关键词:小麦; 氮肥管理; 酶活性; 木质素; 抗倒伏; 产量 Effect of Nitrogen Fertilization Timing on Lignin Synthesis of Stem and Physiological Mechanism of Lodging Resistance in Wheat LU Kun-Li, YIN Yan-Ping, WANG Zhen-Lin*, LI Yong, PENG Dian-Liang, YANG Wei-Bing, CUI Zheng-Yong, YANG Dong-Qing, JIANG Wen-Wen National Key Laboratory of crop Biology / College of Agriculture, Shandong Agricultural University, Tai’an 271018, China Fund: AbstractFor understanding the effects of nitrogen management on lignin synthesis in wheat stem and plant lodging resistance, a field experiment was conducted, using the lodging resistant cultivar Jimai 22 and the lodging sensitive cultivar Shannong 16, in 2011-2012 and 2012-2013 growing seasons. The lignin accumulation in stem, activities of enzymes related to lignin synthesis, lodging resistance index, and grain yield were evaluated under four nitrogen treatments. All treatments received 240 kg ha-1 nitrogen during the whole growth period, in which 80 kg ha-1 was applied before sowing. The remaining nitrogen was applied at pseudo stem erection and booting stages (1:1) for N1, at jointing stage for N2, at jointing and anthesis stages (1:1) for N3, and at booting stage for N4 treatment. Compared with N2 and N3, N1 and N4 were superior in lignin content, stem mechanical strength, and lodging resistance. Nitrogen fertilization timing had significant effects on activities of phenylalanine ammonia-lyase (PAL), tyrosine ammonia-lyase (TAL), and peroxidase (POD). Under N1 condition, the three key enzymes were in high activity. PAL, TAL and POD activities were higher in N2 treatment than in other treatments at 0-7 d after emergence of the second internode (ESI), and dropped rapidly at 21 days after ESI. Under N3 condition, the PAL, TAL and POD activities were low at 0-21 days after ESI, and the activity decline was alleviated by the nitrogen supplement at anthesis stage (21 days after ESI). Under N4 condition, the activities of these enzymes were increased after 14 days of ESI. At milk and dough stages, both cultivars had higher snapping resistance of the basal stem in N1 and N4 than in N2 and N3 treatments. Besides, the lodging resistance index and grain yield were also significantly higher in N1 and N4 than in N2 and N3. These results indicated that nitrogen applied at booting stage (N1 and N4 treatments) is propitious to increase PAL, TAL, POD activities and lignin content in stem, leading to the improved stem mechanical strength and decreased lodging area and lodging degree of wheat.
Keyword:Wheat; Nitrogen management; Enzyme activity; Lignin; Lodging resistance; Yield Show Figures Show Figures
表1 山农16和济麦22的倒伏发生期、倒伏程度和倒伏率 Table 1 Lodging occurrence stage, degree, and percentage in Shannong 16 and Jimai 22
处理 Treatment
发生期 Stage
分级 Grade
倒伏率 Percentage of lodging (%)
山农16 SN16
济麦22 JM22
山农16 SN16
济麦22 JM22
山农16 SN16
济麦22 JM22
2011-2012
N1
蜡熟初期IDS
—
1
0
4.85±1.81 d
0
N2
蜡熟初期IDS
LDS
2
1
28.92±4.06 a
2.43
N3
蜡熟初期IDS
—
2
0
20.39±0.84 b
0
N4
蜡熟初期IDS
—
1
0
9.17±0.82 c
0
2012-2013
N1
蜡熟末期LDS
—
1
0
