关键词:籼粳杂交稻; 甬优系列; 根系形态生理 Root System Morphological and Physiological Characteristics of Indica- japonica Hybrid Rice of Yongyou Series JIANG Yuan-Hua, XU Jun-Wei, ZHAO Ke, WEI Huan-He, SUN Jian-Jun, ZHANG Hong-Cheng*, DAI Qi-Gen, HUO Zhong-Yang, XU Ke, WEI Hai-Yan, GUO Bao-Wei Innovation Center of Rice Cultivation Technology in the Yangtze Valley, Ministry of Agriculture / Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
AbstractA field experiment was conducted to compare the root system morphological and physiological characteristics of four types of rice populations including indica-japonica hybrid rice of Yongyou series (A), japonica hybrid rice (B), conventional japonica rice (C), and indica hybrid rice (D) under high-yielding cultivation condition in the rice-wheat cropping system. Results were as follows: (1) The root dry weight, aboveground dry weight, number of root tips, root length, root surface area, root-shoot ratio and root volume of A were obviously higher than those of B, C, and D at the middle and late growth stage. (2) The proportion of number, length, surface area and volume of the adventitious roots(root diameter > 0.3 mm) to the whole roots of A were higher than those of B and C, while lower than those of D at heading; the proportion of number, length, surface area and volume of the fine branches (root diameter ≤ 0.1 mm) and coarse branches (0.1 mm < root diameter ≤ 0.3 mm) to total roots of A were higher than those of D, while lower than those of B and C at heading. The proportions of root weight in 0-5 cm, 5-10 cm, and 10-15 cm soil layers to total roots weight of A were higher than those of B and C, while lower than those of D; however, the proportions of root weight in 15-25 cm, 25-35 cm, 35-45 cm, and 45-55 cm soil layers to the total root weight where lower than those of B and C, while higher than these of D at heading. (3) The total absorbing surface area, active absorbing surface area, bleeding intensity, root oxidation activity, and root reducing activity of A were higher than those of B, C, and D. Compared with B, C, and D, the indica-japonica hybrid rice of Yongyou series had significant advantage in root-shoot coordination level, root amount, branch structure, root distribution in soil and biological activity in the middle and late growth stage. This peculiarity of A provides an important guarantee to realize the super-high-yield.
Keyword:Indica-japonica hybrid rice; Yongyou series; Morphology and physiology of roots Show Figures Show Figures
表1 不同类型水稻品种产量及其构成 Table 1 Difference of grain yield and its components in different types of rice cultivars
年份 Year
类型 Type
有效穗数 No. of panicles (× 104 hm-2)
每穗粒数 Spikelets per panicle
总颖花量 Total spikelets (× 104 hm-2)
结实率 Seed-setting rate (%)
千粒重 1000-grain weight (g)
实际产量 Actual yield (kg hm-2)
2012
A
200.98 d
314.02 a
63093.94 a
84.01 c
24.19 b
12152.21 a
B
241.57 b
221.66 b
53494.86 b
86.07 b
26.33 a
11528.21 b
C
329.65 a
143.43 d
47242.65 d
91.26 a
26.56 a
10901.20 c
D
238.89 c
205.84 c
49138.74 c
82.32 d
26.57 a
10140.64 d
2013
A
203.63 c
299.36 a
60959.55 a
83.69 c
24.36 b
12026.77 a
B
246.97 b
212.55 b
52493.00 b
85.96 b
26.54 a
11385.83 b
C
336.95 a
137.53 d
46339.60 d
90.84 a
26.61 a
10742.21 c
D
243.10 b
196.23 c
47704.37 c
81.86 d
26.76 a
10043.47 d
A: indica-japonica hybrid rice; B: japonica hybrid rice; C: conventional japonica rice; D: indicahybrid rice. Values followed by different letters are significantly different at the 0.05 probability level. A: 籼粳杂交稻; B: 杂交粳稻; C: 常规粳稻; D: 杂交籼稻。数字后跟不同小写字母表示在0.05水平上差异显著。
表1 不同类型水稻品种产量及其构成 Table 1 Difference of grain yield and its components in different types of rice cultivars
表2 不同类型水稻品种群体根系的形态特征 Table 2 Root system morphological characteristics of populations in different types of rice cultivars
年份 Year
类型 Type
