关键词:不同年代; 玉米; 根系; 低氮; 低氮干旱复合胁迫 Response of Roots of Maize Varieties Released in Different Years to Low Nitrogen and Drought Stresses NIU Ping-Ping1, MU Xin-Yuan1, ZHANG Xing1, YANG Chun-Shou2, LI Chao-Hai1,* 1Agronomy College, Henan Agricultural University / Collaborative Innovation Center of Henan Grain Crops, Zhengzhou 450002, China
2Zhengzhou Liangfeng Seed Industry Co. Ltd., Zhengzhou 450002, China
AbstractThe changes in root characteristics were studied under low nitrogen stress (LN) and combined stress of low nitrogen and drought (LD) using six maize varieties released from 1973 to 2009, including Zhongdan 2, Danyu 13, Yedan 13, Nongda 108, Zhengdan 958, and a new variety Yudan 606. The result showed that root dry weight, root length and root surface area of the varieties increased at first and then decreased, finally increased again in the process of time. The increase of the three parameters in earlier released varieties could get more water and nutrition from soil, the decrease of these in later released varieties was available to reduce the redundant organ’s dry matter consumption, and the increase again of these in the new variety would meet water and nutrition requirements for yield increase continuously. Compared with the old varieties, root dry weight of the modern varieties changed smaller, root length and surface areas increased more, root average diameter became thinner, root bleeding sap decreased non-significantly under the LN and LD conditions. These results suggested that root characteristics of the varieties have been optimized gradually, the adjustment ability of root morphology, and the LN and LD stress tolerance in modern varieties have been increased.
Keyword:Different eras; Maize; Root; Low nitrogen; Combined stress of low nitrogen and drought Show Figures Show Figures
表1 不同年代玉米品种根系形态特征 Table 1 Morphological characteristics of roots in maize varieties in different years
品种 Variety
根系长度RL (m plant-1)
根系表面积RSA (m2 plant-1)
根系平均直径RAD (mm)
正常氮CK1
低氮LN
正常氮CK1
低氮LN
正常氮CK1
低氮LN
中单2号 Zhongdan 2
201.68± 5.15 e
250.13± 9.61 e
0.36± 0.02 d
0.43± 0.02 d
0.44± 0.02 b
0.46± 0.02 bc
丹玉13 Danyu 13
313.15± 16.55 b
377.17± 12.54 b
0.46± 0.01 b
0.53± 0.02 b
0.40± 0.01 c
0.42± 0.01 d
掖单13 Yedan 13
424.03± 10.90 a
488.10± 8.45 a
0.60± 0.01 a
0.67± 0.02 a
0.46± 0.01 b
0.48± 0.01 ab
平均Mean
312.95
371.80
0.47
0.54
0.43
0.45
农大108 Nongda 108
244.03± 10.63 c
323.42± 4.81 c
0.41± 0.02 c
0.51± 0.01 bc
0.45± 0.01 b
0.44± 0.01 cd
郑单958 Zhengdan 958
175.70± 6.91 f
242.34± 14.03 e
0.31± 0.00 e
0.39± 0.01 e
0.46± 0.00 b
0.45± 0.02 bc
豫单606 Yudan 606
220.75± 2.62 d
297.78± 4.42 d
0.40± 0.01 c
0.49± 0.02 c
0.52± 0.01 a
0.51± 0.01 a
平均Mean
213.49
287.85
0.37
0.47
0.48
0.47
变异来源Source of variation
品种Variety
* *
* *
* *
处理Treatment
* *
* *
NS
品种× 处理Variety× Treatment
NS
NS
NS
