关键词:秸秆覆盖; 产量; 水分利用效率; 根系; SPAD; 干物质积累 Effects of Autumn Straw Mulching on Physiological Characteristics and Water Use Efficiency in Winter Wheat Grown in Hilly Drought Region WU Xiao-Li, TANG Yong-Lu*, LI Chao-Su, WU Chun, HUANG Gang Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
AbstractSeasonal drought during winter and spring often occurs in southwest hilly area of China, which severely influences seedling standing and yield in winter wheat. In this study, we conducted a two-year field experiment in Jianyang, Sichuan province in the 2012-2013 (dry) and 2013-2014 (wet) growing seasons to explore the effects of straw mulching on physiological characteristics, water use efficiency (WUE), and grain yield of winter wheat. Four treatments were designed, namely non-mulching (CK), non-mulching plus two irrigations after sowing and at jointing stage (T1), straw mulching before sowing (T2), and straw mulching before sowing and during wheat growth (T3). In the dry year (2012-2013), the yields of T1, T2, and T3 were 4151, 3926, and 3603 kg ha-1, which were 42.0%, 34.3%, and 23.2% higher than those of CK, respectively, and the WUEs of T1, T2, and T3 increased by 27.2%, 29.6%, and 18.8%, respectively. However, in the wet year (2013-2014), the yield variation among treatments was slight. In the dry year, irrigation or straw mulching showed the effects on enhancing dry matter accumulation from sowing to anthesis and inhibiting SPAD attenuation of flag leaf and penultimate leaf after anthesis and straw mulching increased soil moisture content in pre-sowing and whole growing period. Compared with CK, T2 significantly increased root dry matter, root-to-shoot ratio, root length density, root dry matter density, and root surface area density in some critical growth stages, and highly enhanced root system in deep soil. According to correlation analysis, grain yield was positively correlated with dry matter accumulations in the periods of sowing-tillering, tillering-jointing, jointing-anthesis, and anthesis-maturity, SPAD values of flag and penultimate leaf after anthesis, and WUE. These results indicate that straw mulch before wheat sowing can maintain soil moisture, delay leaf senescence and increase grain yield in winter wheat.
Keyword:Straw mulching; Yield; Water use efficiency; Root; SPAD; Dry matter accumulation Show Figures Show Figures
