关键词:大豆; 高光谱; 遥感; 叶面积指数; 地上部生物量 Prediction of Leaf Area Index Using Hyperspectral Remote Sensing in Breeding Programs of Soybean QI Bo, ZHANG Ning, ZHAO Tuan-Jie, XING Guang-Nan, ZHAO Jin-Ming*, GAI Jun-Yi* Soybean Research Institute of Nanjing Agricultural University / National Center for Soybean Improvement / Key Laboratory for Biology and Genetic Improvement of Soybean (General), Ministry of Agriculture / National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing 210095, China
AbstractLeaf area index (LAI) is an important parameter in observing field growth status and yield potential of crop plants, which is important in evaluating field growth performance of breeding lines in modern large scale plant breeding programs. The measurement of LAI and aboveground biomass (ABM) was synchronized with the information collection of the canopy hyperspectral reflectance at R2, R4, and R5 growth stages in a field experiment with 52 soybean varieties under completely randomized blocks design with three replications in two years. The results indicated that LAI have significant positive correlation with canopy spectral reflectance in the visible region (426-710 nm) and significant negative correlation in the near infrared region (748-1331 nm) ( P<0.05). According to the linear correlation analysis between the vegetation indices and LAI in the literature, NDVI and RVI are superior vegetation indices for soybean LAI prediction. The linear and nonlinear regression models of LAI on NDVI and RVI vegetation indices were constructed and evaluated for all two-band combinations in the full spectral range of 350-2500 nm under 1 nm windows. Three single-stage regression models, i.e. R2 RVI (825, 586) model ( y= 0.03 x1.83), R4 RVI (763, 606) model ( y= 0.38e0.14x) and R5 RVI (744, 580) model ( y= 0.06 x1.79) were selected and validated as the best ones with fitness of 0.677, 0.639, 0.664 and less than 20% relative standard error, respectively, with their validation determination coefficients of 0.643, 0.612, 0.634, and around 20% validation standard error, respectively. Furthermore, the common core two-band combinations for both LAI and ABM prediction at R2, R4, and R5 were selected as 825 nm and 586 nm, 763 nm and 606 nm, and 744 nm and 580 nm, respectively. The obtained indices along with their prediction models can provide a technical support for quick and nondestructive field survey of soybean growth status in large scale breeding programs.
Keyword:Soybean; Hyperspectral reflectance; Remote sensing; Leaf area index (LAI); Aboveground biomass (ABM) Show Figures Show Figures
图1 大豆冠层原始光谱(A)及其一阶导数光谱(B)与LAI的相关性Fig. 1 Correlation of canopy spectra (A) and the first derivative spectra (B) to LAI in soybean
表4 Table 4 表4(Table 4)
表4 大豆冠层原始光谱及其一阶导数光谱与LAI相关系数的最大值、最小值及对应波段 Table 4 Maximum and minimum correlation coefficients and corresponding wavelength between the original, derivative spectra and LAI in soybean
生育期 Growth stage
光谱类型 Spectral type
最小值 Minimum
对应波段 Wavelength (nm)
最大值 Maximum
对应波段 Wavelength (nm)
R2
原始光谱 Original spectra
-0.380
653
0.280
780
一阶导数 First derivative spectra
-0.523
1302
0.596
743
R4
原始光谱 Original spectra
-0.500
606
0.159
866
一阶导数 First derivative spectra
-0.538
689
0.534
661
R5
原始光谱 Original spectra
-0.570
695
0.246
817
一阶导数 First derivative spectra
-0.605
689
0.562
750
表4 大豆冠层原始光谱及其一阶导数光谱与LAI相关系数的最大值、最小值及对应波段 Table 4 Maximum and minimum correlation coefficients and corresponding wavelength between the original, derivative spectra and LAI in soybean
表5 Table 5 表5(Table 5)
表5 2011— 2012年大豆不同生育期LAI与所选植被指数的相关性 Table 5 Correlation coefficients between LAI and selected vegetation indices at different stages in 2011 and 2012
生育期 Growth stage
NDVI类型植被指数 NDVI type vegetation index
RVI类型植被指数 RVI type vegetation index
GNDVI
NDCI
NDVI(810, 560)
PSNDb
GM1
GM2
PSSRa
PSSRb
RVI(810, 560)
SR(900, 680)
R2
0.769* *
0.774* *
0.772* *
0.757* *
0.777* *
0.757* *
0.753* *
0.783* *
0.781* *
0.761* *
R4
0.703* *
0.719* *
0.699* *
0.708* *
0.722* *
0.718* *
0.596* *
0.743* *
0.721* *
0.592* *
R5
0.728* *
0.729* *
0.729* *
0.707* *
0.750* *
0.720* *
0.670* *
0.736* *
0.754* *
0.677* *
* * 表示在0.01水平差异显著。* * represents significance at the 0.01 probability level, respectively.