2.83±0.30 b
0
N2
蜡熟末期LDS
—
2
0
15.89±1.31 a
0
N3
蜡熟末期LDS
—
1
0
13.45±1.10 a
0
N4
蜡熟末期LDS
—
1
0
4.63±0.45 b
0
SN16: Shannong 16; JM22: Jimai 22; IDS: Initial dough stage; LDS: Late dough stage; —: No lodging occurrence. Lodging degree was graded by the angle between stem and ground, i.e., 90°-75° for grade 0, 75°-45° for grade 1, 45°-20° for grade 2, and 20°-0° for grade 3. The lodging percentage of Shannong 16 was the average ± standard deviation of three replicates. In each growth year, values followed by different letters are significantly different at P < 0.05. —: 未发生倒伏。倒伏程度以倒伏分级表示, 茎秆与地面夹角90°~75°为0级, 75°~45°为1级, 45°~20°为2级, 20°~0°为3级。山农16倒伏率为3次重复的平均值±标准差。同一年度中, 数据后不同字母表示处理间有显著差异( P < 0.05)。
表1 山农16和济麦22的倒伏发生期、倒伏程度和倒伏率 Table 1 Lodging occurrence stage, degree, and percentage in Shannong 16 and Jimai 22
表2 不同生育期山农16和济麦22的基部茎秆抗折力 Table 2 Snapping resistance of basal stem of Shannong 16 and Jimai 22 at different growth stages
处理 Treatment
山农16 Shannong 16
济麦22 Jimai 22
开花期 Anthesis
乳熟期 Milk
蜡熟期 Dough
开花期 Anthesis
乳熟期 Milk
蜡熟期 Dough
2011-2012
N1
3.354±0.217 a
4.198±0.364 a
3.035±0.177 a
3.386±0.184 b
4.556±0.221 a
3.339±0.197 a
N2
3.498±0.227 a
3.799±0.143 c
2.456±0.239 b
3.725±0.179 a
4.311±0.161 b
2.801±0.219 b
N3
3.201±0.186 c
3.993±0.191 b
2.535±0.208 b
3.480±0.114 b
4.257±0.194 b
2.842±0.188 b
N4
3.062±0.120 d
4.099±0.183 ab
2.928±0.237 a
3.277±0.176 c
4.498±0.249 a
3.214±0.182 a
2012-2013
N1
3.369±0.302 b
4.250±0.308 a
3.058±0.268 a
3.519±0.241 b
4.651±0.269 a
3.431±0.346 a
N2
3.551±0.257 a
3.889±0.277 b
2.231±0.274 c
3.760±0.250 a
4.260±0.277 b
2.707±0.217 b
N3
3.159±0.227 c
3.743±0.222 b
2.441±0.209 b
3.413±0.233 b
4.286±0.368 b
2.802±0.179 b
N4
2.926±0.211 d
4.153±0.253 a
2.972±0.247 a
3.240±0.295 c
4.527±0.314 a
3.333±0.285 a
Data are the means ± standard deviation of 20 replicates. In each growth year, values followed by different letters are significantly different at P< 0.05. 数据为20次重复的平均值±标准差。同一年度中数据后不同字母表示处理间达显著差异( P < 0.05)。
表2 不同生育期山农16和济麦22的基部茎秆抗折力 Table 2 Snapping resistance of basal stem of Shannong 16 and Jimai 22 at different growth stages
表3 不同生育期山农16和济麦22的茎秆抗倒伏指数 Table 3 Stem lodging resistance index of Shannong 16 and Jimai 22 at different growth stages
处理 Treatment
山农16 Shannong 16
济麦22 Jimai 22
开花期 Anthesis
乳熟期 Milk
蜡熟期 Dough
开花期 Anthesis
乳熟期 Milk
蜡熟期 Dough
2011-2012
N1
0.901±0.025 a
0.930±0.056 a
0.553±0.020 b
0.921±0.032 c
1.081±0.019 b
0.647±0.028 a
N2
0.899±0.026 a
0.830±0.015 c
0.455±0.031 d
0.978±0.016 a
0.987±0.024 d
0.546±0.025 b
N3
0.880±0.024 b
0.907±0.030 b
0.474±0.033 c
0.963±0.009 b
1.034±0.017 c
0.558±0.033 b
N4
0.851±0.026 c
0.946±0.015 a
0.577±0.032 a
0.925±0.026 c
1.098±0.026 a
0.655±0.030 a
2012-2013
N1
0.904±0.048 a
0.935±0.041 a
0.547±0.045 b
0.960±0.046 a
1.090±0.024 a
0.649±0.044 a
N2
0.900±0.050 a
0.850±0.044 c
0.416±0.035 d
0.966±0.034 a
0.982±0.037 c
0.524±0.035 b
N3
0.887±0.041 a
0.900±0.035 b
0.465±0.034 c
0.926±0.042 b
1.052±0.053 b
0.547±0.026 b
N4
0.851±0.039 b
0.952±0.034 a
0.602±0.043 a
0.932±0.053 b
1.112±0.043 a
0.664±0.045 a