引言四川丘陵区小麦常年播种面积约86.7万公顷, 其中70%分布在旱地坡耕地[1]。丘陵区冬干、春旱频繁, 小麦生育期间降水量200 mm左右, 干旱年份甚至不足100 mm, 季节性干旱问题十分突出, 严重影响小麦立苗质量、生长发育及产量[2, 3]。农民传统上于播种后浇清粪水以促进出苗, 近年来许多地方则开始修建蓄水池, 以便在播后和遭遇干旱时灌溉, 缓解干旱的影响。另一方面, 该区域小麦播前的休闲期正值降雨较多的秋季, 如何通过科学的耕作或栽培措施最大限度地纳蓄休闲期自然降水, 提高土壤贮水、改善播前墒情、提高播种质量, 就成为旱地小麦高产的关键所在。同时, 随着农村劳动力的大量转移和燃料结构的改善, 秸秆完全成为生产废弃物, 处理不当会影响耕作、播种等农事作业[4]。因此, 研究秸秆处理方式对土壤墒情、后茬作物生长发育及产量的影响, 对提升四川丘陵区小麦生产水平和旱地综合生产能力具有十分重要的意义。 研究表明, 秸秆覆盖能显著提高土壤有机质含量[5]、改善土壤结构[6]、增加雨水入渗、减少径流及水分无效蒸发, 从而提高土壤保水能力[7]。Govaerts等[8]报道, 在免耕条件下覆盖处理在关键生育期的土壤含水量都高于不覆盖。秋收后玉米秸秆含水量高, 气温也高, 及时覆盖有利于保墒保苗[9]。此外, 前茬玉米秸秆还田后, 下茬小麦基本苗数略有减少[10], 单株次生根数和最高分蘖数增加[11], 不同生育时期的植株增高, 茎秆变粗, 植株干物质重增加, 收获前绿叶数增加, 成穗率提高[12]。不仅如此, 秸秆还田可显著促进各时期根系的生长并显著提高小麦根系活力, 且增加根系在地表下30 cm土壤中的分布[13]。适量的玉米秸秆还田还能提高小麦叶绿素含量与光合速率、增强旗叶抗衰老能力, 有利于光合产物合成、转化和积累[14, 15]。多数试验表明, 玉米秸秆整株还田或者粉碎还田后, 下茬小麦增产效果显著[16, 17, 18], 然而也有秸秆还田导致小麦减产的报道[12, 18], 减产原因有人认为是秸秆单独还田导致土壤C/N失衡[19], 有人认为是秸秆对麦苗生长具有化感作用, 减小了幼苗生物量[20]。上述研究大多在一年一熟制地区进行, 对该耕作制度下的小麦增产稳产提供了有价值的参考。四川丘陵旱地具有独特的地理生态特点, 种植制度以间套作较多, 小麦季的田间生态环境与单一作物连作或水稻-小麦、冬小麦-夏玉米轮作制度下的麦田生态有较大差异。本研究利用小麦/玉米套作体系进行了连续两年度的田间试验, 评价秋季秸秆就地覆盖对丘陵旱地小麦产量及干物质积累的影响, 阐明不同覆盖模式对丘陵旱地小麦土壤水分、叶片及根系发育的影响及其同产量的关系, 为四川丘陵旱地完善秸秆还田技术, 提高小麦生产水平提供理论支持。 1 材料与方法1.1 试验设计2012— 2013和2013— 2014年度, 在四川省简阳市芦葭镇英明村(30° 17′ N, 104° 30′ E, 海拔750 m)同一地块进行小麦/玉米套作。试验区域属亚热带湿润气候, 年均温度17° C, 年降雨量900 mm, 主要集中在夏季和秋季, 小麦播种至抽穗期易遭受干旱影响。2012— 2013年度属严重干旱年, 从2012年11月至2013年3月降雨仅有17.9 mm, 约为30年平均值的26%; 2013— 2014年度整个生育阶段的降水量高于常年约20%, 2013年11月至2014年3月降雨81.6 mm, 高出30年平均值的17.0%, 为湿润年(图1)。试验田土壤为黏壤。0~20 cm的土壤含有机质14.80 g kg-1, pH 7.82, 全氮、磷和钾分别为1.42、0.99和18.64 g kg-1; 有效氮、磷、钾分别为74.08、15.76和91.38 mg kg-1。 随机区组设计, 3次重复, 小区面积1 m × 8 m = 8 m2。种植带宽2 m, 小麦和玉米各占1 m。小麦带种4行, 品种为川麦104, 用2B-4播种机(中江县泽丰小型农机制造有限公司, 四川德阳)播种, 播种量为158 kg hm-2(净), 行距25 cm; 玉米带种2行, 品种为成单30, 人工直播, 每穴2粒, 行距为1 m, 穴距约23 cm。共设4个处理, 分别是玉米收获后秸秆移出地外+小麦播后无秸秆覆盖(对照, CK)、CK+播种后及拔节期各浇水1次(T1)、玉米收获后秸秆就地覆盖+小麦播后无秸秆覆盖(T2)和玉米收获后秸秆就地覆盖+小麦播后行间整秆覆盖(T3)。秸秆覆盖量为13 800 kg hm-2 (秸秆含水量约9%), 覆盖时间分别是2012年8月28日和2013年8月12日。播种前, 对所有小区旋耕1次, 深度15 cm。对秸秆覆盖处理在播前先将未腐解完的残留秸秆转移到小区外, T3处理在播后再将残余秸秆盖于行间。播前施复合肥(N-P-K, 15%-15%-15%) 600 kg hm-2作底肥, 尿素130 kg hm-2在分蘖中期作为追肥, 氮肥的底追比为6︰4。苗期进行化学除草, 孕穗和灌浆期防治蚜虫。T1处理在播种后、拔节期各灌水1次, 灌水量为5.6 mm。其余田间管理措施同大田生产。 小麦分别于2012年11月3日和2013年10月31日播种, 2013年4月27日和2014年5月10日收获。玉米分别于2012年4月28日和2013年5月7日播种, 2013年8月27日和2014年8月11日收获。 图1 Fig. 1
表1 不同处理小麦产量及地上部生物量 Table 1 Wheat yield and above-ground biomass in different treatments