RL: root length; RSA: root surface area; RAD: root average diameter; CK1: normal nitrogen; LN: low nitrogen. Values within the same column followed by different letters are significantly different at the 0.05 probability level. * * means significant difference at the 0.01 probability level; NS means no significance at the 0.05 probability level. 同一列内标以不同字母的值在0.05水平上差异显著。* * 表示在0.01水平上显著, NS表示在0.05水平不显著。
表1 不同年代玉米品种根系形态特征 Table 1 Morphological characteristics of roots in maize varieties in different years
图4 低氮对不同年代玉米品种根表面积分布的影响Fig. 4 Effect of low nitrogen on the distribution of root surface area for maize varieties in different years
表2 Table 2 表2(Table 2)
表2 低氮对不同年代玉米品种根系伤流量的影响 Table 2 Effect of low nitrogen on root bleeding sap in maize varieties in different years (g plant-1)
品种 Variety
正常氮 Normal nitrogen
低氮 Low nitrogen
低氮下减少比率 Reduction under low nitrogen (%)
中单2号 Zhangdan 2
16.24± 0.82 e
11.02± 0.57 e
32.14
丹玉13 Danyu 13
22.08± 1.04 d
16.52± 0.48 d
25.17
掖单13 Yedan 13
24.70± 0.60 c
20.02± 0.64 c
18.95
平均Mean
21.01
15.85
25.42
农大108 Nongda 108
28.15± 0.91 b
25.16± 0.32 b
10.62
郑单958 Zhengdan 958
31.44± 1.09 a
28.94± 0.93 a
7.97
豫单606 Yudan 606
33.18± 1.96 a
28.99± 0.86 a
12.62
平均Mean
30.92
27.70
10.40
变异来源Source of variation
品种Variety
* *
处理Treatment
* *
品种× 处理Variety× Treatment
NS
Values within the same column followed by different letters are significantly different at the 0.05 probability level. * * means significant difference at the 0.01 probability level; NS means no significance at the 0.05 probability level. 同一列内标以不同字母的值在0.05水平上差异显著。* * 表示在0.01水平上显著, NS表示在0.05水平不显著。
表2 低氮对不同年代玉米品种根系伤流量的影响 Table 2 Effect of low nitrogen on root bleeding sap in maize varieties in different years (g plant-1)
图5 低氮干旱复合胁迫对不同年代玉米品种根干重及其分布的影响Fig. 5 Effect of combined stress of low nitrogen and drought on root dry weight and distribution for maize varieties in different years
表3 不同年代玉米品种的籽粒产量 Table 3 Grain yield of maize varieties in different years (t hm-2)
品种 Variety
正常氮 CK1
低氮 LN
LN下减少比率 Reduction under LN (%)
正常氮水 CK2
低氮干旱 LD
LD下减少比率 Reduction under LD (%)
中单2号 Zhongdan 2
6.77± 0.27 e
6.15± 0.30 f
9.25
6.51± 0.49 d
4.37± 0.19 d
32.78
丹玉13 Danyu 13
7.71± 0.41 d
6.84± 0.24 e
11.28
7.27± 0.60 cd
4.73± 0.26 d
34.86
掖单13 Yedan 13
8.12± 0.27 cd
7.52± 0.13 d
7.33
7.72± 0.65 bcd
5.38± 0.23 cd
30.35
平均Mean
7.53
6.84
9.29
7.16
4.83
32.61
农大108 Nongda 108
8.73± 0.47 bc
8.03± 0.26 c
8.09
8.32± 0.38 bc
6.12± 0.54 bc
26.37
郑单958 Zhengdan 958
9.37± 0.18 b
8.88± 0.31 b
5.28
9.02± 0.66 b
6.91± 0.26 ab
23.46
豫单606 Yudan 606
10.14± 0.47 a
9.53± 0.12 a
5.98
10.20± 0.81 a
7.45± 1.13 a
26.97
平均Mean
9.41
8.81
6.45
9.18
6.83
25.64
变异来源Source of variation
品种Variety
* *
* *
处理Treatment
* *
* *
品种× 处理 Variety× Treatment
NS
NS
CK1: normal nitrogen; LN: low nitrogen; CK2: normal nitrogen and water; LD: low nitrogen and drought. Values within the same column followed by different letters are significantly different at the 0.05 probability level. * * means significant difference at the 0.01 probability level. NS means no significance at the 0.05 probability level. 同一列内标以不同字母的值在0.05水平上差异显著。* * 表示在0.01水平上显著, NS表示在0.05水平不显著。
