rice seedlings under water stress. Sci Agric Sin, 2012, 45: 2510-2519 (in Chinese with English abstract)[本文引用:1]
[9]
吴蕾, 娄运生, 孟艳, 王卫清, 崔合洋. UV-B增强下施硅对水稻抽穗期生理特性日变化的影响. 应用生态学报, 2015, 26: 32-38WuL, Lou YS, MengY, Wang WQ, Cui HY. Effects of silicon supply on diurnal variations of physiological properties at rice heading stage. Chin J Appl Ecol, 2015, 26: 32-38 (in Chinese with English abstract)[本文引用:1]
[10]
顾明华, 黎晓峰. 硅对减轻水稻的铝胁迫效应及其机理研究. 植物营养与肥料学报, 2002, 8: 360-366Gu MH, Li XF. Effect of silicon on alleviation of aluminum toxicity and corresponded mechanisms in rice. Plant Nutr Fert Sci, 2002, 8: 360-366 (in Chinese with English abstract)[本文引用:1]
[11]
刘鸣达, 王丽丽, 李艳丽. 镉胁迫下硅对水稻生物量及生理特性的影响. 中国农学通报, 2010, 26(13): 187-190Liu MD, Wang LL, Li YL. Effect of silicon on biomass and physiological characteristics of rice under Cd stress. Chin Agric Sci Bull, 2010, 26(13): 187-190 (in Chinese with English abstract)[本文引用:1]
[12]
韦还和, 姜元华, 赵可, 许俊伟, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 郑飞. 甬优系列杂交稻品种的超高产群体特征. 作物学报, 2013, 39: 2201-2210Wei HH, Jiang YH, ZhaoK, Xu JW, Zhang HC, Dai QG, Huo ZY, XuK, Wei HY, ZhengF. Characteristics of super-high yield population in Yongyou series of hybrid rice. Acta Agron Sin, 2013, 39: 2201-2210 (in Chinese with English abstract)[本文引用:1]
[13]
姜元华, 张洪程, 赵可, 许俊伟, 韦还和, 龙厚元, 王文婷, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫. 长江下游地区不同类型水稻品种产量及其构成因素特征的研究. 中国水稻科学, 2014, 28: 621-631Jiang YH, Zhang HC, ZhaoK, Xu JW, Wei HH, Long HY, Wang WT, Dai QG, Huo ZY, XuK, Wei HY, Guo BW. Difference in yield and its components characteristics of different type rice cultivars in the lower reaches of the Yangtze River. Chin J Rice Sci, 2014, 28: 621-631 (in Chinese with English abstract)[本文引用:1]
[14]
王晓燕, 韦还和, 张洪程, 孙健, 张建民, 李超, 陆惠斌, 杨筠文, 马荣荣, 许久夫, 王珏, 许跃进, 孙玉海. 水稻甬优12产量13. 5 t hm-2以上超高产群体的生育特征. 作物学报, 2014, 40: 2149-2159Wang XY, Wei HH, Zhang HC, SunJ, Zhang JM, LiC, Lu HB, Yang JW, Ma RR, Xu JF, WangJ, Xu YJ, Sun YH. Population characteristics for super-high yielding hybrid rice Yongyou 12 (>13. 5 t ha-1). Acta Agron Sin, 2014, 40: 2149-2159 (in Chinese with English abstract)[本文引用:1]
[15]
秦方锦, 王飞, 陆宏, 岑汤校, 王斌, 韩红煊, 庄亚其, 张欢. 宁波市耕地有效硅含量及其影响因素. 浙江农业学报, 2012, 24: 263-267Qin FJ, WangF, LuH, Cen TX, WangB, Han HX, Zhuang YQ, ZhangH. Study on available silicon contents in cultivated land and its influencing factors in Ningbo City. Acta Agric Zhejiangensis, 2012, 24: 263-267 (in Chinese with English abstract)[本文引用:5]
[16]
文春波, 高红莉, 蔡德龙, 陈常友. 水稻施用硅肥研究综述. 地域研究与开发, 2003, 22(3): 79-81Wen CB, Gao HL, Cai DL, Chen CY. Present study situation of the silicon fertilizer application to rice. Areal Res Develop, 2003, 22(3): 79-81 (in Chinese with English abstract)[本文引用:1]
[17]
张国良, 戴其根, 王建武, 张洪程, 霍中洋, 凌励, 王显, 张军. 施硅量对粳稻品种武育粳3号产量和品质的影响. 中国水稻科学, 2007, 21: 299-303Zhang GL, Dai QG, Wang JW, Zhang HC, Huo ZY, LingL, WangX, ZhangJ. Effects of silicon fertilizer rate on yield and quality of japonica rice Wuyujing 3. Chin J Rice Sci, 2007, 21: 299-303 (in Chinese with English abstract)[本文引用:3]
[18]
