摘要为研究棉田化学钾肥的秸秆替代施入对棉仁含油量的影响及其生理生化基础, 2012—2013年于江苏省农业科学院试验站进行麦棉两熟周年秸秆还田定位试验, 在棉花季设置小麦秸秆不还田(0, W0)、半量还田(4500 kg hm-2, W1)和全量还田(9000 kg hm-2, W2), 在小麦季设置棉花秸秆不还田(0, C0)、半量还田(3750 kg hm-2, C1)和全量还田(7500 kg hm-2, C2), 两种作物秸秆不同还田量组合后共9个秸秆还田处理, 另根据秸秆折合钾肥量, 于2012年棉花季开始增设2个钾肥用量处理, 即150 kg K2O hm-2和300 kg K2O hm-2(K1和K2)。研究显示, 在适宜氮肥(300 kg N hm-2)、磷肥(150 kg P2O5 hm-2)水平下, 随着逐年秸秆还田与施钾, 土壤速效氮、有效磷年际间差异均不显著, 但土壤速效钾含量年际间存在显著差异; 花后17 d、24 d是不同处理条件下棉仁含油量差异形成的关键时期; 相较于6-磷酸葡萄糖脱氢酶(G6PDH)、磷酸烯醇式丙酮酸羧化酶(PEPC), 花后17 d、24 d的磷脂酸磷酸酯酶(PPase)的活性对棉仁油分的通径系数更大。结果表明, 短期秸秆还田与单施化学钾肥均主要影响棉田土壤速效钾含量; 从棉仁油分累积角度来看, 秸秆还田可在很大程度上替代化学钾的施入; 花后17 d、24 d棉仁钾含量是影响棉仁含油量的关键因子; 秸秆还田替代化学钾肥条件下, PPase较G6PDH、PEPC对棉仁油分的影响更为关键。
关键词:棉仁; 油分; 秸秆还田; 钾肥 Effects of Straw-Returning Instead of Chemical Potassium Application on Oil Accumulation in cotton seed Embryo in Wheat-Cotton Rotation System SONG Guang-Lei, SUI Ning, YU Chao-Ran, ZHANG Fan, MENG Ya-Li, CHEN Bing-Lin, ZHAO Wen-Qing, WANG You-Hua* Nanjing Agricultural University / Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agriculture, Nanjing 210095, China
AbstractA field experiment was carried out to study the influence of straw returning to field (taking the place of chemical potassium fertilization) on cotton seed lipid content and its physiological mechanism in 2012—2013 in the research station of Jiangsu Academy of Agricultural Sciences in Nanjing. Application rates of wheat straw were designed as 0, 4500, and 9000 kg ha-1(W0, W1, and W2) in cotton season. Similarly, application rates of cotton straw were designed as 0, 3750, and 7500 kg ha-1(C0, C1, and C2) in wheat reason. There were nine straw-returning treatments with combinations of two kinds of crop straw at returning different amounts. Additionally, according to the straw potassium content, K fertilizer rates were newly designed as 150 and 300 kg K2O ha-1 (K1 and K2) in cotton season in 2012. The results showed that under the condition of optimized nitrogen (300 kg N ha-1) and phosphate (150 kg P2O5 ha-1) fertilization levels, with straw returning and the chemical potassium fertilizer application year by year, the differences of soil available nitrogen and phosphorus between years were not significant, while those of soil K content were significantly different. The 17th day and 24th day after anthesis (DAA) were the key period for the difference of cotton seed oil formation. Under the chemical potassium fertilization and the straw returning condition, the phosphatidic acid phosphatase (PPase) contributed more to cotton seed oil accumulation than glucose 6-phosphate dehydrogenase (G6PDH) and phosphoenolpyruvate carboxylase (PEPC) in response to soil potassium nutrition. The result indicated that, the soil available K content was the major nutrition factor that was significantly affected by the two-year straw returning and the chemical potassium fertilizer application. Straw returning to field can take the place of chemical potassium application to a high extent. The amount of straw returning will affect potassium content of the soil. Low potassium stress will accelerate the aging of cotton plant, and might be a straight reason that caused the difference of oil content. The potassium content in the cotton seed at 17th day, 24th day after anthesis is a key nutrition factor that may lead to the difference of cotton seed oil content. The phosphatidic acid phosphatase (PPase) plays a more important role than glucose 6-phosphate dehydrogenase (G6PDH), phosphoenolpyruvate carboxylase (PEPC) in cotton seed oil accumulation in response to soil potassium nutrition.