表3 不同年代玉米品种的籽粒产量 Table 3 Grain yield of maize varieties in different years (t hm-2)
张世煌, 徐志刚. 耕作制度改革及其对农业技术发展的影响. , 2009, (1): 1-3Zhang SH, Xu ZG. Reform of farming system and its impact on development of agricultural technology. , 2009, (1): 1-3 (in Chinese)[本文引用:1][CJCR: 0.6276]
[2]
Niu XK, Xie RZ, LiuX, Zhang FL, Li SK, Gao SJ. Maize yield gains in Northeast China in the last six decades. , 2013, 12: 630-637[本文引用:1]
[3]
TollenaarM, WuJ. Yield improvement in temperate maize is attributable to greater stress tolerance. , 1999, 39: 1597-1603[本文引用:1][JCR: 1.513]
[4]
DonaldN, Duvick. The contribution of breeding to yield advances in maize (Zea mays L. ). , 2005, 86: 83-146[本文引用:1][JCR: 5.06]
[5]
田清震, 张世煌, 李新海, 李明顺, 谢传晓. 玉米育种发展动态. , 2007, 15(1): 24-28Tain QZ, Zhang SH, Li XH, Li MS, Xie CX. Technology development and strategy in maize breeding. , 2007, 15(1): 24-28 (in Chinese with English abstract)[本文引用:1][CJCR: 0.965]
[6]
陈国平, 高聚林, 赵明, 董树亭, 李少昆, 杨祁峰, 刘永红, 王立春, 薛吉全, 柳京国, 李潮海, 王永宏, 王友德, 宋慧欣, 赵久然. 近年来我国玉米超高产田的分布、产量构成及关键技术. , 2012, 38: 80-85Chen GP, Gao JL, ZhaoM, Dong ST, Li SK, Yang QF, Liu YH, Wang LC, Xue JQ, Liu JG, Li CH, Wang YH, Wang YD, Song HX, Zhao JR. Distribution, yield structure, and key cultural techniques of maize super-high yield plots in recent years. , 2012, 38: 80-85 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[7]
王玉贞, 李维岳, 尹枝瑞. 玉米根系与产量关系的研究进展. , 1999, 24(4): 6-8Wang YZ, Li WY, Yin ZR. Research advancement of the relation between corn root and yield. , 1999, 24(4): 6-8 (in Chinese)[本文引用:1][CJCR: 0.518]
[8]
戴俊英, 鄂玉江, 顾慰连. 玉米根系的生长规律及其与产量关系的研究: II. 玉米根系与叶的相互作用及其与产量的关系. , 1988, 14: 310-314E YJ, Dai J Y, Gu W L. Studies on the relationship between root growth and yield in maize (Zea mays): II. The interaction of root system and leaves of maize and its relation with yield. , 1988, 14: 310-314 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[9]
杨建昌. 水稻根系形态生理与产量、品质形成及养分吸收利用的关系. , 2011, 44: 36-46Yang JC. Relationships of rice root morphology and physiology with the formation of grain yield and quality and nutrient absorption and utilization. , 2011, 44: 36-46 (in Chinese with English abstract)[本文引用:2][CJCR: 1.889]
[10]
Hammer GL, DongZ, McleanG, DohertyA, MessinaC, SchusslerJ, ZinselmeierC, PaszkiewiczS, CooperM. Can changes in canopy and /or root system architecture explain historical maize yield trends in the U. S. corn belt?, 2009, 49: 299-312[本文引用:1][JCR: 1.513]
[11]
王空军, 董树亭, 胡昌浩, 刘开昌, 张吉旺. 我国玉米品种更替过程中根系生理特性的演进: I. 根系活性与ATPase活性的变化. , 2002, 28: 185-189Wang KJ, Dong ST, Hu CH, Liu KC, Zhang JW. The evolution of physiological characteristics of maize root during varieties replacing in China, 1950s to 1990s: I. Changes of root vigor & ATPase activity. , 2002, 28: 185-189 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[12]
