关键词:小麦; 品种改良; 根系形态; 籽粒产量; 氮肥响应 Genetic Improvement of Root Growth and Its Relationship with Grain Yield of Wheat Cultivars in the Middle-Lower Yangtze River TIAN Zhong-Wei, FAN Yong-Hui, YIN Mei, WANG Fang-Rui, CAI Jian, JIANG Dong, DAI Ting-Bo* Agronomy College of Nanjing Agricultural University / Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing 210095, China
AbstractExploring the characteristics of root growth, root physiology and their relationships to grain yield in wheat cultivars released in different decades will facilitate the development of new wheat cultivars, with stable and high yields and low nitrogen fertilizer input. Four wheat cultivars Nanda 2419, Yangmai 1, Yangmai 158, and Yangmai 16, which were bred or widely planted in the Middle-Lower Yangtze River Basin after 1950, were used in field and pot experiments in 2010-2011 with three nitrogen rates (pure N 0, 225, and 300 kg ha-1). The results showed that, grain yield was improved with the genetic improvement in wheat breeding and the sensitivity of modern cultivars to N was greater as compared with early released cultivars. The root dry matter accumulation (DMA) and growth rate from jointing to anthesis of modern cultivars were higher than these of early released cultivars. The root length, root surface area, root volume and density of root weight in 0-60 cm soil layer were enhanced with the genetic improvement in wheat breeding, while no change was found in proportion of root distribution. The root activity, MDA concentration and SOD activity in modern cultivars were improved significantly. Higher N application increased root growth and physiological performance, with larger effects in modern cultivars, indicating that the response to N and high-N tolerance were promoted with genetic improvement in wheat breeding. In addition, these were significantly positive relations of grain yield with total root length, root surface area, root biomass and density of root weight in 0-60 cm soil layer. Therefore, higher contact area of the roots with soil and high-N adaptability, enhanced root physiological activity and N assimilation capacity, and delayed senescence of root system should be the important characteristics in cultivar evolution in the Middle-Lower Yangtze River, which are the main purpose getting in high-yield and high efficiency cultivation in this region.
Keyword:Wheat; Genetic improvement; Root morphology; Grain yield; Nitrogen response Show Figures Show Figures
表1 盆栽试验3种施氮水平下不同年代小麦品种单株根系生物量(RB)、生长速率(RGR)和根冠比(RSR) Table 1 Root biomass (RB), growth rate (RGR), root-shoot ratio (RSR) of a single plant under three nitrogen levels in wheat cultivars released in different years in pot experiment
品种 Cultivar
播种至拔节 Sowing to jointing
拔节至开花 Jointing to anthesis
根冠比 RSR
生物量 RB (g plant-1)
生长速率 RGR (mg plant-1 d-1)
生物量 RB (g plant-1)
生长速率 RGR (mg plant-1 d-1)
孕穗期 Booting
开花期 Anthesis
N0
南大2419 Nanda 2419
0.89 a
0.65 a
0.39 b
1.31 b
0.77 a
0.51 b
扬麦1号 Yangmai 1
0.84 a
0.62 a
0.74 a
2.47 a
0.70 a
0.61 a
扬麦158 Yangmai 158
0.70 b
0.52 b
0.91 a
3.04 a
0.68 a
0.64 a
扬麦16 Yangmai 16
0.67 b
