关键词:玉米; 根系分区交替灌溉; 籽粒灌浆; 强势粒; 弱势粒; 生理特性 Effect of Alternate Irrigation in Partitioned Roots on the Kernel-filling and Its Related Physiological Characteristics in Maize XU Yun-Ji, QIAN Xi-Yang, LI Yin-Yin, WANG Zhi-Qin, YANG Jian-Chang* Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China Fund:The research was supported by the National Basic Research Program (973 Program, 2012CB114306), the National Natural Science Foundation of China (31271641, 31471438), Jiangsu “Three-innovation” Agricultural Project (SXG2014313), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) AbstractThis study investigated whether and how post-tasseling alternate irrigation in partitioned roots could enhance the filling of inferior caryopses in maize. A high-yielding maize cultivar, Denghai 11, was grown in a glasshouse, and two irrigation treatments, conventional irrigation (CI) and alternate irrigation in partitioned roots (PAI), were applied from tasseling to maturity. Kernel filling rates and starch accumulation rates of superior and inferior caryopses and changes in ethylene evolution rate and polyamine contents in caryopses, photosynthetic and senescence characteristics of the ear leaf and non-structural carbohydrates (NSC) in stems were determined. The results showed that, compared with CI, PAI significantly increased kernel yield, strengthened photosynthetic characteristics of the ear leaf during late kernel-filling period, delayed leaf senescence, promoted NSC remobilization from stems plus sheath, and increased free-spermidine (free-Spd) and free-spermine (free-Spm) contents, whereas declined the free-putrescine (free-Put) content and ethylene evolution rate in inferior caryopses. No significant effect of PAI on the kernel filling of superior caryopses was detected. Correlation analysis showed that kernel-filling rates and starch accumulation rates were very significantly and positively correlated with free-Spd and free-Spm contents, and significantly and negatively correlated with ethylene evolution rate. The results indicate that PAI enhances the filling of inferior caryopses and increases kernel yield through increasing photosynthetic ability of the ear leaf, remobilization of NSC from stems, and free-Spd and free-Spm contents, and decreasing ethylene evolution rate in inferior caryopses during the grain-filling period.
Keyword:Maize; Alternate irrigation in partitioned roots; Kernel filling; Superior caryopses; Inferior caryopses; Physiological characteristics Show Figures Show Figures
图1 抽雄后根系分区交替灌溉对玉米穗位叶水势的影响CI: 常规灌溉; PAI: 根系分区交替灌溉。 CI: conventional irrigation; PAI: alternate irrigation in partitioned roots.Fig. 1 Effect of post-tasseling alternate irrigation in partitioned roots on water potential of the ear leaf in maize
表1 抽雄后根系分区交替灌溉对玉米产量及其构成因素的影响 Table 1 Effect of post-tasseling alternate irrigation in partitioned roots on kernel yield and its components of maize
年份 Year
处理 Treatment
穗数 Ear number (× 104 hm-2)
每穗粒数 Kernel number per ear
百粒重 100-kernel weight (g)
籽粒产量 Kernel yield (t hm-2)
2012
常规灌溉CI
4.89 a
496.48 a
36.65 b
8.90 b
根系分区交替灌溉PAI
4.89 a
492.05 a
38.54 a
9.27 a
2014
常规灌溉CI
4.89 a
484.89 a
35.92 b
8.52 b
根系分区交替灌溉PAI
4.89 a
487.66 a
37.76 a
9.00 a