根尖数 Number of tips (× 106 tips hm-2)
长度 Length (× 103 m hm-2)
表面积 Surface area (× 102 m2 hm-2)
体积 Volume (× 102 m3 hm-2)
拔节期Jointing
2012
A
26927.53 d
9507.00 d
820.99 a
17.71 d
B
27353.82 c
9603.94 c
808.65 b
18.23 c
C
27675.06 b
9661.07 b
791.82 c
18.69 b
D
31756.82 a
11107.10 a
812.86 b
22.35 a
2013
A
26773.24 d
9419.91 d
694.37 a
18.58 d
B
28208.20 c
10175.11 c
779.50 b
19.31 c
C
28907.54 b
10091.31 b
846.60 c
19.52 b
D
32943.02 a
11521.97 a
843.22 b
23.19 a
抽穗期Heading
2012
A
40882.08 a
17253.67 a
1846.64 a
26.71 a
B
36281.56 c
15366.48 c
1700.33 b
23.25 c
C
32605.26 d
13856.47 d
1581.22 d
20.50 d
D
37259.80 b
15642.03 b
1617.34 c
24.83 b
2013
A
43261.31 a
18257.79 a
1954.11 a
28.27 a
B
38197.05 c
16177.75 c
1790.10 b
24.48 c
C
33694.91 d
14319.54 d
1634.06 d
21.19 d
D
39121.31 b
16423.51 b
1698.14 c
26.07 b
成熟期Maturity
2012
A
33162.28 a
12389.51 a
1219.55 a
23.51 a
B
26888.34 b
10209.68 b
1154.91 b
18.67 b
C
22053.76 c
8503.08 c
1077.91 c
15.00 c
D
18472.15 d
6833.09 d
564.35 d
13.48 d
2013
A
34299.63 a
12814.43 a
1261.38 a
24.32 a
B
27046.61 b
10269.78 b
1161.71 b
18.78 b
C
23122.18 c
8915.02 c
1130.14 c
15.73 c
D
19254.60 d
7122.53 d
588.25 d
14.05 d
Values followed by different letters are significantly different at the 0.05 probability level. Abbreviations are the same as those given in Table 1. 数字后不同小写字母表示在0.05水平上差异显著。缩写同表1。
表2 不同类型水稻品种群体根系的形态特征 Table 2 Root system morphological characteristics of populations in different types of rice cultivars
图2 不同类型水稻品种抽穗期根数分布比例其他缩写同图1。Fig. 2 Distribution of different percentage of different pants of roots in different types of rice cultivarsFB: fine branch; CB: course branch; AB: adventitious branch.Other abbreviations are the same as those given in Figure 1.
图3 不同类型水稻品种抽穗期根系干重分布比例缩写同图1。Fig. 3 Distribution percentage of roots in different types of rice cultivarsAbbreviations are the same as those given in Figure 1.
表3 不同类型品种群体根系总吸收面积与活跃吸收面积 Table 3 Total absorbing surface area, active absorbing surface area and ratio of active absorbing surface area to total absorbing surface area in different types of rice cultivars
类型Type
群体根系总吸收面积 Total absorbing surface area of population (× 104 m2 hm-2)
群体根系活跃吸收面积 Active absorbing surface area of population (× 104 m2 hm-2)
拔节期 Jointing
抽穗期 Heading
成熟期 Maturity
拔节期 Jointing
抽穗期 Heading
成熟期 Maturity
2012
A
896.95 b
1643.14 a
899.32 a
495.12 b
941.52 a
327.17 a
B
862.70 c
1518.31 c
816.06 b
484.68 c
882.14 b
286.85 b
C
813.54 d
1405.22 d
757.75 c
466.62 d
835.30 c
260.98 c
D
942.27 a
1562.47 b
510.97 d
508.05 a
884.40 b
171.08 d
2013
A
880.99 b
1631.25 a
885.85 a
487.69 b
938.12 a
323.60 a
B
857.79 c
1504.82 c
789.91 b
478.65 c
874.69 b
278.82 b
C
801.42 d
1400.11 d
753.00 c
457.64 d
826.71 c
260.78 c
D
936.09 a
1562.49 b
491.67 d
501.51 a
882.47 b
161.37 d
Values followed by different letters are significantly different at the 0.05 probability level. Abbreviations are the same as those given in Table 1. 数字后跟不同小写字母表示在0.05水平上差异显著。缩写同表1。
表3 不同类型品种群体根系总吸收面积与活跃吸收面积 Table 3 Total absorbing surface area, active absorbing surface area and ratio of active absorbing surface area to total absorbing surface area in different types of rice cultivars
图4 不同类型品种抽穗后根系α -萘胺氧化力和TTC还原力缩写同图1。Fig. 4 Oxidation ability and reducing capacity in different types of rice cultivars after headingAbbreviations are the same as those given in Figure 1.
图5 不同类型品种抽穗后群体根系伤流强度缩写同图1。Fig. 5 Root bleeding intensity in different types of rice cultivars after headingAbbreviations are the same as those given in Figure 1.
4 结论甬优系列籼粳杂交稻根系融合了籼、粳亚种根系的优点, 具有较高的根冠协调水平, 在生育中后期能在群体水平上形成比籼稻更为庞大的根量和形态, 在根系构型及分布上吸取了粳稻分支多、深扎性好的特点, 同时克服籼稻生育后期早衰的弊端, 在整个灌浆期保持较强劲的根系生理活性, 一定程度上满足了超高产群体对肥水的需求, 增强了群体安全支撑性能, 为灌浆期地上部光合系统持续产出、养分水分高效利用、籽粒灌浆有效充分及产量优势的形成提供了重要保障。 The authors have declared that no competing interests exist.
