关键词:杂交籼稻; 机械化种植; 分蘖特性; 优势叶位; 成穗率 Tillering Characteristics ofIndica Hybrid Rice under Mechanized Planting LEI Xiao-Long1, LIU Li1, LIU Bo1, HUANG Guang-Zhong2, MA Rong-Chao1,*, REN Wan-Jun1,* 1Sichuan Agricultural University / Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Wen-jiang 611130, China
2 Pixian Bureau of Rural Development, Pixian 611730, China
Fund: AbstractIn order to explore tillering characteristics and its relationships with yield ofindica hybrid rice with mechanized planting and different sowing dates, a split plot field experiment was conducted using F you 498 with mechanized direct-seeding, mechanized transplanting and artificial transplanting and two sowing date treatments. The main results are as follows: (1) The major and stable contribution to yield was from primary tillers group, ranging from 58.67% to 63.82% among different planting methods. The contribution to yield from main stem was significantly different, with the highest in mechanized direct-seeding and the lowest in artificial transplanting. Yield of secondary tillers group was much lower in mechanized direct-seeding than in mechanized and artificial transplanting. (2) The tillering and panicle formation pattern was different for different planting methods which had a changing trend with a single peak for mechanized direct-seeding and transplanting and with two peaks for artificial transplanting. Tillers of mechanized direct-seeding had early and fast emergence and its primary tillers group emerged from leaf 1 to leaf 8, among which tillers from leaf 1 to leaf 4 had higher percentage of emerging and earbearing, and secondary tillers group earbeared mainly in leaf 1 and leaf 2. Tillers of mechanized transplanting had relatively late, low and concentrated emergence, the primary tillers group mainly emerged from 3/0 to 8/0, among which leaf position of 3/0 to 6/0 had higher rate of panicle formation, and secondary tillers group emerged and earbeared mainly in leaf 3, leaf 4, and leaf 5. The number of tillering leaf positions of artificial transplanting was more and tillering time was longer in seeding bed and field. The primary tillers group mainly emerged from leaf 1 to leaf 8 besides leaf 3, among which the tillers of leaf 1, leaf 2, leaf 4, leaf 5, and leaf 6 had higher earbearing percentage, secondary tillers group emerged and earbeared mainly in leaf 1 and leaf 2. The number of tillering and earbearing leaf positions and yield decreased with delaying sowing date. (3) The main stem and primary tillers in low and middle earbearing leaf positions had larger number of earbearing tiller branches, spikelets per panicle, grain weight and grain weight per panicle among three planting methods. The number of earbearing tiller branches and spikelets per panicle of secondary tillers and primary tillers in high earbearing leaf positions were fewer, so their panicles were small. Leaf 1 to leaf 4 in mechanized direct-seeding, leaf 3 to leaf 6 in mechanized transplanting and leaf positions of 1, 2, 4, 5, and 6 in artificial transplanting were the superior leaf positions. Their contributions to yield were 70.51%, 73.83%, and 76.81%, respectively. The tillers group of superior leaf positions in each planting method had higher rates of tiller emerging and panicle formation, larger panicles and higher contribution to yield. Thus, we should optimize agronomic measures for tillers of superior leaf positions to increase yield potential.
Keyword:Indica hybrid rice; Mechanized planting; Tillering characteristics; Superior leaf position; Earbearing tiller percentage Show Figures Show Figures
图1 不同种植方式各叶位分蘖发生数MD: 机直播; MT: 机插; AT: 手插; ES: 早播; LS: 迟播。Fig. 1 Emerging tiller number of each leaf position under different planting methodsMD: mechanized direct-seeding; MT: mechanized transplanting; AT: artificial transplanting; ES: early sowing treatment; LS: late sowing treatment.
图2 不同种植方式群体的茎蘖动态缩写同图1。Abbreviations are the same as given in Fig. 1.Fig. 2 Dynamics of stems and tillers of rice population under different planting methods
图3 不同种植方式的叶龄与播期的关系缩写同图1。Abbreviations are the same as given in Fig. 1.Fig. 3 Relationship between leaf age and seeding date of different planting methods
图4 不同种植方式分蘖发生数与叶龄的关系缩写同表1。Abbreviations are the same as given in Table 1.Fig. 4 Relationship between leaf age and tiller emerging number of different planting methods
表3 不同种植方式的产量 Table 3 Grain yield under different planting methods
产量性状 Yield trait
机直播 MD
机插 MT
手插 AT
机直播 MD
机插 MT
手插 AT
F值 F-value
ES
LS
ES
LS
ES
LS
P
D
P×D
单株产量 YP (g)
25.72 a
17.04 b
31.08 a
27.55 b
31.11 a
25.57 b
21.38 b
29.32 a
28.34 a
13.75**
19.23**
1.24
产量 GY (t hm-2)
9.51 a
8.16 b
10.74 a
9.36 b
10.38 a
9.08 b
8.83 b
10.05 a
9.73 a
13.39**
46.03**
0.01
单株穗数 Panicles per plant
5.64 a
4.03 b
6.14 a
5.27 b
6.90 a
5.70 b
4.83 b
5.71 a
6.30 a
13.77**
28.67**
0.89
有效穗数 NCP (panicle m-2)
266.83
277.06
250.91
249.44
262.47
254.17
271.94
250.18
258.32
2.59
0
0.47
同行中标以不同小写字母的值差异达0.05显著水平。*,**表示方差分析在0.05和0.01水平上显著。ES: 早播处理; LS: 迟播处理; P: 种植方式; D: 播期; P×D: 种植方式与播期的互作; YP: 单株产量; GY: 产量; NCP: 有效穗数。其他缩写同表1。 Values within a row followed by a different small letter are significantly different at P<0.05.*,** denote significance of variance analysis at the 0.05 and 0.01 probability levels, respectively. ES: early sowing treatment; LS: late sowing treatment; P: planting methods; D: sowing date; P×D: interaction between planting methods and sowing date treatment; YP: yield per plant; GY: grain yield; NCP: number of effective panicles. Other abbreviations are the same as given in Table 1.