处理 Treatment
产量 Yield (kg hm-2)
收获指数 Harvest index
地上部生物量Above-ground biomass (kg hm-2)
播种-分蘖 Sowing-tillering
分蘖-拔节 Tillering-jointing
拔节-开花 Jointing-anthesis
开花-成熟 Anthesis-maturity
2012-2013
CK
2924 b
0.496 a
59 b
279 b
3455 b
1691 a
T1
4151 a
0.498 a
88 a
393 a
4623 a
1366 a
T2
3926 a
0.496 a
86 a
433 a
4399 a
1056 a
T3
3603 a
0.498 a
84 a
285 b
3594 ab
2231 a
2013-2014
CK
5854 b
0.510 a
281 a
878 a
6874 a
3291 a
T1
5928 ab
0.513 a
305 a
879 a
6636 a
2913 a
T2
5958 ab
0.509 a
292 a
942 a
6831 a
2708 a
T3
6058 a
0.505 a
312 a
932 a
6859 a
3058 a
与产量相关性 Correlation with yield
0.895* *
0.948* *
0.900* *
0.880* *
0.966* *
CK: non-mulching; T1: non-mulching plus two irrigations after sowing and at jointing stage; T2: straw mulching before sowing; T3: straw mulching before sowing and during wheat growth. In each growing season, values followed by different letters are significantly different at P< 0.05. * * denotes significant correlation at P < 0.01. CK:无秸秆覆盖(对照); T1: CK+播种后及拔节期各浇水1次; T2: 玉米收获后秸秆就地覆盖+小麦播后无秸秆覆盖; T3: 玉米收获后秸秆就地覆盖+小麦播后行间整秆覆盖。数据后不同字母表示同一年度处理间差异显著(P< 0.05)。* * 表示相关性在P < 0.01水平显著。
表1 不同处理小麦产量及地上部生物量 Table 1 Wheat yield and above-ground biomass in different treatments
图3 不同处理的水分利用效率(A)及其与产量的关系(B)Fig. 3 Water use efficiency in different treatments (A) and its correlation to yield (B)
误差比线上不同字母表示处理间有显著差异(P< 0.05)。 Bar represented by differeent letters are significantly different at P< 0.05. 表2 Table 2 表2(Table 2)
表2 不同处理的小麦根干重、根冠比及0~30土层根系生长特性(2013-2014) Table 2 Specific root length, root length density, root dry matter density and root surface area density under different straw mulching patterns in 0-30 cm soil layer at different growth stages (2013-2014)
处理 Treatment
根干重 Root dry weight (g m-2)
根冠比 Root-shoot ratio
0~30 cm土层 0-30 cm soil layer
比根长 Specific root length (g m-1 DW)
根长密度 Root length density (cm cm-3)
根质量密度 Root dry matter density (× 10-4 g cm-3)
根表面积密度 Root surface area density (cm2 cm-3)
分蘖期 Tillering stage
CK
6.93 b
0.123 b
24.61 a
0.120 b
0.462 b
0.037 b
T1
9.57 a
0.157 a
29.92 a
0.191 a
0.638 a
0.059 a
T2
7.88 ab
0.135 ab
27.09 a
0.139 ab
0.525 ab
0.043 b
T3
7.00 b
0.112 b
26.43 a
0.114 b
0.467 b
0.034 b
拔节期Jointing stage
CK
58.78 b
0.254 ab
23.81 a
0.474 a
1.819 a
0.114 a
T1
47.64 b
0.201 b
20.81 a
0.388 a
1.769 a
0.118 a
T2
70.99 a
0.288 a
20.92 a
0.385 a
1.959 a
0.113 a
T3
53.08 b
0.213 b
20.03 a
0.459 a
1.588 a