CI: conventional irrigation; PAI: alternate irrigation in partitioned roots. Values within the same year and the same column followed by different letters are significantly different atP< 0.05. 同一年、同一列标以不同字母的值在P=0.05水平上差异显著。
表1 抽雄后根系分区交替灌溉对玉米产量及其构成因素的影响 Table 1 Effect of post-tasseling alternate irrigation in partitioned roots on kernel yield and its components of maize
表2 抽雄后根系分区交替灌溉对玉米水分利用效率的影响 Table 2 Effect of post-tasseling alternate irrigation in partitioned roots on water use efficiency of maize
年份 Year
处理 Treatment
抽雄后灌溉水量 Water application after tasseling (mm)
整个生长期灌溉水量 Water application during the whole growing season (mm)
灌溉水利用率 Water use efficiency for irrigation (kg grain m-3)
2012
常规灌溉CI
85 a
221 a
4.03 b
根系分区交替灌溉PAI
53 b
189 b
4.90 a
2014
常规灌溉CI
79 a
212 a
4.02 b
根系分区交替灌溉PAI
48 b
181 b
4.97 a
CI: conventional irrigation; PAI: alternate irrigation in partitioned roots. Values within the same year and the same column followed by different letters are significantly different atP< 0.05. 同一年、同一列标以不同字母的值在P=0.05水平上差异显著。
表2 抽雄后根系分区交替灌溉对玉米水分利用效率的影响 Table 2 Effect of post-tasseling alternate irrigation in partitioned roots on water use efficiency of maize
图2 抽雄后根系分区交替灌溉对玉米强、弱势籽粒重量和灌浆速率变化的影响CI: 常规灌溉; PAI: 根系分区交替灌溉; S: 强势粒; I: 弱势粒。Fig. 2 Effect of post-tasseling alternate irrigation in partitioned roots on kernel weight and kernel filling rate of superior kernels and inferior ones on a maize earCI: conventional irrigation; PAI: alternate irrigation in partitioned roots; S: superior caryopses; I: inferior caryopses.
表3 Table 3 表3(Table 3)
表3 抽雄后根系分区交替灌溉对玉米强、弱势籽粒灌浆特征参数的影响 Table 3 Effect of post-tasseling alternate irrigation in partitioned roots on parameters of kernel-filling characteristics of superior and inferior caryopses of maize
年份Year
处理Treatment
粒位 Kernel position
A (mg kernel-1)
Gmax (mg kernel-1 d-1)
Gmean (mg kernel-1 d-1)
D (d)
Tmax (d)
2012
CI
S
354.36 a
16.37 a
10.37 a
34.18 a
32.43 a
I
279.12 c
14.40 c
9.24 c
30.22 b
32.32 a
PAI
S
350.00 a
16.17 a
10.24 a
34.18 a
32.43 a
I
290.63 b
15.31 b
9.98 b
30.75 b
32.42 a
2014
CI
S
344.79 a
15.74 a
10.07 a
34.18 a
32.43 a
I
263.83 c
13.54 c
8.68 c
30.39 b
32.81 a
PAI
S
345.64 a
15.97 a
10.11 a
34.18 a
32.64 a
I
275.89 b
14.18 b
9.58 b
31.32 b
32.31 a
CI: conventional irrigation; PAI: alternate irrigation in partitioned roots; S: superior caryopses; I: inferior caryopses; A: final grain weight; Gmax: maximum grain-filling rate; Gmean: mean grain-filling rate; D: active kernel-filling period; Tmax: time reaching to the maximum grain-filling rate. Values within the same year and the same column followed by different letters are significantly different atP< 0.05. CI: 常规灌溉; PAI: 根系分区交替灌溉; S: 强势粒; I: 弱势粒; A: 最终粒重; Gmax: 最大灌浆速率; Gmean: 平均灌浆速率; D: 活跃灌浆期; Tmax: 到达最大灌浆速率的时间。同一年、同一列标以不同字母的值在P=0.05水平上差异显著。
表3 抽雄后根系分区交替灌溉对玉米强、弱势籽粒灌浆特征参数的影响 Table 3 Effect of post-tasseling alternate irrigation in partitioned roots on parameters of kernel-filling characteristics of superior and inferior caryopses of maize
图3 抽雄后根系分区交替灌溉对成熟期玉米强、弱势籽粒中淀粉积累的影响CI: 常规灌溉; PAI: 根系分区交替灌溉; S: 强势粒; I: 弱势粒。Fig. 3 Effect of post-tasseling alternate irrigation in partitioned roots on starch accumulation in superior and inferior caryopses of maizeCI: conventional irrigation; PAI: alternate irrigation in partitioned roots; S: superior caryopses; I: inferior caryopses.