Keyword:cotton seed embryo; Oil content; Returning straw; Potassium fertilizer Show Figures Show Figures
钾是植物正常生长发育所必需的大量营养元素之一[1], 在农业生产中至关重要[2]。棉花属于喜钾作物, 棉田土壤钾素不足时, 易出现缺钾性早衰, 导致棉花产量和品质下降[3, 4]。我国生产的钾肥仅能满足国内钾肥需求量的30%左右, 农田缺钾面积逐年扩大, 钾素亏缺已成为农业生产持续发展的限制因素之一[5]。而我国秸秆资源丰富[6], 秸秆还田具有替代化学钾肥的作用[7], 故实施棉田秸秆还田, 对减少化学钾肥的依赖具有重要的理论和实践意义。 棉籽作为世界重要的植物油来源, 其应用潜力方面的研究逐渐引起人们的关注[8, 9]。相关研究表明, 棉籽含油量因其生长季节、年份及地点变化而不同, 受温度[10]、肥料[11, 12, 13]等环境因素的影响。研究发现施钾显著提高棉籽油分含量和油分产量, 缺钾则降低其含油量[14, 15]。棉籽内油脂的形成离不开相关代谢酶的参与。同时胞质中高浓度的钾是维持酶活性的关键[16, 17]。基于酶活性高低可作为物质代谢途径强弱指标之一的观点, 有必要开展酶活性变化与脂肪合成途径之间关系的研究工作。然而目前对于秸秆还田替代化学钾肥条件下的棉仁油分累积特征及其相关酶活性变化尚未见研究报道。 本试验拟研究麦(转基因抗虫)棉两熟定位试验中周年秸秆还田替代化学施钾条件下棉仁含油量差异、棉仁油分累积特征、及其相关生理过程的酶活性变化, 以阐明秸秆替钾条件下影响棉仁油分累积的关键时期及其生理基础。 1 材料与方法1.1 试验地概况江苏省南京市(32° 02′ N, 118° 50′ E)江苏省农业科学院试验站土壤质地为黏质土, 偏酸性(pH 5.7), 试验开始前冬季休闲未种植其他作物。2011年供试土壤速效氮、有效磷与速效钾含量分别为24.2 mg kg-1、15.1 mg kg-1和154.6 mg kg-1。 1.2 试验设计麦棉两熟周年秸秆还田定位试验始于2011年4月棉花生长季。长江下游地区实际生产中, 高产条件下小麦籽粒产量6000 kg hm-2、棉花籽棉产量4500~6000 kg hm-2时, 可生产的小麦秸秆量约为9000 kg hm-2、棉花秸秆量约为7500 kg hm-2。据此, 本试验在棉花季设置小麦秸秆不还田(0, W0)、半量还田(4500 kg hm-2, W1)和全量还田(9000 kg hm-2, W2)(图1), 在小麦季设置棉花秸秆不还田(0, C0)、半量还田(3750 kg hm-2, C1)和全量还田(7500 kg hm-2, C2), 两种作物秸秆不同还田量组合后共9个秸秆还田处理。全量小麦秸秆钾含量约合150 kg K2O hm-2。全量棉花秸秆钾含量约合225 kg K2O hm-2。在2012年棉花季开始增设150 kg K2O hm-2和300 kg K2O hm-2(K1和K2) 2个钾肥用量处理, 钾肥仅在棉花生长季施用, 小麦生长季不施。 按照随机区组设计试验处理, 3次重复。小区面积28 m2(7 m× 4 m), 棉花7行区种植, 行距1 m, 株距0.3 m, 种植密度33 000株 hm-2。小麦条播, 行距15 cm, 播种量为150 kg hm-2。小麦秸秆覆盖还田, 待棉花初花期结合中耕培土将小麦秸秆翻入约10 cm土层; 棉花秸秆通过机械翻埋入土约10 cm, 然后进行小麦播种。 选用小麦品种宁麦13, 于每年11月5日至10日播种, 施氮磷肥, N、P2O5分别为300、150 kg hm-2。棉花品种选用长江流域棉区主栽转基因抗虫棉品种泗杂3号, 于4月25日营养钵育苗, 麦收后6月5日左右大苗移栽, 施氮量为300 kg hm-2, 按基肥40%、初花肥40%、盛花肥20%施用; 施磷量为150 kg hm-2, 棉花移栽时施用; 秸秆还田处理均不施钾肥, 施钾处理选用硫酸钾化肥(50%), 与小麦秸秆同期施入。其他田间管理措施均按高产栽培要求进行。 1.3 基础土壤养分测定2011— 2013年棉花生育期内, 苗期(6月5日)用取土器取0~20 cm土层土壤, 去杂, 过筛, 部分于-20℃冰箱保存待测定速效氮; 部分用于测定全氮、有机质、有效磷、速效钾。 采用凯氏定氮法测全氮[18]; 采用连续流动分析仪测速效氮[19]; 采用钼锑抗比色法测有效磷[19]; 用1.0 mol L-1乙酸铵溶液提取, 原子吸收分光光度计法测速效钾[18]。 图1 Fig. 1