表5 2011— 2012年大豆不同生育期LAI与所选植被指数的相关性 Table 5 Correlation coefficients between LAI and selected vegetation indices at different stages in 2011 and 2012
图2 大豆不同生育期LAI与冠层光谱任意两波段NDVI (A: R2、B: R4、C: R5)、RVI (D: R2、E: R4、F: R5)线性模型的决定 系数等势图Fig. 2 Contour maps for determination coefficients of linear regression between soybean LAI and any two-band NDVI (A: R2, B: R4, C: R5), any two-band RVI (D: R2, E: R4, F: R5)
表6 Table 6 表6(Table 6)
表6 大豆不同生育期冠层光谱两波段NDVI、RVI与LAI线性关系的决定系数 Table 6 Determination coefficients of linear relationship of LAI with any two-band vegetable indices within full spectral range at different stages in soybean
生育期 Growth stage
植被指数 Vegetation index
波段组合1 Band combination 1
波段组合2 Band combination 2
波段组合3 Band combination 3
波段组合4 Band combination 4
波段组合5 Band combination 5
λ 1
λ 2
λ 1
λ 2
λ 1
λ 2
λ 1
λ 2
λ 1
λ 2
350-720
350-720
730-1350
350-780
740-1350
740-1350
1450-1800
350-730
1450-1800
740-1350
R2
NDVI
0-0.574
0-0.611
0-0.522
0-0.495
0-0.226
RVI
0-0.584
0-0.635
0-0.522
0-0.513
0-0.226
R4
NDVI
0-0.486
0-0.527
0-0.464
0-0.447
0-0.196
RVI
0-0.505
0-0.582
0-0.464
0-0.450
0-0.198
R5
NDVI
0-0.488
0-0.539
0-0.452
0-0.456
0-0.176
RVI
0-0.497
0-0.577
0-0.453
0-0.493
0-0.177
生育期 Growth stage
植被指数 Vegetation index
波段组合6 Band combination 6
波段组合7 Band combination 7
波段组合8 Band combination 8
波段组合9 Band combination 9
波段组合10 Band combination 10
λ 1
λ 2
λ 1
λ 2
λ 1
λ 2
λ 1
λ 2
λ 1
λ 2
1450-1800
1450-1800
1960-2350
420-730
1960-2350
740-1350
1960-2350
1450-1800
1960-2350
1960-2350
R2
NDVI
0-0.198
0-0.368
0-0.197
0-0.177
0-0.133
RVI
0-0.199
0-0.373
0-0.198
0-0.177
0-0.138
R4
NDVI
0-0.233
0-0.367
0-0.268
0-0.242
0-0.254
RVI
0-0.233
0-0.386
0-0.269
0-0.244
0-0.255
R5
NDVI
0-0.167
0-0.357
0-0.249
0-0.240
0-0.244
RVI
0-0.168
0-0.373
0-0.249
0-0.241
0-0.246
λ 1 and λ 2 represent the corresponding bands in NDVI (λ 1, λ 2) and RVI (λ 1, λ 2), the unit of λ 1 and λ 2 is nm. λ 1和λ 2为NDVI (λ 1, λ 2)和RVI (λ 1, λ 2)的所含波段, 单位为nm。
表6 大豆不同生育期冠层光谱两波段NDVI、RVI与LAI线性关系的决定系数 Table 6 Determination coefficients of linear relationship of LAI with any two-band vegetable indices within full spectral range at different stages in soybean
表7 Table 7 表7(Table 7)
表7 大豆不同生育期LAI光谱参数的敏感波段组合 Table 7 Sensitive band combinations of LAI spectral parameters at different stages in soybean
生育期 Growth stage
植被指数 Vegetable index
敏感波段组合1 Sensitive band combination 1
敏感波段组合2 Sensitive band combination 2
λ 1
λ 2
λ 1
λ 2
R2
NDVI
733-1327
467-710
RVI
739-1331
488-707
500-704
750-1315
R4
NDVI
765-1348
515-699
RVI
767-1348
517-697
R5
NDVI
758-1347
508-649
RVI
762-1350
512-698
514-607
765-862
λ 1和λ 2为NDVI (λ 1, λ 2)和RVI (λ 1, λ 2)的所含波段, 单位为nm。 λ 1 and λ 2 represent the corresponding bands in NDVI (λ 1, λ 2) and RVI (λ 1, λ 2), the unit of λ 1 and λ 2 is nm.