0.50 b
0.82 a
2.74 a
0.55 b
0.44 b
N225
南大2419 Nanda 2419
1.20 a
0.88 a
0.83 b
2.76 b
0.42 ab
0.37 a
扬麦1号 Yangmai 1
1.06 b
0.78 b
1.11 a
3.71 a
0.44 a
0.35 a
扬麦158 Yangmai 158
1.17 ab
0.86 ab
1.26 a
4.19 a
0.31 b
0.40 a
扬麦16 Yangmai 16
1.21 a
0.89 a
1.26 a
4.20 a
0.36 b
0.43 a
N300
南大2419 Nanda 2419
1.32 c
0.97 c
0.64 b
2.13 b
0.26 b
0.29 b
扬麦1号 Yangmai 1
1.27 c
0.93 c
0.92 a
3.05 a
0.43 a
0.38 ab
扬麦158 Yangmai 158
1.68 a
1.24 a
0.74 b
2.46 b
0.35 a
0.36 ab
扬麦16 Yangmai 16
1.47 b
1.08 b
1.07 a
3.56 a
0.41 a
0.40 a
Values for the same N level within a column followed by a different letter are significantly different at P< 0.05. 各列数据后不同字母表示同一施氮水平下品种间差异在P< 0.05水平显著。
表1 盆栽试验3种施氮水平下不同年代小麦品种单株根系生物量(RB)、生长速率(RGR)和根冠比(RSR) Table 1 Root biomass (RB), growth rate (RGR), root-shoot ratio (RSR) of a single plant under three nitrogen levels in wheat cultivars released in different years in pot experiment
表2 盆栽试验3种氮肥水平下不同年代小麦品种单株总根长(RL)、根表面积(RSA)和根体积(RV) Table 2 Root length (RL), surface area (RSA), and volume (RV) of a single plant under three nitrogen levels in wheat cultivars released in different years in pot experiment
品种 Cultivar
拔节期 Jointing
孕穗期 Booting
开花期 Anthesis
RL (m)
RSA (cm2)
RV (cm3)
RL (m)
RSA (cm2)
RV (cm3)
RL (m)
RSA (cm2)
RV (cm3)
N0
南大2419 Nanda 2419
19.18 c
222.42 d
2.05 d
45.49 c
478.74 c
4.01 c
79.30 c
833.78 c
6.98 c
扬麦1号 Yangmai 1
30.04 b
316.49 c
2.65 c
48.17 c
506.89 c
4.24 c
77.82 c
818.27 c
6.85 c
扬麦158 Yangmai 158
44.51 a
468.47 a
3.92 a
77.31 b
812.94 b
6.80 b
83.08 b
873.50 b
7.31 b
扬麦16 Yangmai 16
36.93 a
388.83 b
3.26 b
84.10 a
884.20 a
7.40 a
93.55 a
983.47 a
8.23 a
N225
南大2419 Nanda 2419
45.61 c
479.97 c
4.02 c
80.28 d
844.14 d
7.06 d
121.26 c
1274.51 c
10.66 c
扬麦1号Yangmai 1
60.08 a
631.99 a
5.29 a
86.91 c
913.77 c
7.64 c
128.30 b
1348.38 b
11.28 b
扬麦158 Yangmai 158
56.43 ab
593.68 ab
4.97 ab
133.78 b
1405.92 b
11.76 b
190.99 a
2006.78 a
16.78 a
扬麦16 Yangmai 16
53.00 b
556.24 b
4.64 b
160.05 a
1681.84 a
14.06 a
192.25 a
2020.05 a
16.89 a
N300
南大2419 Nanda 2419
35.14 c
390.03 c
3.45 c
81.01 c
851.80 c
7.13 c
93.14 d
979.19 d
8.19 d
扬麦1号Yangmai 1
63.95 ab
672.63 ab
5.63 ab
92.18 b
969.04 b
8.11 b
112.56 c
1183.05 c
9.90 c
扬麦158 Yangmai 158
61.87 b
650.71 b
5.45 b
151.32 a
1590.14 a
13.30 a
188.27 b
1978.17 b
16.54 b
扬麦16 Yangmai 16
66.10 a
695.14 a
5.82 a
149.84 a
1469.65 a
11.47 a
202.17 a
2124.23 a
17.76 a
Values for the same N level within a column followed by a different letter are significantly different at P< 0.05. 各列数据后不同字母表示同一施氮水平下品种间差异在P< 0.05水平差异显著。
表2 盆栽试验3种氮肥水平下不同年代小麦品种单株总根长(RL)、根表面积(RSA)和根体积(RV) Table 2 Root length (RL), surface area (RSA), and volume (RV) of a single plant under three nitrogen levels in wheat cultivars released in different years in pot experiment
图1 大田试验3种氮肥水平下不同年代小麦品种孕穗期(A)和开花期(B) 0~60 cm土层根重密度Fig. 1 Root weight density at booting (A) and anthesis (B) from 0 to 60 cm soil layer under three nitrogen levels in wheat cultivars released in different years in field experiment
图2 盆栽试验3种氮肥水平下不同年代小麦品种不同生育时期根系活力的变化Fig. 2 Changes of root activity at different growth stages under three nitrogen levels in wheat cultivars released in different years in pot experiment