图4 抽雄后根系分区交替灌溉对玉米穗位叶SPAD值(叶绿素含量)的影响CI: 常规灌溉; PAI: 根系分区交替灌溉。* , * * 分别表示同一测定时期、不同处理间在0.05和0.01水平上差异显著。Fig. 4 Effect of post-tasseling alternate irrigation in partitioned roots on SPAD value of ear leaf in maizeCI: conventional irrigation; PAI: alternate irrigation in partitioned roots. * , * * Significant at the P= 0.05 and P = 0.01, respectively.
图5 抽雄后根系分区交替灌溉对玉米穗位叶光合速率、蒸腾速率以及蒸腾效率的影响CI: 常规灌溉; PAI: 根系分区交替灌溉。* , * * 分别表示同一测定时期、不同处理间在0.05和0.01水平上差异显著。Fig. 5 Effect of post-tasseling alternate irrigation in partitioned roots on photosynthetic rate, transpiration rate, and transpiration efficiency of the ear leaf in maizeCI: conventional irrigation; PAI: alternate irrigation in partitioned roots. * , * * Significant at P= 0.05 and P = 0.01, respectively.
图6 抽雄后根系分区交替灌溉对玉米穗位叶超氧化物歧化酶活性和丙二醛含量的影响CI: 常规灌溉; PAI: 根系分区交替灌溉。同一测定时期标以不同字母的值表示在P=0.05水平上差异显著。Fig. 6 Effect of post-tasseling alternate irrigation in partitioned roots on the SOD activity and MDA content of the ear leaf in maizeCI: conventional irrigation; PAI: alternate irrigation in partitioned roots. Values within the same measurement time followed by different letters are significantly different at P< 0.05.
表4 抽雄后根系分区交替灌溉对玉米茎鞘非结构性碳水化合物(NSC)及其运转率的影响 Table 4 Effect of post-tasseling alternate irrigation in partitioned roots on NSC in stem plus sheath and its translocation rate in maize
年份 Year
处理 Treatment
吐丝期茎鞘NSC NSC accumulation in stem plus sheath at silking (kg hm-2)
成熟期茎鞘NSC NSC accumulation in stem plus sheath at maturity (kg hm-2)
NSC运转量Translocation amount of NSC (kg hm-2)
NSC运转率Translocation rate of NSC (%)
2012
常规灌溉CI
786.80 a
461.13 a
325.67 b
41.39 b
根系分区交替灌溉PAI
768.93 a
389.24 b
379.69 a
49.38 a
2014
常规灌溉CI
703.67 a
407.83 a
295.84 b
42.04 b
根系分区交替灌溉PAI
682.97 a
338.39 b
344.58 a
50.45 a
CI: conventional irrigation; PAI: alternate irrigation in partitioned roots. Values within the same year and the same column followed by different letters are significantly different atP< 0.05. 同一年、同一列标以不同字母的值在P=0.05水平上差异显著。
表4 抽雄后根系分区交替灌溉对玉米茎鞘非结构性碳水化合物(NSC)及其运转率的影响 Table 4 Effect of post-tasseling alternate irrigation in partitioned roots on NSC in stem plus sheath and its translocation rate in maize
图7 抽雄后根系分区交替灌溉对强、弱势籽粒乙烯释放速率的影响CI: 常规灌溉; PAI: 根系分区交替灌溉; S: 强势粒; I: 弱势粒。Fig. 7 Effect of post-tasseling alternate irrigation in partitioned roots on ethylene evolution rate of superior and inferior caryopses of maizeCI: conventional irrigation; PAI: alternate irrigation in partitioned roots; S: superior caryopses; I: inferior caryopses.
图8 抽雄后根系分区交替灌溉对籽粒中多胺 (free-Put, free-Spd, free-Spm)含量的影响CI: 常规灌溉; PAI: 根系分区交替灌溉; S: 强势粒; I: 弱势粒。Fig. 8 Effect of post-tasseling alternate irrigation in partitioned roots on contents of free-Put, free-Spd, and free-Spm in superior and inferior caryopses of maizeCI: conventional irrigation; PAI: alternate irrigation in partitioned roots; S: superior caryopses; I: inferior caryopses.