龚金龙, 胡雅杰, 龙厚元, 常勇, 葛梦婕, 高辉, 刘艳阳, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 李德剑, 沙安勤, 周有炎, 罗学超. 不同时期施硅对超级稻产量和硅素吸收、利用效率的影响. 中国农业科学, 2012, 45: 1475-1488Gong JL, Hu YJ, Long HY, ChangY, Ge MJ, GaoH, Liu YY, Zhang HC, Dai QG, Huo ZY, XuK, Wei HY, Li DJ, Sha AQ, Zhou YY, Luo XC. Effect of application of silicon at different periods on grain yield and silicon absorption, use efficiency in super rice. Sci Agric Sin, 2012, 45: 1475-1488 (in Chinese with English abstract)[本文引用:3]
[19]
陈健晓, 屠乃美, 易镇邪, 朱红林. 硅肥对超级早稻产量形成和部分生理特性的影响. 作物研究, 2011, 25: 544-549Chen XJ, Tu NM, Yi ZX, Zhu HL. Effects of silicon fertilizer on yield formation and some physiological characteristics of super early rice. Crop Res, 2011, 25: 544-549 (in Chinese with English abstract)[本文引用:2]
[20]
陆福勇, 江立庚, 秦华东, 唐茂艳. 不同氮、硅用量对水稻产量和品质的影响. 植物营养与肥料学报, 2005, 11: 846-850Lu FY, Jiang LG, Qin HD, Tang MY. Effects of nitrogen and silicon levels on grain yield and qualities of rice. Plant Nutr Fert Sci, 2005, 11: 846-850 (in Chinese with English abstract)[本文引用:1]
[21]
李万昌, 邵云, 王俊伟, 余娇娇, 杨梦铱. 硅对水稻籼粳杂种雌雄配子育性和结实率的影响. 西北植物学报, 2011, 31: 1147-1151Li WC, ShaoY, Wang JW, Yu JJ, Yang MY. Effects of silicon on gametes and spikelets fertility of F1 hybrid between indica and japonica rice. Acta Bot Boreali-Occident Sin, 2011, 31: 1147-1151 (in Chinese with English abstract)[本文引用:1]
[22]
王显, 张国良, 霍中洋, 肖跃成, 熊飞, 张洪程, 戴其根. 氮硅配施对水稻叶片光合作用和氮代谢酶活性的影响. 扬州大学学报(农业与生命科学版), 2010, 31(3): 44-49WangX, Zhang GL, Huo ZY, Xiao YC, XiongF, Zhang HC, Dai QG. Effects of application of nitrogen combined with silicon on the photosynthesis and activities of nitrogen metabolic enzyme of rice leaf. J Yangzhou Univ (Agric & Life Sci Edn), 2010, 31(3): 44-49 (in Chinese with English abstract)[本文引用:2]
[23]
张国良, 戴其根, 周青, 潘国庆, 凌励, 张洪程. 硅肥对水稻群体质量及产量影响研究. 中国农学通报, 2004, 20(3): 114-117Zhang GL, Dai QG, ZhouQ, Pan GQ, LingL, Zhang HC. Influences of silicon fertilizer on population quality and yield in rice. Chin Agric Sci Bull, 2004, 20(3): 114-117 (in Chinese with English abstract)[本文引用:1]
[24]
龚金龙, 张洪程, 龙厚元, 胡雅杰, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉. 水稻中硅的营养功能及生理机制的研究进展. 植物生理学报, 2012, 48: 1-10Gong JL, Zhang HC, Long HY, Hu YJ, Dai QG, Huo ZY, XuK, Wei HY, GaoH. Progress in research of nutrition functions and physiological mechanisms of silicon in rice. Plant Physiol J, 2012, 48: 1-10 (in Chinese with English abstract)[本文引用:1]
[25]
邓文, 青先国, 蒲熙, 王思哲, 龚浩如. 硅肥和钙肥对超级杂交稻茎秆抗折力学的影响. , 2008, 34: 586-590DengW, Qing XG, PuX, Wang SZ, Gong HR. Effects of silicon and calcium application on the material characteristics of super hybrid rice. , 2008, 34: 586-590 (in Chinese with English abstract)[本文引用:1]
[26]
韦还和, 李超, 张洪程, 孙玉海, 马荣荣, 王晓燕, 杨筠文, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫. 水稻甬优12不同产量群体的株型特征. 作物学报, 2014, 40: 2160-2168Wei HH, LiC, Zhang HC, Sun YH, Ma RR, Wang XY, Yang JW, Dai QG, Huo ZY, XuK, Wei HY, Guo BW. Plant-type characteristics in populations with different yield of Yongyou 12. Acta Agron Sin, 2014, 40: 2160-2168 (in Chinese with English abstract)[本文引用:1]
[27]
丁能飞, 郭彬, 李建强, 林义成, 刘琛, 李华, 李凝玉, 傅庆林. 氮硅互作对水稻营养和产量的影响. 中国农学通报, 2013, 29(12): 127-130Ding NF, GuoB, Li JQ, Lin YC, LiuC, LiH, Li NY, Fu QL. Effects of nitrogen and silicon interaction on the nutrition and yield of rice. Chin Agric Sci Bull, 2013, 29(12): 127-130 (in Chinese with English abstract)[本文引用:1]