表7 大豆不同生育期LAI光谱参数的敏感波段组合 Table 7 Sensitive band combinations of LAI spectral parameters at different stages in soybean
图3 大豆冠层光谱植被指数RVI与LAI的散点图Fig. 3 Scatter plots between canopy spectral parameter RVI and LAI in soybean
表8 Table 8 表8(Table 8)
表8 大豆不同生育期敏感波段组合范围内LAI与RVI线性与非线性关系的决定系数 Table 8 Determination coefficients of linear and non-linear relationship of LAI with RVI in sensitive band combinations at different stages in soybean
生育期 Growth stage
类型 Function type
敏感波段组合1 Sensitive band combination 1
敏感波段组合2 Sensitive band combination 2
λ 1 739-1350
λ 2 488-707
λ 1 500-704
λ 2 750-1315
R2
线性函数Linear
0.635
0.603
幂函数Power
0.677
0.677
指数函数Exponential
0.674
0.671
R4
线性函数Linear
0.582
0.521
幂函数Power
0.634
0.634
指数函数Exponential
0.639
0.617
R5
线性函数Linear
0.577
0.530
幂函数Power
0.664
0.664
指数函数Exponential
0.661
0.651
λ 1和λ 2为RVI (λ 1, λ 2)的所含波段, 单位为nm。 λ 1 and λ 2 represent the corresponding bands in RVI (λ 1, λ 2), the unit of λ 1 and λ 2 is nm.
表8 大豆不同生育期敏感波段组合范围内LAI与RVI线性与非线性关系的决定系数 Table 8 Determination coefficients of linear and non-linear relationship of LAI with RVI in sensitive band combinations at different stages in soybean
表9 大豆不同生育期所选植被指数与LAI的最佳回归模型的比较 Table 9 Comparisons between regression models based on the selected vegetation indices for LAI at different growth stages in soybean
生育期 Growth stage
光谱参数 Spectral parameter
回归方程 Equation
参数检验 Parametric test
模型校验 Calibration
模型验证 Validation
a
b
R2
CI (R2)
RRMSE
R2*
CI (R2* )
RRMSE*
R2
GM1
y=0.16e0.44x
0.16* *
0.44* *
0.646
0.642-0.650
16.39
0.614
0.609-0.618
20.24
PSSRa
y=0.42e0.09x
0.42* *
0.09* *
0.610
0.604-0.616
17.14
0.579
0.573-0.586
21.17
PSSRb
y=0.23x-1.02
0.23* *
-1.02* *
0.613
0.607-0.620
16.15
0.582
0.575-0.589
19.94
RVI (810, 560)
y=0.20e0.37x
0.20* *
0.37* *
0.649
0.644-0.653
16.31
0.616
0.612-0.621
20.14
SR (900, 680)
y=0.40e0.10x
0.40* *
0.10* *
0.619
0.613-0.624
16.85
0.588
0.582-0.594
20.81
RVI (921, 607)
y=0.33x-1.41
0.33* *
-1.41* *
0.635
0.629-0.641
16.70
0.603
0.597-0.610
20.62
RVI (825, 586)
y=0.03x1.83
0.03* *
1.83* *
0.677
0.672-0.681
15.71
0.643
0.638-0.648
19.40
RVI (829, 591)
y=0.30e0.19x
0.30* *
0.19* *
0.674
0.669-0.679
15.74
0.640
0.635-0.645
19.44
NDVI (770, 759, 568)
y= -19.01x+5.43
-19.01* *
5.43* *
0.586
0.582-0.589
16.72
0.557
0.553-0.560
20.65
NDVI (770, 757, 522)
y=16.56e-15.69x
16.56* *
-15.69* *
0.657
0.652-0.661
16.09
0.624
0.619-0.629
19.87
NDVI (770, 757, 520)
y=0.02x-2.24
0.02* *
-2.24* *
0.660
0.655-0.665
15.96
0.627
0.622-0.632
19.71
R4
GM1
y=0.03x2.38
0.03* *
2.38* *
0.565
0.560-0.570
21.72
0.541
0.536-0.547
22.38
NDCI
y=39.63x13.06
39.6* *
13.06* *
0.591
0.587-0.596
21.19
0.566
0.561-0.571
21.83
PSNDb
y=26.94x19.69
26.94* *
19.69* *
0.594
0.590-0.597
21.36
0.569
0.565-0.573
22.01
PSSRb
y=0.42e0.11x
0.42* *
0.11* *
0.609
0.605-0.613
20.87
0.583