王空军, 董树亭, 胡昌浩, 刘开昌, 张吉旺. 我国玉米品种更替过程中根系生理特性的演进: II. 根系保护酶活性及膜质过氧化作用的变化. , 2002, 28: 384-388Wang KJ, Dong ST, Hu CH, Liu KC, Zhang JW. The evolution of physiological characteristics of maize root during varieties replacing in China, 1950s to 1990s: II. Changes of the protective enzyme activities and lipid per oxidation. , 2002, 28: 384-388 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[13]
王空军, 郑洪建, 刘开昌, 张吉旺, 董树亭, 胡昌浩. 我国玉米品种更替过程中根系时空分布特性的演变. , 2001, 25: 472-475Wang KJ, Zheng HJ, Liu KC, Zhang JW, Dong ST, Hu CH. Evolution of maize root distribution in space-time during maize varieties replacing in China. , 2001, 25: 472-475 (in Chinese with English abstract)[本文引用:1][CJCR: 1.989]
[14]
Chen XC, ZhangJ, Chen YL, LiQ, Chen FJ, Yuan LX, Mi GH. Changes in root size and distribution in relation to nitrogen accumulation during maize breeding in China. , 2014, 374: 121-130[本文引用:2][JCR: 2.638]
[15]
王思思. 干旱对我国不同年代玉米杂交种苗期生理特性的影响. 山东农业大学硕士学位论文, , 2009Wang SS. Effect of Drought on Physiological Characters of Maize Cultivars in Different Eras in China during Seeding Stage. MS Thesis of Shand ong Agricultural University, Tai’an, , 2009 (in Chinese with English abstract)[本文引用:1]
[16]
ThomasH, OughamH. The stay-green trait. , 2014, 65: 3889-3900[本文引用:1][JCR: 5.242]
[17]
张景莲. 1982年以来我国玉米品种的演变. , 2008, 37(6): 36-39Zhang JL. Evolution of maize varieties in China since 1982. , 2008, 37(6): 36-39 (in Chinese)[本文引用:1]
[18]
司马林. 超高产玉米豫单606. , 2014. 07. 25Si ML. A super high-yield variety: Yudan 606. , 2014. 07. 25 (in Chinese)[本文引用:1]
[19]
陆卫平, 张其龙, 卢家栋, 王昭, 宗寿余. 玉米群体根系活力与物质积累及产量的关系. , 1999, 25: 718-722Lu WP, Zhang QL, Lu JD, WangZ, Zong SY. Relationship of root activity to dry matter accumulation and grain yield in maize (Zea mays L. ). , 1999, 25: 718-722 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[20]
孙庆泉, 胡昌浩, 董树亭, 王空军. 我国不同年代玉米品种生育全程根系特性演化的研究. , 2003, 29: 641-645Sun QQ, Hu CH, Dong ST, Wang KJ. Evolution of root characters during all growth stage of maize cultivars in different eras in China. , 2003, 29: 641-645 (in Chinese with English abstract)[本文引用:2][CJCR: 1.667]
[21]
Zhang FL, Niu XK, Zhang YM, Xie RZ, LiuX, Li SK, Gao SJ. Studies on the root characteristics of maize varieties of different eras. , 2013, 12: 426-435[本文引用:2]
[22]
修文雯, 田晓东, 陈传晓, 彭正萍, 李少昆, 张凤路. 充足灌水条件下不同年代玉米品种根系性状比较研究. , 2013, 21(2): 78-82Xiu WW, Tian XD, Chen CX, Peng ZP, Li SK, Zhang FL. Comparative study on the characteristics of maize root under the conditions of saturated irrigation in different eras. , 2013, 21(2): 78-82 (in Chinese with English abstract)[本文引用:1][CJCR: 0.965]
[23]
Zhang DY, Sun GJ, Jiang XH. Donald’s ideotype and growth redundancy: a game theoretical analysis. , 1999, 61: 179-187[本文引用:1][JCR: 2.474]
[24]