表5 玉米灌浆期籽粒乙烯释放速率和多胺含量与籽粒灌浆速率及淀粉积累速率的相关系数 Table 5 Correlation coefficients of ethylene evolution rate and polyamine contents with kernel filling rate and starch accumulation rate of caryopses during the kernel filling period of maize
年份 Year
系数 Parameter
乙烯 Ethylene evolution rate
游离腐胺 Free-Put
游离亚精胺 Free-Spd
游离精胺 Free-Spm
2012
籽粒灌浆速率 Kernel filling rate
-0.42*
-0.19
0.68* *
0.87* *
淀粉积累速率 Starch accumulation rate
-0.60* *
-0.33
0.55* *
0.77* *
2014
籽粒灌浆速率 Kernel filling rate
-0.42*
-0.25
0.61* *
0.90* *
淀粉积累速率 Starch accumulation rate
-0.56* *
-0.37
0.49* *
0.76* *
* , * * 分别表示0.05和0.01水平上相关显著(与籽粒灌浆速率的相关n=32; 与淀粉累积速率的相关n=28)。 * , * * Significant at P= 0.05 and P = 0.01, respectively (n=32 for the correlations with kernel-filling rate and n=28 for the correlations with starch accumulation rate).
表5 玉米灌浆期籽粒乙烯释放速率和多胺含量与籽粒灌浆速率及淀粉积累速率的相关系数 Table 5 Correlation coefficients of ethylene evolution rate and polyamine contents with kernel filling rate and starch accumulation rate of caryopses during the kernel filling period of maize
NagatoK. Differences in grain weight of spikelets located at different positions within a rice panicle. Jpn J Crop Sci, 1941, 13: 156-169 (in Japanese with English abstract)[本文引用:2]
[2]
王蔚华, 郭文善, 方明奎, 封超年, 朱新开, 彭永欣. 小麦籽粒胚乳细胞增殖及物质充实动态. 作物学报, 2003, 29: 779-784Wang WH, Guo WS, Fang MK, Feng CN, Zhu XK, Peng YX. Endosperm cell proliferating and grain filling dynamics in wheat. Acta Agron Sin, 2003, 29: 779-784 (in Chinese with English abstract)[本文引用:2]
[3]
任亚梅, 刘兴华, 袁春龙, 郑建梅, 罗安伟. 乳熟期鲜食玉米穗不同部位碳水化合物的变化. 食品与生物技术学报, 2005, 24(6): 66-70Ren YM, Liu XH, Yuan CL, Zheng JM, Luo AW. Study on the carbohydrate change at different parts of fresh unripe maize ears. J Food Sci Biotechnol, 2005, 24(6): 66-70 (in Chinese with English abstract)[本文引用:2]
[4]
徐云姬, 顾道健, 张博博, 张耗, 王志琴, 杨建昌. 玉米果穗不同部位籽粒激素含量及其与胚乳发育和籽粒灌浆的关系. 作物学报, 2013, 39: 1452-1461Xu YJ, Gu DJ, Zhang BB, ZhangH, Wang ZQ, Yang JC. Hormone contents in kernels at different positions on an ear and their relationship with endosperm development and kernel filling in maize. Acta Agron Sin, 2013, 39: 1452-1461 (in Chinese with English abstract)[本文引用:2]
[5]
徐云姬, 顾道健, 秦昊, 张耗, 王志琴, 杨建昌. 玉米灌浆期果穗不同部位籽粒碳水化合物积累与淀粉合成相关酶活性变化. 作物学报, 2015, 41: 297-307Xu YJ, Gu DJ, QinH, ZhangH, Wang ZQ, Yang JC. Changes in carbohydrate accumulation and activities of enzymes involved in starch synthesis in maize kernels at different positions on an ear during grain filling. Acta Agron Sin, 2015, 41: 297-307 (in Chinese with English abstract)[本文引用:2]
[6]
王忠. 植物生理学(第2版). 北京: 中国农业出版社, 2008. pp 335-336Wang Z. PlantPhysiology, Beijing: China Agriculture Press, 2008. pp 335-336(in Chinese)[本文引用:2]
[7]
Yang JC, Zhang JH, Wang ZQ, LiuK, WangP. Post-anthesis development of inferior and superior spikelets in rice in relation to abscisic acid and ethylene. , 2006, 57: 149-160[本文引用:1]