0.579-0.588
21.50
RVI (810, 560)
y=0.03x2.19
0.03* *
2.19* *
0.566
0.561-0.572
21.76
0.542
0.536-0.548
22.42
RVI (756, 600)
y=0.60x-4.93
0.60* *
-4.93* *
0.582
0.576-0.587
20.38
0.557
0.551-0.563
21.00
RVI (763, 606)
y=0.01x2.19
0.01* *
2.19* *
0.634
0.630-0.638
20.14
0.607
0.603-0.612
20.75
RVI (763, 606)
y=0.38e0.14x
0.38* *
0.14* *
0.639
0.635-0.643
19.95
0.612
0.608-0.616
20.55
NDVI (907, 756, 531)
y= -74.33x+14.64
-74.33* *
14.64* *
0.513
0.508-0.518
21.99
0.491
0.486-0.497
22.65
NDVI (827, 757, 525)
y=75.87e-25.82x
75.87* *
-25.82* *
0.600
0.595-0.604
20.69
0.575
0.570-0.580
21.32
NDVI (894, 757, 528)
y=0.01x-3.05
0.01* *
-3.05* *
0.601
0.597-0.606
20.56
0.576
0.571-0.581
21.18
R5
GM1
y=0.06x1.99
0.06* *
1.99* *
0.650
0.646-0.654
20.14
0.621
0.616-0.625
20.08
GM2
y=0.14x1.56
0.14* *
1.56* *
0.610
0.605-0.614
21.19
0.582
0.577-0.588
21.12
ND705
y=0.06e5.85x
0.06* *
5.85* *
0.591
0.586-0.596
21.64
0.564
0.558-0.570
21.57
PSSRb
y=0.06x1.46
0.06* *
1.46* *
0.630
0.628-0.637
20.72
0.602
0.596-0.607
20.65
RVI (810, 560)
y=0.07x1.82
0.07* *
1.82* *
0.653
0.649-0.657
20.02
0.623
0.619-0.628
19.96
RVI (807, 583)
y=0.45x-1.89
0.45* *
-1.89* *
0.577
0.573-0.582
19.80
0.551
0.546-0.556
19.74
RVI (744, 580)
y=0.06x1.79
0.06* *
1.79* *
0.664
0.661-0.667
19.83
0.634
0.631-0.638
19.77
RVI (741, 580)
y=0.42e0.22x
0.42* *
0.22* *
0.661
0.658-0.664
19.98
0.631
0.628-0.635
19.92
NDVI (770, 759, 560)
y=-26.81x+7.63
-26.81* *
7.63* *
0.506
0.501-0.509
21.40
0.483
0.478-0.488
21.33
NDVI (771, 756, 560)
y=16.56e-9.87x
16.56* *
-9.87* *
0.635
0.631-0.639
20.45
0.606
0.602-0.611
20.39
NDVI (771, 756, 560)
y=0.11x-1.89
0.11* *
-1.89* *
0.654
0.650-0.657
20.04
0.624
0.620-0.629
19.98
a and b are the two regression parameters in a corresponding model, such as linear function (), power function () and exponential function (). CI (R2) and CI (R2* ) stand for confidence interval of R2and R2* , respectively. a和b代表线性模型()、幂函数模型()和指数模型()的回归参数。CI (R2)和CI (R2* )分别为R2置信区间和R2* 置信区间。
表9 大豆不同生育期所选植被指数与LAI的最佳回归模型的比较 Table 9 Comparisons between regression models based on the selected vegetation indices for LAI at different growth stages in soybean
Watson DJ. Comparative physiological studies on the growth of field crops: I. Variation in net assimilation rate and leaf area between species and varieties, and within and between years. , 1947, 11: 41-76[本文引用:1][JCR: 0.657]
[2]
HaboudaneD, Miller JR, PatteyE, Zarco-Tejada P J, Strachan I B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. , 2004, 90: 337-352[本文引用:2][JCR: 5.103]
[3]
Goetz SJ, Prince SD. Remote sensing of net primary production in boreal forest stand s. , 1996, 78: 149-179[本文引用:1]
[4]
Moran MS, Maas SJ, Pinter Jr P J. Combining remote sensing and modeling for estimating surface evaporation and biomass production. , 1995, 12: 335-353[本文引用:1]