Data are the means ± standard deviation of 20 replicates. In each growth year, values followed by different letters are significantly different at P< 0.05. 数据为20次重复的平均值±标准差。同一年度中数据后不同字母表示处理间达显著差异( P < 0.05)。
表3 不同生育期山农16和济麦22的茎秆抗倒伏指数 Table 3 Stem lodging resistance index of Shannong 16 and Jimai 22 at different growth stages
图2 不同施氮处理对苯丙氨酸解氨酶(PAL)、酪氨酸解氨酶(TAL)和过氧化物酶(POD)活性的影响(2012-2013)Fig. 2 Effects of different nitrogen treatments on activities of phenylalanine ammonia-lyase (PAL), tyrosine ammonia-lyase (TAL), and peroxidase (POD) (2012-2013)
表4 不同施氮处理的籽粒产量及产量构成因素 Table 4 Grain yield and yield components in different nitrogen treatments
处理 Treatment
山农16 Shannong 16
济麦22 Jimai 22
穗数 SN (×104hm-2)
穗粒数 GNS
千粒重 TKW (g)
籽粒产量 GY (kg hm-2)
穗数 SN (×104hm-2)
穗粒数 GNS
千粒重 TKW (g)
籽粒产量 GY (kg hm-2)
2011-2012
N1
573.33 a
47.05 a
36.75 b
8317.80 a
696.67 a
38.65 a
40.34 a
9071.70 a
N2
555.00 a
43.20 bc
35.45 c
5179.75 c
661.67 ab
38.20 a
37.55 c
8326.70 b
N3
551.67 a
42.30 c
36.06 c
7375.05 b
645.00 ab
36.45 a
38.31 b
7888.30 c
N4
545.00 a
46.20 ab
37.90 a
8142.60 ab
633.33 b
36.90 a
40.05 a
8276.40 b
2012-2013
N1
675.00 a
38.45 a
37.48 ab
8026.30 a
703.33 a
43.00 a
37.48 ab
8777.45 a
N2
661.67 a
38.30 a
36.62 c
7434.60 c
680.00 ab
40.35 ab
37.13 ab
8488.90 a
N3
621.67 a
33.05 b
36.95 bc
7598.20 bc
633.33 b
38.25 b
36.68 b
7858.30 b
N4
615.00 a
37.25 a
38.01 a
7856.90 ab
620.00 b
42.16 a
37.54 a
8331.40 ab
In each growth year, values followed by different letters are significantly different at P< 0.05. SN: spike number; GNS: grain number per spike; TKW: 1000-kernel weight; GY: grain yield. 同一年度中, 数据后不同字母表示处理间达显著差异( P < 0.05)。
表4 不同施氮处理的籽粒产量及产量构成因素 Table 4 Grain yield and yield components in different nitrogen treatments
4 结论在总施氮量240 kg hm-2、基施80 kg hm-2条件下, 起身期和孕穗期按1∶1追施其余氮肥有助于提高茎秆中木质素含量和茎秆抗倒伏指数。氮肥施用模式通过调控茎秆PAL、TAL和POD活性及木质素含量, 影响小麦的抗倒伏能力。在本试验区的小麦生产中, 建议适当减少氮肥基施量, 中、后期追施各占总氮量的30%左右, 可以满足小麦生长氮需求, 同时有利于提高茎秆中的木质素含量, 增强抗倒能力, 为高产打下基础。 The authors have declared that no competing interests exist. 作者已声明无竞争性利益关系。The authors have declared that no competing interests exist.
罗茂春, 田翠婷, 李晓娟, 林金星. 水稻茎秆形态结构特征和化学成分与抗倒伏关系综述. , 2007, 27: 2346-2353LuoM C, TianC T, LiX J, LinJ X. Relationship between morpho-anatomical traits together with chemical components and lodging resistance of stem in rice. , 2007, 27: 2346-2353 (in Chinese with English abstract)[本文引用:1]
[2]
杨世民, 谢力, 郑顺林, 李静, 袁继超. 氮肥水平和栽插密度对杂交稻茎秆理化特性与抗倒伏性的影响. , 2009, 35: 93-103YangS M, XieL, ZhengS L, LiJ, YuanJ C. Effects of nitrogen rate and transplanting density on physical and chemical characteristics and lodging resistance of culms in hybrid rice. , 2009, 35: 93-103 (in Chinese with English abstract)[本文引用:3][CJCR: 1.667]
[3]
井长勤, 周忠, 张永. 氮肥运筹对小麦倒伏影响的研究. , 2003, 21(4): 46-49JingC Q, ZhouZ, ZhangY. Effects of Nitrogenous fertilizer application lodging on winter wheat. , 2003, 21(4): 46-49 (in Chinese)[本文引用:4]
[4]
张睿, 黄历. 小麦生产中倒伏原因分析及解决对策. , 2001, (5): 39ZhangR, HuangL. Analysis of lodging cause and counter measures in wheat production. , 2001, (5): 39 (in Chinese)[本文引用:1][CJCR: 0.3367]