图1 田间试验设计基础土壤指标测定于移栽期, 取1/2株距20 cm土层土壤, 测定速效氮、有效磷及速效钾含量。秸秆与基肥同期施入。W0: 小麦秸秆不还田; W1: 4500 kg hm-2小麦秸秆还田量; W2: 9000 kg hm-2小麦秸秆还田量; C0: 棉花秸秆不还田; C1: 3750 kg hm-2棉花秸秆还田量; C2: 7500 kg hm-2棉花秸秆还田量; K1: 150 kg K2O hm-2施钾量; K2: 300 kg K2O hm-2施钾量。Fig. 1 Trials design in fieldBasic available N, P and K at 1/2 spacing and 0-20 cm depth in the soil were determined during the transplanting period. Straw and fertilizer applied at the same period. W0: no application rates of wheat straw; W1: application rates of wheat straw were designed as 4500 kg ha-1; W2: application rates of wheat straw were designed as 9000 kg ha-1; C0: no application rates of cotton straw; C1: application rates of cotton straw were designed as 3750 kg ha-1; C2: application rates of wheat straw were designed as 7500 kg ha-1; K1: K fertilizer rates were designed as 150 kg K2O ha-1; K2: K fertilizer rates were designed as 300 kg K2O ha-1.
图2 土壤速效氮、有效磷、速效钾含量(2012-2013)* * 表示在0.01水平差异显著; ns: 差异不显著; F1: 2012年处理间差异; F2: 2013年处理间差异; FY: 年际间差异。其他缩写同图1。Fig. 2 The content of available N, P, and K in the soil in 2012 and 2013* * : significant differences at the 0.01 probability level; ns: not significant; F1: difference between treatments in 2012; F2: difference between treatments in 2013; FY: differences between years. Other abbreviations are the same as those given in Fig. 1.
表1 Table 1 表1(Table 1)
表1 棉仁产量、油分含量及油分产量变异来源分析(2012-2013) Table 1 Variation sources analysis of cotton seed embryo yield, oil content and oil yield in 2012 and 2013
变异来源 Sources of variation
棉仁产量 cotton seed embryo yield ( kg hm-2)
油分含量 Oil content (%)
油分产量 Oil yield (kg hm-2)
年份Y
0.981
66.406* *
0.001
小麦秸秆W
95.739* *
92.612* *
116.692* *
棉花秸秆C
2.078
1.434
2.473
Y× W
6.950* *
3.925*
7.301* *
Y× C
1.894
0.250
1.705
W× C
0.468
1.288
0.524
Y× W× C
0.463
1.332
0.498
Y: year; W: wheat straw; C: cotton residue. F-values and significance levels (* * P < 0.01, * P < 0.05) are given.