2.5 根系MDA含量和SOD活性小麦根系丙二醛(MDA)含量随品种育成年代推进呈逐步下降的趋势(图3)。施氮量在0~225 kg hm-2范围内, 增施氮肥显著降低了小麦根系MDA含量。小麦旗叶超氧化物歧化酶(SOD)活性随着育种年代推进呈逐步升高的趋势, 且随着施氮量的增加而提高, 但在225~300 kg hm-2范围内增施氮肥对SOD活性影响不显著。说明品种改良和适量施氮降低了根系膜酯化氧化程度, 增强了小麦清除超氧阴离子自由基(O2?)的能力, 从而延缓了根系衰老。 图3 Fig. 3
图3 盆栽试验不同年代小麦品种开花期根系SOD活性(A)和MDA含量(B)变化特征及其对氮肥的响应Fig. 3 Changes of root SOD activity (A) and MDA content (B) at anthesis in wheat cultivars released in different years and their response to nitrogen fertilizer in pot experiment
2.6 根系形态及分布与籽粒产量的关系小麦籽粒产量随着品种育成年代推进呈增加趋势, 在纯氮0~225 kg hm-2范围内, 施氮显著提高了不同年代小麦籽粒产量, 且氮肥对现代品种的增产效应显著大于早期品种(图4)。当施氮量超过225 kg hm-2时, 早期品种产量降低幅度显著高于现代品种。说明现代品种对氮肥的响应和对高氮的耐性增强。 图4 Fig. 4
图4 不同年代小麦品种的籽粒产量及其对氮肥的响应 A: 大田试验; B: 盆栽试验。Fig. 4 Grain yield of wheat cultivars released in different years and their response to nitrogen fertilizer A: field experiment; B: pot experiment.
图5 开花期根系总根长(TRL)、表面积(RSA)、生物量(RB)及根重密度(RWD)与籽粒产量的关系Fig. 5 Relationships between grain yield and total root length (TRL), root surface area (RSA), root biomass (RB), and root weight density (RWD) at anthesis
Tian ZW, JingQ, Dai TB, JiangD, Cao WX. Effects of genetic improvements on grain yield and agronomic traits of winter wheat in the Yangtze River Basin of China. , 2011, 124: 417-425[本文引用:3][JCR: 2.474]
[2]
Zheng TC, Zhang XK, Yin GH, Wang LN, Han YL, ChenL, HuangF, Tang JW, Xia XC, He ZH. Genetic gains in grain yield, net photosynthesis and stomatal conductance achieved in Henan province of China between 1981 and 2008. , 2011, 122: 225-233[本文引用:1][JCR: 2.474]
[3]
WuW, Li CJ, Ma BL, ShahFarooq, LiuY, Liao YC. Genetic progress in wheat yield and associated traits in China since 1945 and future prospects. , 2014, 196: 155-168[本文引用:1][JCR: 1.643]
[4]
田中伟, 王方瑞, 戴廷波, 蔡剑, 姜东, 曹卫星. 小麦品种改良过程中物质积累转运特性与产量的关系. , 2012, 45: 801-808Tian ZW, Wang FR, Dai TB, CaiJ, JiangD, Cao WX. Characterization of dry matter accumulation and translocation during wheat genetic improvement in relation to grain yield. , 2012, 45: 801-808 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
[5]
ChochoisV, Vogel JP, WattM. Application of Brachypodium to the genetic improvement of wheat roots. , 2012, 63: 3467-3474[本文引用:2][JCR: 5.242]
[6]
杨建昌. 水稻根系形态生理与产量, 品质形成及养分吸收利用的关系. , 2011, 44: 36-46Yang JC. Relationships of rice root morphology and physiology with the formation of grain yield and quality and the nutrient absorption and utilization. , 2011, 44: 36-46 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
[7]
冯福学, 黄高宝, 柴强, 于爱忠, 乔海军, 黄涛. 不同耕作措施对冬小麦根系时空分布和产量的影响. , 2009, 29: 2499-2506Feng FX, Huang GB, ChaiQ, Yu AZ, Qian HJ, HuangT. Efects of diferent tillage on spatiotemporal distribution of winter wheat root and yield. , 2009, 29: 2499-2506 (in Chinese with English abstract)[本文引用:2]
[8]
汪晓丽, 陶玥玥, 盛海君, 封克. 硝态氮供应对小麦根系形态发育和氮吸收动力学的影响. , 2010, 30: 129-134Wang XL, Tao YY, Sheng HJ, FengK. Effects of nitrate supply on morphology development and nitrate uptake kinetics of wheat roots. , 2010, 30: 129-134 (in Chinese with English abstract)[本文引用:1][CJCR: 1.007]
[9]