[5]
ZahourA, RasmussonD C, GallagherL W. Effects of semi-dwarf stature, head number, and kernel number on grain yield in barley in morocco. , 1987, 27: 161-165[本文引用:1][JCR: 1.513]
[6]
WiersmaD W, OplingerE S, GuyS O. Environment and cultivar effects on winter wheat response to ethephon plant growth regulator. , 1986, 78: 761-764[本文引用:1][JCR: 1.518]
[7]
肖世和, 张秀英, 闫长生, 张文祥, 海林, 郭慧君. 小麦茎秆强度的鉴定方法研究. , 2002, 35: 7-11XiaoS H, ZhangX Y, YanC S, ZhangW X, HaiL, GuoH J. Determination of resistance to lodging by stem strength in wheat. , 2002, 35: 7-11 (in Chinese with English abstract )[本文引用:1][CJCR: 1.889]
[8]
李金才, 尹钧, 魏凤珍. 播种密度对冬小麦茎秆形态特征和抗倒指数的影响. , 2005, 31: 662-666LiJ C, YinJ, WeiF Z. Effects of planting density on characters of culm and culm lodging resistant index in winter wheat. , 2005, 31: 662-666 (in Chinese with English abstract)[本文引用:2][CJCR: 1.667]
[9]
魏凤珍, 李金才, 王成雨, 屈会娟, 沈学善. 氮肥运筹模式对小麦茎秆抗倒性能的影响. , 2008, 34: 1080-1085WeiF Z, LiJ C, WangC Y, QuH J, ShenX S. Effects of nitrogenous fertilizer application model on culm lodging resistance in winter wheat. , 2008, 34: 1080-1085 (in Chinese with English abstract)[本文引用:3][CJCR: 1.667]
[10]
TurnerS R, SomervilleC R. Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. , 1997, 9: 689-701[本文引用:1][JCR: 9.251]
WeltonF A. Lodging in oats and wheat. , 1928, 85: 121[本文引用:2]
[13]
TripathiS C, SayreK D, KaulJ N. Growth and morphology of spring wheat (Triticum aestivum L. ) culms and their association with lodging: effects of genotypes, N levels and ethephon. , 2003, 84: 271-290[本文引用:1][JCR: 2.474]
[14]
陈晓光, 史春余, 尹燕枰, 王振林, 石玉华, 彭佃亮, 倪英丽, 蔡铁. 小麦茎秆木质素代谢及其与抗倒性的关系. , 2011, 37: 1616-1622ChenX G, ShiC Y, YinY P, WangZ L, ShiY H, PengD L, NiY L, CaiT. Relationship between lignin metabolism and lodging resistance in Wheat. , 2011, 37: 1616-1622 (in Chinese with English abstract)[本文引用:4][CJCR: 1.667]
[15]
董琦, 王爱萍, 梁素明. 小麦基部茎节形态结构特征与抗倒性的研究. , 2003, 23: 188-191DongQ, WangA P, LiangS M. Study on the architectural characteristics of wheat stalks. , 2003, 23: 188-191 (in Chinese with English abstract)[本文引用:1]
[16]
马跃芳, 金晓平, 龚辉. 大麦倒伏原因的初步研究. , 1990, 4(4): 22-25MaY F, JinX P, GongH. Preliminary study of barley lodging. , 1990, 4(4): 22-25 (in Chinese)[本文引用:1][CJCR: 0.7044]
[17]
徐本生. , 1961, (8): 53-54XuB S. The relationship between nitrogen application and wheat lodging. , 1961, (8): 53-54 (in Chinese)[本文引用:2][CJCR: 1.507]
[18]
李友军, 傅国占, 王绍中, 郭天财. 高产地小麦前氮后移施肥技术. , 1997, (3): 15-16LiY J, FuG Z, WangS Z, GuoT C. Nitrogenous fertilizer retroposition technology in high yielding fields. , 1997, (3): 15-16 (in Chinese)[本文引用:1][CJCR: 0.6276]
[19]
陈晓光, 石玉华, 王成雨, 尹燕枰, 宁堂原, 史春余, 李勇, 王振林. 氮肥和多效唑对小麦茎秆木质素合成的影响及其与抗倒性的关系. , 2011, 44: 3529-3536ChenX G, ShiY H, WangC Y, YinY P, NingT Y, ShiC Y, LiY, WangZ L. Effects of nitrogen and PP333 application on the lignin synthesis of stem in relation to lodging resistance of Wheat. , 2011, 44: 3529-3536 (in Chinese with English abstract)[本文引用:2][CJCR: 1.889]
[20]
ZadoksJ C, ChangT T, KonzakC F. A decimal code for the growth stages of cereals. , 1974, 14: 415-421[本文引用:1][JCR: 2.045]