表1 棉仁产量、油分含量及油分产量变异来源分析(2012-2013) Table 1 Variation sources analysis of cotton seed embryo yield, oil content and oil yield in 2012 and 2013
表2 麦棉两熟周年秸秆还田对棉仁产量、棉仁油分产量及棉仁含油量的影响(2012-2013) Table 2 Effects of straw-returning on cotton seed embryo yield, oil content and oil yield in the wheat-cotton rotation system in 2012 and 2013
处理 Treatment
2012
2013
棉仁产量 Embryo yield ( kg hm-2)
棉仁含油量 Embryo oil content (%)
棉仁油分产量 Embryo oil yield (kg hm-2)
棉仁产量 Embryo yield (kg hm-2)
棉仁含油量 Embryo oil content (%)
棉仁油分产量 Embryo oil yield (kg hm-2)
C0W2
1072 a
35.4 a
379 a
1130 a
35.1 a
393 a
C0W1
1055 a
34.8 a
367 a
769 b
33.0 b
254 b
C0W0
442 b
33.2 b
147 b
573 c
31.7 c
181 c
C1W2
1055 a
35.2 a
371 a
1091 a
34.5 a
376 a
C1W1
980 a
34.8 a
340 a
891 b
33.3 a
297 b
C1W0
485 b
33.2 b
161 b
568 c
31.8 b
181 c
C2W2
1017 a
35.7 a
362 a
1177 a
34.8 a
409 a
C2W1
1048 a
35.1 a
369 a
1009 b
34.3 a
345 b
C2W0
497 b
33.6 b
167 b
738 c
31.0 b
229 c
K2
871 a
35.9 a
313 a
1335 a
35.4 a
472 a
K1
1018 a
35.6 a
362 a
1224 a
34.3 b
419 a
K0
442 b
33.2 b
147 b
573 b
30.6 c
175 b
Values followed by a different letter within the same column are significantly different at the 0.05 probability level, respectively. Abbreviations are the same as those given in Fig. 1. 同一列中不同字母表示在0.05水平上差异显著。缩写同图1。
表2 麦棉两熟周年秸秆还田对棉仁产量、棉仁油分产量及棉仁含油量的影响(2012-2013) Table 2 Effects of straw-returning on cotton seed embryo yield, oil content and oil yield in the wheat-cotton rotation system in 2012 and 2013
图3 麦棉两熟周年秸秆还田对棉仁油分累积的影响(2012-2013)缩写同图1。曲线趋势相似, 故C2W2、C2W1、C2W0、C1W2、C1W1、C1W0未列出。Fig. 3 Effect of straw-returning on cotton seed embryo oil accumulation in the wheat-cotton rotation system in 2012 and 2013Abbreviations are the same as those given in Fig. 1. C2W2, C2W1, C2W0, C1W2, C1W1, C1W0 are not listed due to the similar curve trend.