金成忠, 许德威. 作为根系活力指标的伤流液简易收集法. , 1959, (4): 51-53Jin CZ, Xu DW. Simple method to collect bleeding sap as an indicator of root activity. , 1959, (4): 51-53 (in Chinese)[本文引用:1][CJCR: 0.849]
[25]
梁建生, 曹显祖. 杂交水稻叶片的若干生理指标与根系伤流强度关系. , 1993, 14(4): 25-30Liang JS, Cao XZ. Studies on the relationship between several physiological characteristics of leaf and bleeding rate of roots in hybrid rice (O. sativa. L. ). , 1993, 14(4): 25-30 (in Chinese with English abstract)[本文引用:1][CJCR: 0.156]
[26]
李从峰, 赵明, 刘鹏, 张吉旺, 杨今胜, 柳京国, 王空军, 董树亭. 中国不同年代玉米单交种及其亲本主要性状演变对密度的响应. , 2013, 46: 2421-2429Li CF, ZhaoM, LiuP, Zhang JW, Yang JS, Liu JG, Wang KJ, Dong ST. Responses of main traits of maize hybrids and their parents to density in different eras of China. , 2013, 46: 2421-2429 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
[27]
, 108: 198-205[本文引用:1]
[28]
张卫星, 赵致, 柏光晓, 付芳婧, 曹绍书. 不同玉米杂交种对水分和氮胁迫的响应及其抗逆性. , 2007, 40: 1361-1370Zhang WX, ZhaoZ, Bai GX, Fu FJ, Cao SS. Response on water stress and low nitrogen in different maize hybrid varieties and evaluation for their adversity-resistance. , 2007, 40: 1361-1370 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
[29]
彭云峰, 张吴平, 李春俭. 不同氮吸收效率玉米品种的根系构型差异比较: 模拟与应用. , 2009, 42: 843-853Peng YF, Zhang WP, Li CJ. Relationship between nitrogen efficiency and root architecture of maize plants: simulation and application. , 2009, 42: 843-853 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
[30]
顾东祥, 汤亮, 徐其军, 雷晓俊, 曹卫星, 朱艳. 水氮处理下不同品种水稻根系生长分布特征. , 2011, 35: 558-566Gu DX, TangL, Xu QJ, Lei XJ, Cao WX, ZhuY. Root growth and distribution in rice cultivars as affected by nitrogen and water supply. , 2011, 35: 558-566 (in Chinese with English abstract)[本文引用:1][CJCR: 1.989]
[31]
DavidW. Carbon and nitrogen assimilation in relation to yield: mechanisms are the key to understand ing production systems. , 2002, 53: 773-787[本文引用:1][JCR: 5.242]
[32]
杜红霞, 冯浩, 吴普特, 王百群. 水、氮调控对夏玉米根系特性的影响. , 2013, 31(1): 89-94Du HX, FengH, Wu PT, Wang PQ. Influence of water and N fertilizer regulation on root growth characteristics of summer maize. , 2013, 31(1): 89-94 (in Chinese with English abstract)[本文引用:1][CJCR: 0.916]
[33]
易建华, 贾志红, 孙在军. 不同根系土壤温度对烤烟生理生态的影响. , 2008, 16: 62-66Yi JH, Jia ZH, Sun ZJ. Physiological and ecological effect of rhizospheric soil temperature on flue-cured tobacco. , 2008, 16: 62-66 (in Chinese with English abstract)[本文引用:1][CJCR: 0.795]
[34]
苗果园, 高志强, 张云亭, 尹钧, 张爱良. 水肥对小麦根系整体影响及其与地上部相关的研究. , 2002, 28: 445-450Miao GY, Gao ZQ, Zhang YT, YinJ, Zhang AL. Effect of water and fertilizer to root system and its correlation with tops in wheat. , 2002, 28: 445-450 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[35]
吴龙华, 张素君, 刘兰民, 杨跃, 张国忠. 不同土壤类型和肥力玉米地土壤养分根际效应研究. , 2000, 11: 545-548Wu LH, Zhang SJ, Liu LM, YangY, Zhang GZ. Rhizosphere effect of nutrients in different maize soils with different fertility levels. , 2000, 11: 545-548 (in Chinese with English abstract)[本文引用:1][CJCR: 1.742]