[8]
YangJ, CaoY, ZhangH, LiuL, ZhangJ. Involvement of polyamines in the post-anthesis development of inferior and superior spikelets in rice. Planta, 2008, 228: 137-149[本文引用:2]
[9]
Wang ZQ, Xu YJ, Wang JC, Yang JC, Zhang JH. Polyamine and ethylene interactions in grain filling of superior and inferior spikelets of rice. Plant Growth Regul, 2012, 66: 215-228[本文引用:5]
[10]
Yang WB, Yin YP, LiY, CaiT, Ni YL, Peng DL, Wang ZL. Interactions between polyamines and ethylene during grain filling in wheat grown under water deficit conditions. Plant Growth Regul, 2014, 72: 189-201[本文引用:5]
[11]
康绍忠, 张建华, 梁宗锁, 胡笑涛, 蔡焕杰. 控制性交替灌溉——一种新的农田节水调控思路. 干旱地区农业研究, 1997, 15(1): 1-6Kang SZ, Zhang JH, Liang ZS, Hu XT, Cai HJ. The controlled alternative irrigation—a new approach for water saving regulation in farmland . Agric Res Arid Areas, 1997, 15(1): 1-6 (in Chinese with English abstract)[本文引用:1]
[12]
康绍忠, 潘英华, 石培泽, 张建华. 控制性作物根系分区交替灌溉的理论与试验. 水利学报, 2001, 11: 80-86Kang SZ, Pan YH, Shi PZ, Zhang JH. Controlled root-divided alternative irrigation—theory and experiments. J Hydraul Eng, 2001, 11: 80-86 (in Chinese with English abstract)[本文引用:2]
[13]
梁宗锁, 康绍忠, 石培泽, 潘英华, 何立绩. 隔沟交替灌溉对玉米根系分布和产量的影响及其节水效益. 中国农业科学, 2000, 33: 26-32Liang ZS, Kang SZ, Shi PZ, Pan YH, He LJ. Effect of alternate furrow irrigation on maize production, root density and water-saving benefit. Sci Agric Sin, 2000, 33: 26-32 (in Chinese with English abstract)[本文引用:3]
[14]
杜太生, 康绍忠, 王振昌, 王锋, 杨秀英, 苏兴礼. 隔沟交替灌溉对棉花生长、产量和水分利用效率的调控效应. 作物学报, 2007, 33: 1982-1990Du TS, Kang SZ, Wang ZC, WangF, Yang XY, Su XL. Responses of cotton growth, yield, and water use efficiency to alternate furrow irrigation. Acta Agron Sin, 2007, 33: 1982-1990 (in Chinese with English abstract)[本文引用:2]
[15]
宋磊, 岳玉苓, 狄方坤, 魏钦平, 高照全, 张继祥. 分根交替灌溉对桃树生长发育及水分利用效率的影响. 应用生态学报, 2008, 19: 1631-1636SongL, Yue YL, Di FK, Wei QP, Gao ZQ, Zhang JX. Effects of alternative partial root zone irrigation on peach growth, productivity, and water use efficiency. Chin J Appl Ecol, 2008, 19: 1631-1636 (in Chinese with English abstract)[本文引用:2]
[16]
李志军, 张富仓, 康绍忠. 控制性根系分区交替灌溉对冬小麦水分与养分利用的影响. 农业工程学报, 2005, 21(8): 17-21Li ZJ, Zhang FC, Kang SZ. Impacts of the controlled roots-divided alternative irrigation on water and nutrient use of winter wheat. Trans CSAE, 2005, 21(8): 17-21 (in Chinese with English abstract)[本文引用:1]
[17]
朱庆森, 曹显祖, 骆亦其. 水稻籽粒灌浆的生长分析. 作物学报, 1988, 14: 182-193Zhu QS, Cao XZ, Luo YQ. Growth analysis on the process of grain filling in rice. Acta Agron Sin, 1988, 14: 182-193 (in Chinese with English abstract)[本文引用:1]
[18]
Richards FJ. A flexible growth function for empirical use. J Exp Bot, 1959, 10: 290-300[本文引用:1]