0.117 a
开花期 Anthesis stage
CK
44.59 b
0.028 a
25.77 a
0.289 b
1.652 b
0.079 b
T1
45.38 b
0.029 a
17.63 a
0.355 b
1.805 b
0.102 ab
T2
59.98 a
0.037 a
23.11 a
0.402 a
2.543 a
0.193 a
T3
40.47 b
0.025 a
19.69 a
0.395 a
1.741 b
0.115 ab
表2 不同处理的小麦根干重、根冠比及0~30土层根系生长特性(2013-2014) Table 2 Specific root length, root length density, root dry matter density and root surface area density under different straw mulching patterns in 0-30 cm soil layer at different growth stages (2013-2014)
同一生育时期内比较, 标以不同字母的值间差异显著(P < 0.05)。缩写同表1。 In each growth stage, values followed by different letters are significantly different at P < 0.05. Abbreviations are the same as those given in Table 1. 3.2 秸秆覆盖后土壤水分含量和水分利用效率变化及小麦根系特征秸秆覆盖在改变农田下垫面的性质和能量平衡, 调节土壤温度, 改善土壤水分状况, 以及提高作物水分利用效率等方面具有显著的作用[7]。据报道, 秸秆覆盖的水分利用效率比无覆盖处理增加25%~ 46%[2, 7]; 秸秆覆盖在雨后的土壤含水量较裸地增长24.7%, 干旱时增长51.3% [31]。本研究结果发现, 覆盖处理以干旱年份的保水优势更为明显[32]。随土壤深度的增加, 处理间的土壤含水量差异减小, 在20~40 cm土层无显著差异(图2)。另外, 灌水处理及秸秆覆盖在干旱条件下均能有效提高水分利用效率, 在湿润年份也有一定效果(图3), 这与Huang等[7]的结果相符。耗水量主要取决于降雨量和土壤储水消耗量, 2013— 2014年度雨水充沛, 且分配较均衡, 储 水消耗很少, 不同处理之间水分利用效率差异不明显; 2012— 2013年度降水量显著低于常年, 整个3月几乎没有有效降水, 储水消耗显著增加, 加之处理间保水效果和产量均存在显著差异, 使得水分利用效率显著不同。 根系是植物吸收、转化和储藏营养物质的重要器官, 其生长好坏直接影响地上部分产量和作物的水土保持能力[33]。根系的生长集中表现为生物量的累积[34], 而根系对土壤水分和养分的竞争能力则主要由根长密度、根质量密度及根表面积密度等根系特征决定[35]。葛体达等[34]试验表明, 秸秆覆盖处理增加玉米苗期的根长、根表面积, 根冠比提高36.72%、根系生物量提高62.53%。本研究发现, 休闲期覆盖的根长密度、根质量密度和根表面积密度在分蘖期均不及灌水处理, 但到了开花期则超越灌水处理, 并显著高于对照(表2)。究其原因, 可能是分蘖期灌溉处理提高了土壤含水量, 促进了根系生长[36], 为优化地上部结构和增产奠定了基础; 而到拔节期和开花期, 秸秆覆盖的调温、保水效应进一步显现, 利于促进根系生长和新根产生, 并延缓根系的衰老[37]。本试验, 不同处理的根系都主要集中在0~10 cm土层, 10 cm以下急剧减少, 这主要因为四川丘陵旱地小麦耕层较浅, 地表40 cm以下石子较多, 且本地区小麦生育期相对较短, 根系生长发育活动主要集中在0~10 cm土层。秸秆覆盖可显著增加根系在深层土壤中的分布, 延缓后期根系生长量的下降速率[13], 这对后期地上部分的生长起着重要作用。 小麦根长密度、根表面积密度随土壤深度的变化(2013-2014) Changes in root length density and root surface area density with soil layer (2013-2014)
同一生育时期相同土壤层次比较, 不同字母表示处理间差异显著(P < 0.05)。 Different letters above error bars indicate significant difference among treatments within the same growth stage and soil layer (P < 0.05). 图5 Fig. 5
4 结论灌水处理和秸秆覆盖处理都能显著提高干旱年份小麦播种至开花阶段的干物质积累量, 抑制花后旗叶和倒二叶叶绿素降解。秸秆覆盖能显著改善播前及播后主要生育期土壤水分状况, 提升小麦生长发育质量, 进而提高籽粒产量和水分利用效率, 有促进根系下移的趋势。休闲期覆盖还能提高小麦分蘖、拔节和开花期的根干重、根冠比、根长密度、根质量密度和根表面积密度。可通过秋季玉米秸秆就地覆盖方式促进纳雨保墒、改善冬小麦立苗和生长发育环境, 延缓后期叶片衰老, 实现丘陵旱地增产。 The authors have declared that no competing interests exist.
作者已声明无竞争性利益关系。The authors have declared that no competing interests exist.