[21]
Bhaskara Reddy M V, ArulJ, AngersP, CoutureL. Chitosan treatment of wheat seeds induces resistance to Fusarium graminearum and improves seed quality. , 1999, 47: 1208-1216[本文引用:1][JCR: 2.906]
KofalviS A, NassuthA. Influence of wheat streak mosaic virus infection on phenylpropanoid metabolism and the accumulation of phenolics and lignin in wheat. , 1995, 47: 365-377[本文引用:1][JCR: 1.506]
[24]
KlapheckS, ZimmerI, CosseH. Scavenging of hydrogen peroxide in the endosperm of ricinus communis by ascorbate peroxidase. , 1990, 31: 1005-1013[本文引用:1][JCR: 4.134]
[25]
石海燕, 张玉星. 木质素生物合成途径中关键酶基因的分子特征. , 2011, 27(5): 288-291ShiH Y, ZhangY X. Molecular characterization of key enzyme genes related to the pathway of lignin biosynthesis. , 2011, 27(5): 288-291 (in Chinese with English abstract)[本文引用:1]
[26]
OokawaT, IshiharaK V. Difference of the cell wall components affecting the ding stress of the culm in relating to the lodging resistance in paddy rice. , 1993, 62: 378-384[本文引用:1]
[27]
StrivastavaL M. Histochemical studies on lignin. , 1996, 49: 173-183[本文引用:1][JCR: 2.002]
[28]
KokuboA, SakuraiN, KuraishiS, TakedaK. Culm brittleness of barley (Hordeum vulgar L. ) mutants is caused by smaller number of cellulose molecules in cell wall. , 1991, 97: 509-514[本文引用:1][JCR: 6.555]
[29]
UpdegraffD M. Semimicro determination of cellulose in biological materials. , 1969, 32: 420-424[本文引用:1][JCR: 2.582]
[30]
解新明, 赵燕慧, 霍松, 陈慧. 象草不同品种木质素合成关键酶活性的动态变化. , 2010, 18: 523-527XieX M, ZhaoY H, HuoS, ChenH. Dynamic changes of Enzyme activities related to lignin biosynthesis for elephant grass cultivars. , 2010, 18: 523-527 (in Chinese with English abstract)[本文引用:1]
[31]
Sewalt V J H, NiW, BlountJ W, JungH G, MasoudS A, HowlesP A, LambC, DixonR A. Reduced lignin content and altered lignin composition in transgenic tobacco down-regulated in expression of L-phenylalanine ammonialyase or cinnamate 4-hydro-xylase. , 1997, 115: 41-50[本文引用:1][JCR: 6.555]
[32]
刘晓燕, 金继运, 何萍, 高伟, 李文娟. 氯化钾对玉米木质素代谢的影响及其与茎腐病抗性的关系. , 2007, 40: 2780-2787LiuX Y, JinJ Y, HeP, GaoW, LiW J. Effect of potassium chloride on lignin metabolism and its relation to resistance of corn to stalk rot. , 2007, 40: 2780-2787 (in Chinese with English abstract)[本文引用:2][CJCR: 1.889]
[33]
王群瑛, 胡昌浩. 玉米茎秆抗倒特性的解剖研究. , 1991, 17: 70-75WangQ Y, HuC H. Studies on the anatomical structures of the stalks of maize with different resistance to lodging. , 1991, 17: 70-75 (in Chinese)[本文引用:1][CJCR: 1.667]
[34]
薛应钰, 师桂英, 徐秉良, 陈荣贤. 美洲南瓜(Cucurbita pepo)种皮发育形态观察及其相关酶活性测定. , 2011, 20(2): 23-30XueY Y, ShiG Y, XuB L, ChenR X. Morphological observations on episperm development and related enzyme activity determination in Cucurbita pepo. , 2011, 20(2): 23-30 (in Chinese)[本文引用:1]
[35]
王晨阳, 朱云集, 夏国军, 宋家永, 李九星, 王永华, 罗毅. 氮肥后移对超高产小麦产量及生理特性的影响. , 1998, 24: 978-983WangC Y, ZhuY J, XiaG J, SongJ Y, LiJ X, WangY H, LuoY. Influence of Nitrogen retroposition on wheat yield and physiological characteristics. , 1998, 24: 978-983 (in Chinese)[本文引用:1][CJCR: 1.667]