王爱国, 罗广华, 邵从本, 吴淑君, 郭俊彦. 大豆种子超氧物歧化酶的研究. 植物生理学报, 1983, 9(1): 77-84Wang AG, Luo GH, Shao CB, Wu SJ, Guo JY. A study on the superoxide dismutase of soybean seeds. Acta Phytophysiol Sin, 1983, 9(1): 77-84 (in Chinese with English abstract)[本文引用:1]
[21]
赵世杰, 许长成, 邹琦, 孟庆伟. 植物组织中丙二醛测定方法的改进. 植物生理学通讯, 1994, 30: 207-210Zhao SJ, Xu CC, ZouQ, Meng QW. Improvements of method for measurement of malondialdehyde in plant tissues. Plant Physiol Commun, 1994, 30: 207-210 (in Chinese with English abstract)[本文引用:1]
BeltranoJ, CarboneA, Montaldi ER, Guiamet JJ. Ethylene as promoter of wheat grain maturation and ear senescence. Plant Growth Regul, 1994, 15: 107-112[本文引用:1]
[24]
Flores HE, Galston AW. Analysis of polyamines in higher plants by high performance liquid chromatography. Plant Physiol, 1982, 69: 701-706[本文引用:1]
[25]
DiTomaso JM, Shaff JE, Kochian LV. Putrescine-induced wounding and its effects on membrane integrity and ion transport processes in roots of intact corn seeding. Plant Physiol, 1989, 90: 988-995[本文引用:1]
[26]
农梦玲, 魏贵玉, 李伏生. 不同时期根区局部灌溉对玉米干物质积累和水氮利用的影响. 玉米科学, 2012, 20: 115-120Nong ML, Wei GY, Li FS. Effect of partial root-zone irrigation at different growth stages on dry mass accumulation and water and nitrogen use of maize. J Maize Sci, 2012, 20: 115-120 (in Chinese with English abstract)[本文引用:1]
[27]
傅丰贝, 陆文娟, 李伏生. 不同控水时段根区局部灌溉对玉米生理和水分利用效率的影响. 植物营养与肥料学报, 2014, 20: 1378-1386Fu FB, Lu WJ, Li FS. Effects of partial root-zone irrigation at different water-control duration on physiology and water use efficiency of maize. Plant Nutr Fert Sci, 2014, 20: 1378-1386 (in Chinese with English abstract)[本文引用:1]
[28]
李国强, 周吉, 路小芳, 曹治彦, 杨永强, 徐萍, 张正斌. 雨养条件下玉米穗位叶与产量关系研究. 作物杂志, 2013, (3): 25-28Li GQ, ZhouJ, Lu XF, Cao ZY, Yang YQ, XuP, Zhang ZB. Study on the relationship between ear leaf and yield of maize in rainfed condition. Crops, 2013, (3): 25-28 (in Chinese with English abstract)[本文引用:1]
[29]
凌启鸿. 作物群体质量. 上海: 上海科学技术出版社, 2000. pp 459-460Ling QH. The Quality of Crop Population. Shanghai: Shanghai Scientific and Technical Publishers, 2000. pp 459-460(in Chinese)[本文引用:1]
[30]
郭书亚, 张新, 张前进, 王振华, 李亚贞, 顾顺芳, 焦念元, 尹飞, 付国占. 秸秆覆盖深松对夏玉米花后穗位叶衰老和产量的影响. 玉米科学, 2012, 20: 104-107Guo SY, ZhangX, Zhang QJ, Wang ZH, Li YZ, Gu SF, Jiao NY, YinF, Fu GZ. Effects of straw mulching and subsoiling on ear leaf senescence after anthesis and yield of summer maize. J Maize Sci, 2012, 20: 104-107 (in Chinese with English abstract)[本文引用:1]
[31]
Chen TT, Xu YJ, Wang JC, Wang ZQ, Yang JC, Zhang JH. Polyamines and ethylene interact in rice grains in response to soil drying during grain filling. J Exp Bot, 2013, 64: 2523-2538[本文引用:2]
[32]
BollmarkM, EliassonL. Ethylene accelerates the breakdown of cytokinin and thereby stimulates rooting in Norway spruce hypocotyl cuttings. Physiol Plant, 1990, 80: 534-540[本文引用:1]
[33]