表3 Table 3 表3(Table 3)
表3 棉仁油分累积特征值之间的相关性分析(2012-2013) Table 3 Correlation between OCmax, OCobs and DPA1, DPA2, T(OC), and V(OC)max in 2012 and 2013
年份 Year
性状 Trait
DPA1
DPA2
T(OC)
V(OC)max
2012
OCmax
0.872* *
0.911* *
0.848* *
-0.815* *
OCobs
0.819* *
0.806* *
0.714*
-0.678*
2013
OCmax
0.870* *
0.944* *
0.891* *
-0.688*
OCobs
0.918* *
0.946* *
0.826* *
-0.593
DPA1: oil rapid accumulation starting time; DPA2: oil rapid accumulation termination time; T(OC): duration of oil speedy accumulation; V(OC)max: maximal speed of oil accumulation; OCmax: theoretical maximum of oil content; OCobs: final oil content (measured value); * and * * indicate significant correlation at the 0.05 and 0.01 probability levels, respectively (n=11, R20.05=0.6, R20.01 = 0.7). DPA1: 油分快速累积起始时期; DPA2: 油分快速累积终止时期; T(OC): 油分快速累积持续时期; V(OC)max: 油分最大累积速率; OCmax: 油分含量理论最大值; OCobs: 最终油分含量(实测值); * 和* * 分别表示0.05和0.01水平相关显著(n=11, R20.05=0.6, R20.01=0.7)。
表3 棉仁油分累积特征值之间的相关性分析(2012-2013) Table 3 Correlation between OCmax, OCobs and DPA1, DPA2, T(OC), and V(OC)max in 2012 and 2013
图4 麦棉两熟周年秸秆还田对棉仁钾含量的影响(2012-2013)* 与* * : 在0.05与0.01水平差异显著。缩写同图1。曲线趋势相似, 故C2W2、C2W1、C2W0、C1W2、C1W1、C1W0未列出。Fig. 4 Effect of straw-returning on the K content of cotton seed embryo in the wheat-cotton rotation system in 2012 and 2013* and * * : significant differences at the 0.05 and 0.01 probability levels, respectively. Abbreviations are the same as those given in Fig. 1. C2W2, C2W1, C2W0, C1W2, C1W1, C1W0 are not listed due to the similar curve trend.
图5 棉仁钾含量与含油量相关性分析(2012-2013)* * : 在0.01水平相关显著(n=11, R20.05=0.3626; R20.01=0.5408)。 DAA: 花后天数; BOS: 吐絮期。Fig. 5 Correlation between average K content of developing cotton embryo and its final oil content in 2012 and 2013* * : significant correlation at 0.01 probability level (n=11, R20.05=0.3626; R20.01=0.5408). DAA: days after anthesis; BOS: boll opening stage.
图6 麦棉两熟秸秆还田对棉仁发育过程中G6PDH、PPase、PEPC活性的影响(2012-2013)缩写同图1。因曲线趋势相似, 故C2W2、C2W1、C2W0、C1W2、C1W1、C1W0未列出。Fig. 6 Effect of consecutive crop residue incorporation on activities of G6PDH, PPase, PEPC during the development of cotton seed embryo in the wheat-cotton rotation system in 2012 and 2013Abbreviations are the same as those given in Fig. 1. C2W2, C2W1, C2W0, C1W2, C1W1, C1W0 are not listed due to the similar curve trend.
MarschnerH, Rimmington GM. Mineral nutrition of higher plants. , 1988, 11: 147-148[本文引用:1]
[2]
ZörbC, SenbayramM, PeiterE. Potassium in agriculture-status and perspectives. J Plant Physiol, 2014, 171: 656-669[本文引用:1]
[3]
董合忠, 唐薇, 李振怀, 张冬梅, 李维江. 棉花缺钾引起的形态和生理异常. 西北植物学报, 2005, 25: 615-624Dong HZ, TangW, Li ZH, Zhang DM, Li WJ. Morphological and physiological disorders of cotton resulting from potassium deficiency. Acta Bot Boreali-Occident Sin, 2005, 25: 615-624 (in Chinese with English abstract)[本文引用:1]
[4]
Zhang ZY, Tian XL, Duan LS, Wang BM, He ZP, Li ZH. Differential responses of conventional and Bt-transgenic cotton to potassium deficiency. J Plant Nutr, 2007, 30: 659-670[本文引用:1]