李絮花, 杨守祥, 于振文, 余松烈. 有机肥对小麦根系生长及根系衰老进程的影响. , 2005, 11: 467-472Li XH, Yang SX, Yu ZW, Yu SL. Efects of organic manure application on growth and senescence of root in winter wheat. , 2005, 11: 467-472 (in Chinese with English abstract)[本文引用:1][CJCR: 1.883]
[10]
高志红, 陈晓远, 罗远培. 不同土壤水分条件下冬小麦根、冠平衡与生长稳定性研究. , 2007, 40: 540-548Gao ZH, Chen XY, Luo YP. Winter wheat root and shoot: Equilibrium and growth stability under different soil and water conditions. , 2007, 40: 540-548 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
[11]
魏道智, 宁书菊, 林文雄. 小麦根系活力变化与叶片衰老的研究. , 2004, 15: 1565-1569Wei DZ, Ning SJ, Lin WX. Relationship between wheat root activity and leaf senescence. , 2004, 15: 1565-1569 (in Chinese with English abstract)[本文引用:1][CJCR: 1.742]
[12]
孙敏, 郭文善, 朱新开, 封超年, 郭凯泉, 彭永欣. 不同氮效率小麦品种苗期根系的NO3-, NH4+ 吸收动力学特征. , 2006, 26(5): 84-87SunM, Guo WS, Zhu XK, Feng CN, Guo KQ, Peng YX. Kinetics of nitrate and ammonium uptake by different wheat genotypes at seedling stage. , 2006, 26(5): 84-87 (in Chinese with English abstract)[本文引用:1][CJCR: 1.007]
[13]
雍太文, 陈小容, 杨文钰, 向达兵, 樊高琼. 小麦/玉米/大豆三熟套作体系中小麦根系分泌特性及氮素吸收研究. , 2010, 36: 477-485Yong TW, Chen XR, Yang WY, Xiang DB, Fan GQ. Root exudates and nitrogen uptake of wheat in wheat/maize/soybean relay cropping system. , 2010, 36: 477-485 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[14]
Malik AH, AnderssonA, KuktaiteR, Mujahid MY, Khan BK, JohanssonE. Genotypic variation in dry weight and nitrogen concentration of wheat plant parts: relations to grain yield and grain protein concentration. , 2012, 4: 11-15[本文引用:1][JCR: 2.041]
[15]
KongL, WangF, FengB, LiS, SiJ, Zhang B. A root-zone soil regime of wheat: physiological and growth responses to furrow irrigation in raised bed planting in Northern China. , 2010, 102: 154--162[本文引用:1][JCR: 1.518]
[16]
Tan WN, Liu JP, Dai TB, JingQ, Cao WX, JiangD. Alterations in photosynthesis and antioxidant enzyme activity in winter wheat subjected to post-anthesis water-logging. , 2008, 46: 21-27[本文引用:1][JCR: 0.862]
[17]
翟荣荣, 冯跃, 王会民, 陈艳丽, 吴伟明, 占小登, 沈希宏, 戴高兴, 杨占烈, 曹立勇. 不同水分条件下水稻苗期根系性状的QTL分析. , 2012, 26: 975-982Zhai RR, FengY, Wang HM, Chen YL, Wu WM, Zhan XD, Shen XH, Dai GX, Yang ZL, Cao LY. QTL mapping for root traits in rice seedlings under different water supply conditions. , 2012, 26: 975-982 (in Chinese with English abstract)[本文引用:1]
[18]
Xue YF, ZhangW, Liu DY, Yue SC, Cui ZL, Chen XP, Zou CQ. Effects of nitrogen management on root morphology and zinc translocation from root to shoot of winter wheat in the field. , 2014, 161: 38-45[本文引用:1][JCR: 2.474]
[19]
苗果园, 高志强, 张云亭, 尹钧, 张爱良. 水肥对小麦根系整体影响及其与地上部相关的研究. , 2002, 28: 445-450Miao GY, Gao ZQ, Zhang YT, YinJ, Zhang AL. Effect of water and fertilizer to root system and its correlation with tops in wheat. , 2002, 28: 445-450 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[20]
Wang CY, Liu WX, Li QX, Ma DY, Lu HF, FengW, Xie YX, Zhu YJ, Guo TC. Effects of different irrigation and nitrogen regimes on root growth and its correlation with above-ground plant parts in high-yielding wheat under field conditions. , 2014, 165: 138-149[本文引用:1][JCR: 2.474]
[21]