[5]
Tucker CJ, Holben BN, Elgin J H Jr, McMurtrey J E. Relationship of spectral data to grain yield variation. , 1980, 46: 657-666[本文引用:1]
[6]
Lam HM, XuX, LiuX, ChenW, YangG, Wong FL, Li MW, HeW, QinN, WangB, LiJ, JianM, WangJ, ShaoG, WangJ, Sun SS, ZhangG. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. , 2010, 42: 1053-1059[本文引用:1][JCR: 35.209]
[7]
VaesenK, GilliamsS, NackaertsK, CoppinP. Ground-measured spectral signatures as indicators of ground cover and leaf area index: the case of paddy rice. , 2001, 69: 13-25[本文引用:1][JCR: 2.474]
[8]
Thenkabail PS, Smith RB, De PauwE. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. , 2000, 71: 158-182[本文引用:2][JCR: 5.103]
[9]
MutangaO, Skidmore A K, van Wieren S. Discriminating tropical grass (Cenchrus ciliaris) canopies grown under different nitrogen treatments using spectroradiometry. , 2003, 57: 263-272[本文引用:1]
[10]
Miller JR, Hare EW, WuJ. Quantitative characterization of the vegetation red edge reflectance: 1. An inverted-Gaussian reflectance model. , 1990, 11: 1755-1773[本文引用:1]
[11]
薛利红, 曹卫星, 罗卫红, 王绍华. 光谱植被指数与水稻叶面积指数相关性的研究. , 2004, 28: 47-52Xue LH, Cao WX, Luo WH, Wang S H. Relationship between spectral vegetation indices and LAI in rice. Acta Phytoecol Sin, 2004, 28: 47-()[本文引用:1]
[12]
吴琼, 齐波, 赵团结, 姚鑫锋, 朱艳, 盖钧镒. 高光谱遥感估测大豆冠层生长和籽粒产量的探讨. , 2013, 39: 309-318WuQ, QiB, Zhao TJ, Yao XF, ZhuY, Gai JY. A tentative study on utilization of canopy hyperspectral reflectance to estimate canopy growth and seed yield in soybean. , 2013, 39: 309-318 (in Chinese with English abstract)[本文引用:2][CJCR: 1.667]
[13]
宋开山, 张柏, 王宗明, 张渊智, 刘焕军. 基于人工神经网络的大豆叶面积高光谱反演研究. , 2006, 39: 1138-1145Song KS, ZhangB, Wang ZM, Zhang YZ, Liu HJ. Soybean LAI estimation with in-situ collected hyperspectral data based on BP-neural networks. , 2006, 39: 1138-1145 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
[14]
黄春燕, 刘胜利, 王登伟, 战勇, 张恒斌, 袁杰, 马勤建, 陈燕, 赵鹏举. 大豆叶面积指数的高光谱估算模型研究. , 2008, 27: 228-232Huang CY, Liu SL, Wang DW, ZhanY, Zhang HB, YuanJ, Ma QJ, ChenY, Zhao PJ. Models for estimating soybean leaf area index using hyperspectral data. , 2008, 27: 228-232 (in Chinese with English abstract)[本文引用:1][CJCR: 0.886]
[15]
Gitelson AA. Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. , 2004, 161: 165-173[本文引用:1][JCR: 2.699]
[16]
WangW, YaoX, Yao XF, Tian YC, Liu XJ, NiJ, Cao WD, ZhuY. Estimating leaf nitrogen concentration with three-band vegetation indices in rice and wheat. , 2012, 129: 90-98[本文引用:1][JCR: 2.474]
[17]
Gitelson AA, Merzlyak MN. Signature analysis of leaf reflectance spectra: algorithm development for remote sensing of chlorophyll. , 1996, 148: 494-500[本文引用:1][JCR: 2.699]
[18]