[5]
白由路. 高价格下我国钾肥的应变策略. 中国土壤与肥料, 2009, (3): 1-4Bai YL. Response strategy of potassium fertilizer under high price in China. Soil Fert Sci China, 2009, (3): 1-4 (in Chinese with English abstract)[本文引用:1]
[6]
王亚静, 毕于运, 高春雨. 中国秸秆资源可收集利用量及其适宜性评价. 中国农业科学, 2010, 43: 1852-1859Wang YJ, Bi YY, Gao CY. Collectable amount sand suitability evaluation of straw resource in China. Sci Agric Sin, 2010, 43: 1852-1859 (in Chinese with English abstract)[本文引用:1]
[7]
李继福, 鲁剑巍, 任涛, 丛日环, 李小坤, 周鹂, 杨文兵, 戴志刚. 稻田不同供钾能力条件下秸秆还田替代钾肥效果. , 2014, 47: 292-302Li JF, Lu JW, RenT, Cong RH, Li XH, ZhouL, Yang WB, Dai ZG. Effect of straw incorporation substitute for K-fertilizer under different paddy soil K supply capacities. , 2014, 47: 292-302 (in Chinese with English abstract)[本文引用:1]
[8]
KaraosmanogluF, TuterM, GolluE, YanmazS, AltintigE. Fuel properties of cotton seed oil. Energy Sourc, 1999, 21: 821-828. [本文引用:1]
[9]
Meneghetti S MP, Meneghetti MR, Serra TM, Barbosa DC, Wolf CR. Biodiesel production from vegetable oil mixtures: cotton seed, soybean, and castor oils. Energy Fuels, 2007, 21: 3746-3747[本文引用:1]
[10]
Gipson JR, Joham HE. Influence of night temperature on growth and development of cotton (Gossypium hirsutum L. ): IV. Seed quality. Agron J, 1969, 61: 365-367[本文引用:1]
[11]
Anderson OE, Worthington RE. Boron and manganese effects on protein, oil content, and fatty acid composition of cotton seed. Agron J, 1971, 63: 566-569[本文引用:1]
[12]
Leffler HR, Elmore CD, Hesketh JD. Seasonal and fertility-related changes in cotton seed protein quantity and quality. Crop Sci1977, 17: 953-956[本文引用:1]
[13]
Elmore CD, Spurgeon WI, Thom WQ. Nitrogen fertilization increases N and alters amino acid concentration of cotton seed. Agron J, 1979, 71: 713-716[本文引用:1]
[14]
Sawan ZM, Hafez SA, Basyony AE, Alkassas A E E R. Cotton seed, protein, oil yields and oil properties as influenced by potassium fertilization and foliar application of zinc and phosphorus. , 2006, 2: 66-74[本文引用:1]
[15]
Sawan ZM, Hafezb SA, Basyony AE, Alkassas A E E R. Cotton seed: protein, oil yields, and oil properties as influenced by potassium fertilization and foliar application of zinc and phosphorus. , 2007, 58: 40-48[本文引用:1]
[16]
Leigh RA, Wyn-Jones R G. Cellular compartmentation in plant nutrition: the selective cytoplasm and the promiscuous vacuole. , 1986, 2: 249-279[本文引用:1]
[17]
Suelter CH. Role of potassium in enzyme catalysis. , 1985, 337-350[本文引用:1]
[18]
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 1999. p 147Lu RK. Beijing: China Agricultural Science and Technology Press, 1999. p 147[本文引用:2]
[19]
FanM, JiangR, LiuX, ZhangF, LuS, ZengX, ChristieP. Interactions between non-flooded mulching cultivation and varying nitrogen inputs in rice-wheat rotations. Field Crops Res, 2005, 91: 307-318[本文引用:2]
[20]
FeilB, Moser SB, JampatongS, StampP. Mineral composition of the grains of tropical maize varieties as affected by pre-anthesis drought and rate of nitrogen fertilization. , 2005, 45: 516-523[本文引用:]