YangJ, ZhangJ, HuangZ, ZhuQ, WangZ. Correlation of cytokinin levels in the endosperms and roots with cell number and cell division activity during endosperm development in rice. Ann Bot, 2002, 90: 369-377[本文引用:2]
[34]
HouZ, LiuG, HouL, WangL, LiuX. Regulatory function of polyamine oxidase-generated hydrogen peroxide in ethylene- induced stomatal closure in Arabidopsis thaliana. J Integr Agric, 2013, 12: 251-262[本文引用:1]
[35]
RavanelS, GakiereB, JobD, DourceR. The specific features of methionine biosynthesis, and metabolism in plant. Proc Natl Acad Sci USA, 1998, 95: 7805-7812[本文引用:1]
[36]
刘桃菊, 戚昌瀚, 唐建军. 水稻根系建成与产量及其构成关系的研究. 中国农业科学, 2002, 35: 1416-1419Liu TJ, Qi CH, Tang JJ. Studies on relationship between the character parameters of root and yield formation in rice. Sci Agric Sin, 2002, 35: 1416-1419 (in Chinese with English abstract)[本文引用:1]
[37]
杨建昌. 水稻根系形态生理与产量、品质形成及养分吸收利用的关系. 中国农业科学, 2011, 44: 36-46Yang JC. Relationships of rice root morphology and physiology with the formation of grain yield and quality and the nutrient absorption and utilization. Sci Agric Sin, 2011, 44: 36-46 (in Chinese with English abstract)[本文引用:1]
[38]
付景, 刘洁, 曹转勤, 王志琴, 张耗, 杨建昌. 结实期干湿交替灌溉对2个超级稻品种结实率和粒重的影响. 作物学报, 2014, 40: 1056-1065FuJ, LiuJ, Cao ZQ, Wang ZQ, ZhangH, Yang JC. Effects of alternate wetting and drying irrigation during grain filling on the seed-setting rate and grain weight of two super rice cultivars. Acta Agron Sin, 2014, 40: 1056-1065 (in Chinese with English abstract)[本文引用:1]
[39]
XueQ, ZhuZ, Musick JT, Stewart BA, Dusek DA. Root growth and water uptake in winter wheat under deficit irrigation. Plant Soil, 2003, 257: 151-161[本文引用:1]
[40]
慕自新, 张岁岐, 郝文芳, 梁爱华, 梁宗锁. 玉米根系形态性状和空间分布对水分利用效率的调控. 生态学报, 2005, 25: 2895-2900Mu ZX, Zhang SQ, Hao WF, Liang AH, Liang ZS. The effect of root morphological traits and spatial distribution on WUE in maize. Acta Ecol Sin, 2005, 25: 2895-2900 (in Chinese with English abstract)[本文引用:1]
[41]
潘丽萍, 李彦, 唐立松. 局部根区灌溉对棉花主要生理生态特性的影响. 中国农业科学, 2009, 42: 2982-2986Pan LP, LiY, Tang LS. Growth and allocation of photosynthetic produces in cotton under alternative partial root-zone irrigation. Sci Agric Sin, 2009, 42: 2982-2986 (in Chinese with English abstract)[本文引用:1]
[42]
胡田田, 康绍忠, 原丽娜, 张富仓, 李志军. 根区湿润方式对玉米根系生长发育的影响. 生态学报, 2008, 28: 6180-6188Hu TT, Kang SZ, Yuan LN, Zhang FC, Li ZJ. Effects of partial root-zone irrigation on growth and development of maize root system. Acta Ecol Sin, 2008, 28: 6180-6188 (in Chinese with English abstract)[本文引用:1]
[43]
李彩霞, 孙景生, 周新国, 邱新强, 刘祖贵, 强小嫚, 郭冬冬. 隔沟交替灌溉条件下玉米根系形态性状及结构分布. 生态学报, 2011, 31: 3956-3963Li CX, Sun JS, Zhou XG, Qiu XQ, Liu ZG, Qiang XM, Guo DD. Root morphology characteristics under alternate furrow irrigation. Acta Ecol Sin, 2011, 31: 3956-3963 (in Chinese with English abstract)[本文引用:1]