FitterA. Characteristics and functions of root systems. In: Waisel Y, Eshel A, Kafkafi U, eds. Plant Roots, the Hidden Half. New York: Marcel Dekker Inc. , 2002. pp 15-32[本文引用:1]
[2]
InukaiY, AshikariM, KitanoH. Function of the root system and molecular mechanism of crown root formation in rice. Plant Cell Physiol, 2004, 45(suppl): 17[本文引用:]
[3]
ArimaS, SaishoK, HaradaJ. Morphological analysis of the rice root system based on root diameter. Jpn J Crop Sci, 2001, 70: 408-417[本文引用:1]
[4]
ShimizuH, TanabataT, Xie XZ, InagakiN, TakanoM, ShinomuraT. Physiological function of phytochromes in seminal root growth of rice seedlings. Plant Cell Physiol, 2006, 47(suppl): 203-206[本文引用:1][JCR: 4.134]
YangL, WangY, KobayashiK, ZhuJ, HuangJ, YangH, WangY, DongG, LiuG, HanY, ShanY, HuJ, ZhouJ. Seasonal changes in the effects of free-air CO2 enrichment (FACE) on growth, morphology and physiology of rice root at three levels of nitrogen fertilization. Global Change Biol, 2008, 14: 1-10[本文引用:1][JCR: 6.91]
李敏, 张洪程, 杨雄, 葛梦婕, 马群, 魏海燕, 戴其根, 霍中洋, 许轲, 曹利强, 吴浩. 水稻高产氮高效型品种的根系形态生理特征. 作物学报, 2012, 38: 648-656 LiM, Zhang HC, YangX, Ge MJ, MaQ, Wei HY, Dai QG, Huo ZY, XuK, Cao LiQ, WuH. Root morphological and physiological characteristics of rice cultivars with high yield and high nitrogen use efficiency. Acta Agron Sin, 2012, 38: 648-656 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
Li RH, Jiang TB, Xu CG, Li XH, Wang XK. Relationship between morphological and genetic differentiation in rice (Oryza sativa L. ). Euphytica, 2000, 114: 1-8[本文引用:1][JCR: 1.643]
许德海, 王晓燕, 马荣荣, 禹盛苗, 朱练峰, 欧阳由男, 金千瑜. 重穗型籼粳杂交稻甬优6号超高产生理特性. 中国农业科学, 2007, 21: 281-286 Xu DH, Wang XY, Ma RR, Yu SM, Zhu LF, Ou-Yang Y N, Jin Q Y. Analysis on physiological properties of the heavy panicle type of indica-japonica inter-subspecific hybrid rice Yongyou 6. Sci Agric Sin, 2007, 21: 281-286(in Chinese with English abstract)[本文引用:3][CJCR: 1.889]
[17]
SamejimaH, KondoM, ItoO, NozoeT, ShinanoT, OsakiM. Root-shoot interaction as a limiting factor of biomass productivity in new tropical rice lines. Soil Sci Plant Nutr, 2004, 50: 545-554[本文引用:1][JCR: 0.889]
[18]
SamejimaH, KondoM, ItoO, NozoeT, ShinanoT, OsakiM. Characterization of root systems with respect to morphological traits and nitrogen-absorbing ability in the new plant type of tropical rice lines. J Plant Nutr, 2005, 28: 835-850[本文引用:1][JCR: 0.526]
[19]
ZhangH, Huang ZH, Wang JC, Wang ZQ, Yang JC. Changes in morphological and physiological traits of roots and their relationships with grain yield during the evolution of mid-season indica rice cultivars in Jiangsu Province. Acta Agron Sin, 2011, 37: 1020-1030[本文引用:1][CJCR: 1.667]
[20]
ZhangH, Xue YG, Wang ZQ. Morphological and physiological traits of roots and their relationships with shoot growth in super rice. Field Crops Res, 2009, 113: 31-40[本文引用:1][JCR: 2.474]
[21]
潘晓华, 王永锐, 傅家瑞. 水稻根系生长生理的研究进展. 植物学通报, 1996, 13(2): 13-20 Pan XH, Wang YR, Fu JR. Advance in the study on the growth-physiology in rice of root system (Oryza sativa). Chin Bull Bot, 1996, 13(2): 13-20 (in Chinese with English abstract)[本文引用:1]
MoritaS, IwabuchiA, YamazakiK. Relationships between the growth direction of primary roots and yield in rice plants. Jpn J Crop Sci, 1996, 55: 520-525[本文引用:3]
[29]
李杰, 张洪程, 常勇, 龚金龙, 胡雅杰, 龙厚元, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉. 高产栽培条件下种植方式对超级稻根系形态生理特征的影响. 作物学报, 2011, 37: 2208-2220 LiJ, Zhang HC, ChangY, Gong JL, Hu YJ, Long HY, Dai QG, Huo ZY, XuK, Wei HY, GaoH. Influence of planting methods on root system morphological and physiological characteristics of super rice under high-yielding cultivation condition. Acta Agron Sin, 2011, 37: 2208-2220 (in Chinese with English abstract)[本文引用:2][CJCR: 1.667]