Gutierrez-RodriguezM, Escalante-Estrada J A, Rodriguez gonzalez M T, Reynolds J P. Canopy reflectance indices and its relationship with yield in common bean plants (Phaseolus vulgaris L. ) with phosphorous supply. , 2006, 2: 203-207[本文引用:1][CJCR: 0.4625]
[19]
MarshakA, KnyazikhinY, Davis AB, Wiscombe WJ, PilewskieP. Cloud-vegetation interaction: use of normalized difference cloud index for estimation of cloud optical thickness. , 2000, 27: 1695-1698[本文引用:1][JCR: 3.982]
[20]
ShibayamaM, AkiyamaT. Seasonal visible, near-infrared and mid-infrared spectra of rice canopies in relation to lai and above- ground dry phytomass. , 1989, 27: 119-127[本文引用:1][JCR: 5.103]
[21]
Blackburn GA. Quantifying chlorophylls and caroteniods at leaf and canopy scales: an evaluation of some hyperspectral approaches. , 1998, 66: 273-285[本文引用:1][JCR: 5.103]
[22]
AparicioN, VillegasD, CasadesusJ, Araus JL, RoyoC. Spectral vegetation indices as nondestructive tools for determining durum wheat yield. , 2000, 92: 83-91[本文引用:1][JCR: 1.518]
[23]
LoagueK, Green RE. Statistical and graphical methods for evaluating solute transport models: overview and application. , 1991, 7: 51-73[本文引用:1][JCR: 2.885]
[24]
Jamieson PD, Porter JR, Wilson DR. A test of the computer simulation model ARCWHEAT1 on wheat crops grown in New Zealand . , 1991, 27: 337-350[本文引用:1][JCR: 2.474]
[25]
EfronB, SteinC. The Jackknife estimate of variance. , 1981, 9: 586-596[本文引用:1][JCR: 2.528]
[26]
EfronB. The Jackknife, the Bootstrap and Other Resampling Plans. , 1982. pp 14-22[本文引用:1]
[27]
Heege HJ, ReuschS, ThiessenE. Prospects and results for optical systems for site-specific on-the-go control of nitrogen-top- dressing in Germany. , 2008, 9: 115-131[本文引用:1][JCR: 1.728]
[28]
ErdleK, MisteleB, SchmidhalterU. Comparison of active and passive spectral sensors in discriminating biomass parameters and nitrogen status in wheat cultivars. , 2011, 124: 74-84[本文引用:1][JCR: 2.474]
[29]
Goel PK, Prasher SO, Land ry JA, Patel RM, Viau AA, Miller JR. Estimation of crop biophysical parameters through airborne and field hyperspectral remote sensing. , 2003, 46: 1235-1246[本文引用:1]
[30]
Zarco-Tejada PJ, Miller JR, Noland TL, Mohammed GH, Sampson PH. Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data. , 2001, 39: 1491-1507[本文引用:1][JCR: 3.467]
[31]
BaretF, GuyotG. Potentials and limits of vegetation indexes for lai and apar assessment. , 1991, 35: 161-173[本文引用:1][JCR: 5.103]
[32]
Broge NH, LeblancE. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. , 2001, 76: 156-172[本文引用:1][JCR: 5.103]
[33]
Chen JM. Evaluation of vegetation indices and a modified simple ratio for boreal applications. , 1996, 22: 229-242[本文引用:1][JCR: 0.986]
[34]
BrownL, Chen JM, Leblanc SG, CihlarJ. A shortwave infrared modification to the simple ratio for LAI retrieval in boreal forests: an image and model analysis. , 2000, 71: 16-25[本文引用:1][JCR: 5.103]