褚光, 刘洁, 张耗, 杨建昌. 超级稻根系形态生理特征及其与产量形成的关系. , 2014, 40: 850-858ChuG, LiuJ, ZhangH, Yang JC. Morphology and physiology of roots and their relationships with yield for mation in super rice. , 2014, 40: 850-858 (in Chinese with English abstract)[本文引用:2][CJCR: 1.667]
[22]
Wasson AP, Richards RA, ChatrathR, Misra SC, Prasad SV, Rebetzke GJ, Kirkegaard JA, ChristopherJ, WattM. Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. , 2012, 63: 3485-3498[本文引用:1][JCR: 5.242]
[23]
Pang JY, Palta JA, Rebetzke GJ, Milroy SP. Wheat genotypes with high early vigour accumulate more nitrogen and have higher photosynthetic nitrogen use efficiency during early growth. , 2014, 41: 215-222[本文引用:1][JCR: 2.471]
[24]
Erenoglu EB, Kutman UB, CeylanY, YildizB, CakmakI. Improved nitrogen nutrition enhances root uptake, root-to-shoot translocation and remobilization of zinc (65Zn) in wheat. , 2011, 189: 438-448[本文引用:1][JCR: 6.736]
[25]
程建峰, 戴廷波, 荆奇, 姜东, 潘晓云, 曹卫星. 不同水稻基因型的根系形态生理特性与高效氮素吸收. , 2007, 44: 266-272Cheng JF, Dai TB, JingQ, JiangD, Pan XY, Cao WX. Root morphological and physiological characteristics in relation to nitrogen absorption efficiency in different rice genotypes. , 2007, 44: 266-272 (in Chinese with English abstract)[本文引用:1][CJCR: 1.979]
[26]
张荣, 张大勇. 半干旱区春小麦不同年代品种根系生长冗余的比较实验研究. , 2000, 24: 298-303ZhangR, Zhang DY. A comparative study on root redundancy in spring wheat varieties released in different years in semi-arid area. , 2000, 24: 298-303 (in Chinese with English abstract)[本文引用:1]
[27]
魏海燕, 张洪程, 张胜飞, 杭杰, 戴其根, 霍中洋, 许轲, 马群, 张庆, 刘艳阳. 不同氮利用效率水稻基因型的根系形态与生理指标的研究. , 2008, 34: 429-436Wei HY, Zhang HC, Zhang SF, HangJ, Dai QG, Huo ZY, XuK, MaQ, ZhangQ, Liu YY. Root morphological and physiological characteristics in rice genotypes with diferent N use eficiencies. , 2008, 34: 429-436 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[28]
张洋, 张继, 强晓敏, 翟丙年, 王朝辉. 不同氮效率基因型冬小麦生理特征的比较研究. , 2010, 16: 1319-1324ZhangY, ZhangJ, Qiang XM, Zhai BN, Wang ZH. Comparative study on physiological characteristics in winter wheat with different nitrogen use efficiency. , 2010, 16: 1319-1324 (in Chinese with English abstract)[本文引用:1][CJCR: 1.883]
[29]
SgherriC, Quartacci MF, Navari-IzzoF. Early production of activated oxygen species in root apoplast of wheat following copper excess. , 2007, 164: 1152-1160[本文引用:1][JCR: 2.699]
[30]
Fageria NK, MoreiraA. The role of mineral nutrition on root growth of crop plants. , 2011, 110: 251-331[本文引用:1][JCR: 5.06]
[31]
Herrera JM, NoulasC, FeilB, StampP, LiedgensM. Nitrogen and genotype effects on root growth and root survivorship of spring wheat. , 2013, 176: 561-571[本文引用:1]
[32]
GanY, Campbell CA, Janzen HH, Lemke RL, BasnyatP, McDonald C L. Nitrogen accumulation in plant tissues and roots and N mineralization under oilseeds, pulses, and spring wheat. , 2010, 332: 451-461[本文引用:1][JCR: 2.638]
[33]
Passioura JB. Roots and drought resistance. , 1983, 7: 265-280[本文引用:1]
[34]
Xiong YC, Li FM, ZhangT. Performance of wheat crops with different chromosome ploidy: root-sourced signals, drought tolerance, and yield performance. , 2006, 224: 710-718[本文引用:1][JCR: 3.347]