[21]
陈玉萍, 刘后利. 甘蓝型油菜子油分的积累与某些生理变化关系的研究. 武汉植物学研究, 1995, 13: 240-246Chen YP, Liu HL. Studies on the relationship between oil content and the change of biological metabolism in Brassica napus L. seed. J Wuhan Bot Res, 1995, 13: 240-246[本文引用:1]
[22]
Tian WN, Braunstein LD, PangJ, Stuhlmeier KM, Xi QC, TianX, Stanton RC. Importance of glucose-6-phosphate dehydrogenase activity for cell growth. J Biol Chem, 1998, 273: 10609-10617[本文引用:1]
SebeiK, OuerghiZ, KallelH, BoukhchinaS. Evolution of phosphoenolpyruvate carboxylase activity and lipid content during seed maturation of two spring rapeseed cultivars (Brassica napus L. ). Comptes Rendus Biol, 2006, 329, 719-725[本文引用:1]
[25]
Edmeades DC. The long-term effects of manures and fertilisers on soil productivity and quality: a review. Nutr Cycl Agroecosyst, 2003, 66: 165-180[本文引用:1]
[26]
SteinerC, Teixeira WG, LehmannJ, Nehls T, de Macêdo J L V, Blum W E H, Zech W. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil, 2007, 291: 275-290[本文引用:1]
[27]
ZhaoY, WangP, LiJ, ChenY, LiuS. The effects of two organic manures on soil properties and crop yields on a temperate calcareous soil under a wheat-maize cropping system. Eur J Agron, 2009, 31: 36-42[本文引用:1]
[28]
ZhuH, WuJ, HuangD, ZhuQ, LiuS, SuY, WeiW. Improving fertility and productivity of a highly-weathered upland soil in subtropical China by incorporating rice straw. Plant Soil, 2010, 331: 427-437[本文引用:1]
[29]
SuiN, Zhou ZG, Yu CR, Liu RX, Yang CQ, ZhangF, Song GL, MengY. Yield and potassium use efficiency of cotton with wheat straw incorporation and potassium fertilization on soils with various conditions in the wheat-cotton rotation system. Field Crops Res, 2015, 172: 132-144[本文引用:1]
[30]
董合忠, 李维江, 唐薇, 张冬梅. 棉花生理性早衰研究进展. 棉花学报, 2005, 17: 56-60Dong HZ, Li WJ, TangW, Zhang D M. Research progress in physiological premature senescence in cotton. Cotton Sci, 2005, 17: 56-60[本文引用:1]
[31]
杨铁钢, 黄树梅, 靳永胜, 孟菊茹, 刘凤玲. 棉株载铃量对其主要生育性状的影响. 华北农学报, 1999, 14(3): 65-70Yang TG, Huang SM, Jin YS, Meng JR, Liu FL. Effects of boll load in a cotton plant on major developmental traits. Acta Agric Boreali-Sin, 1999, 14(03): 65-70[本文引用:1]
[32]
WakaoS, BenningC. Genome-wide analysis of glucose-6- phosphate dehydrogenases in Arabidopsis. , 2005, 41: 243-256[本文引用:1]
[33]
SchwenderJ, Ohlrogge JB, Shachar-HillY. A flux model of glycolysis and the oxidative pentosephosphate pathway in developing Brassica napus embryos. J Biol Chem, 2003, 278: 29442-29453[本文引用:1]
[34]
陈锦清, 郎春秀, 胡张华, 刘智宏, 黄锐之. 反义PEP基因调控油菜籽粒蛋白质/油脂含量比率的研究. 农业生物技术学报, 1999, 7: 316-320Chen JQ, Lang CX, Hu ZH, Liu ZH, Huang RZ. Antisense PEP gene regulates to ratio of protein and lipid content in Brassica napus seeds. J Agric Biotechnol, 1999, 7: 316-320[本文引用:1]
[35]
印南日, 李培武, 周海燕, 白艺珍, 丁小霞. 我国食用棉籽油质量安全. 中国农业科技导报, 2013, (4): 20-24Yin NR, Li PW, Zhou HY, Bai YZ, Ding XX. Quality and safety of edible cotton seed oil in China. J Agric Sci Technol, 2013, (4): 20-24[本文引用:1]