Humberto, BC. Soil structure and organic carbon relationships following 10 years of wheat straw management in no-till. Soil Tillage Res, 2007, 95: 240-254[本文引用:1][JCR: 2.367]
[7]
Huang YL, Chen LD, Fu BJ, Huang ZL, GongJ. The wheat yields and water-use efficiency in the Loess Plateau: straw mulch and irrigation effects. Agric Water Manag, 2005, 72: 209-222[本文引用:7]
[8]
GovaertsB, Sayre KD, DeckersJ. Stable high yields with zero tillage and permanent bed planting?Field Crops Res, 2005, 94: 33-42[本文引用:1][JCR: 2.474]
Sasal MC, Andriulo AE, Aboada MA. Soil porosity characteristics and water movement under zero tillage in silty soils in Argentinian pampas. Soil Tillage Res, 2005, 87: 9-18[本文引用:1][JCR: 2.367]
Jun YS, Tong YP, Liu QY, LiB, Jing RL, Li JY, Li ZS. Mapping quantitative trait loci for post-anthesis dry matter accumulation in wheat. J Integr Plant Biol, 2006, 48: 938-944[本文引用:3][JCR: 3.75][CJCR: 0.7555]
[17]
Wang XB, Cai DX, Perdok UD, Hoogmoed WB, OenemaO. Development in conservation tillage in rainfed regions of North China. Soil Tillage Res, 2007, 93: 239-250[本文引用:3][JCR: 2.367]
[18]
Wang XB, Wu HJ, KuaiD, Zhang DC, Feng ZH, Zhao QS, Wu XP, JinK, Cai DX, OenemaO, Hoogmoed WB. Tillage and crop residue effects on rainfed wheat and maize production in northern China. Field Crops Res, 2012, 132: 106-116[本文引用:5][JCR: 2.474]
[19]
刘巽浩, 高旺盛, 朱文珊. 秸秆还田的机理与技术模式. 北京: 中国农业出版社, 2001 Liu XH, Gao WS, Zhu WS. Theory and Technology Straw Mulching. Beijing: China Agriculture Press, 2001 (in Chinese)[本文引用:1]
Zhang JY, Sun JS, Duan AW, Wang JL, Shen SJ, Liu XF. Effects of different planting patterns on water use and yield performance of winter wheat in the Huang-Huai-Hai Plain of China. Agric Water Manag, 2007, 92: 41-47[本文引用:1]
[23]
PliphiE, MustafaP. Crop row spacing and its influence on the partitioning of evapotranspiration by winter-grown wheat in the northern Syria. Plant Soil, 2005, 268: 195-208[本文引用:1][JCR: 2.638]
De VitaP, Paolo ED, FeccondoG, Fonzo ND, PisanteM. No-tillage and conventional tillage effects on durum wheat yield, grain quality and soil moisture content in southern Italy. Soil Tillage Res, 2007, 92: 69-78[本文引用:1][JCR: 2.367]
Muñoz-RomeroV, Benítez-VegaJ, López-BellidoL, López- Bellido R J. Monitoring wheat root development in a rainfed vertisol: tillage effect. Eur J Agron, 2010, 33: 182-187[本文引用:1][JCR: 2.8]
[37]
冯福学. 不同耕作措施对绿洲灌区冬小麦“根土系统”的影响. 甘肃农业大学博士学位论文, 甘肃兰州, 2010 Feng FX. Effects of Different Tillage Measures on Root-Soil System of Winter Wheat in Hexi Oasis Area. PhD Dissertation of Gansu Agricultural University, Lanzhou, China, 2010 (in Chinese with English abstract)[本文引用:1]
[38]
刘阳, 李吾强, 温晓霞, 廖允成. 玉米秸秆还田对接茬冬小麦旗光合特性的影响. 西北农业学报, 2008, 17(2): 80-85 LiuY, Li WQ, Wen XX, Liao YC. Effects of returning maize straw stem into field on the winter wheat flag leaf photosynthesis characteristic. Acta Agric Boreali-Occident Sin, 2008, 17(2): 80-85 (in Chinese with English abstract)[本文引用:1]
[39]
王法宏, 任德昌, 王旭清. 施肥对小麦根系活性延缓旗叶衰老及产量的效应. 麦类作物学报, 2001, 12(3): 51-54 Wang FH, Ren DC, Wang XQ. Effect of applying fertilizer on root activity delaying the senescence of the flag leaf and yield in winter wheat. J Triticeae Crops, 2001, 12(3): 51-54 (in Chinese with English abstract)[本文引用:1][CJCR: 1.007]