表3 不同种植方式的产量 Table 3 Grain yield under different planting methods
表4 Table 4 表4(Table 4)
表4 不同种植方式各叶位茎蘖对产量的贡献率 Table 4 Contribution of stem and tillers in each leaf position to yield under different planting methods (%)
叶位 Leaf position
机直播 MD
机插 MT
手插 AT
机直播 MD
机插 MT
手插 AT
F值 F-value
ES
LS
ES
LS
ES
LS
P
D
P×D
主茎 Main stem
18.97 b
27.82 a
17.47 a
19.40 a
16.43 b
19.13 a
23.39 a
18.43 b
17.78 b
28.14**
45.23**
10.70*
一次分蘖 Primary tiller
1/0
19.30
22.15
14.13
16.25
20.72
15.19
2/0
18.01
21.55
0.79
2.66
13.47
14.94
19.78
1.73
14.20
3/0
13.12
10.98
11.09
18.30
4.99
12.05
14.70
2.49
4/0
9.33
12.77
13.85
18.10
11.94
13.01
11.05
15.97
12.47
5/0
9.80
0.37
14.75
15.94
12.86
11.81
5.08
15.35
12.33
6/0
2.03
12.93
11.77
8.47
10.76
1.02
12.35
9.62
7/0
8.04
2.68
4.16
1.67
5.36
2.92
8/0
0.86
0.86
合计 Total
71.60
67.81
69.45
65.03
65.03
73.43
69.70
65.89
69.23
1.21
3.22
3.15
二次分蘖Secondary tiller
1
5.09
3.04
9.53
4.89
4.07
7.20
2
4.34
1.33
0.43
6.75
2.42
2.83
0.43
4.58
3
5.72
6.09
5.91
4
10.64
4.11
2.27
0.13
7.38
1.20
5
3.84
0.53
2.18
合计 Total
9.43 a
4.37 b
20.21 a
11.15 b
18.54 a
7.44 b
6.90 b
15.68 a
12.99 ab
5.23*
13.72**
0.57
同行中标以不同小写字母的值差异达0.05显著水平。*,**表示方差分析在0.05和0.01水平上显著。其他缩写同表1和表3。 Values within a row followed by a different small letter are significantly different at P<0.05.*,** denote significance of variance analysis at the 0.05 and 0.01 probability levels, respectively. Other abbreviations are the same as given in Table 1 and Table 3.
表4 不同种植方式各叶位茎蘖对产量的贡献率 Table 4 Contribution of stem and tillers in each leaf position to yield under different planting methods (%)
续表5 不同种植方式各叶位茎蘖的穗部性状 Table 5 Panicle traits of stem and tillers in each leaf position under different planting methods
处理 Treatment
叶位 LP
穗长 Panicle length (cm)
一次枝 梗数 No. of PB
二次枝 梗数 No. of SB
二次枝 梗率 Rate of SB
一次枝梗粒数 NSPB
二次枝梗粒数 NSSB
每穗 粒数 NSP
着粒密度 GD (grain cm-1)
粒重 GW (mg)
结实率 Seed- setting rate (%)
单穗重 GWP (g)
平均值 Mean
机直播MD
24.67 a
10.41 b
23.9
2.27
58.22 b
83.5
141.8 b
5.71 b
29.21
87.46 b
3.66 b
机插MT
25.09 a
11.83 a
26.2
2.21
75.72 a
86.2
163.9 a
6.50 a
29.84
95.11 a
4.57 a
手插AT
23.64 b
10.02 c
23.8
2.36
57.86 b
86.5
144.4 b
6.03 ab
29.21
92.72 a
3.90 b
F值 F-value
播期P
8.04*
322.45**
3.37
1.11
5.01*
0.19
5.81*
5.78*
0.47
13.05**
14.79**
种植方式D
3.63
13.99**
4.13
6.01*
0.09
3.11
1.63
4.68
0.87
9.08*
2.26
P×D
11.24**
30.00**
19.47**
26.76**
1.48
17.02**
5.39*
3.32
10.64*
19.15**
4.32
二次分蘖Secondary tiller
机直播MD
ES
1
21.69
9.1
11.2
1.20
51.2
35.7
86.9
3.98
30.43
93.91
2.46
2
22.76
7.3
8.4
1.52
49.1
50.7
99.8
4.35
30.75
95.18
3.41
LS
1
24.62
8.4
15.7
1.74
37.5
71.4
108.9
4.44
27.15
90.36
2.56
2
24.27
9.0
14.3
1.59
53.8
54.5
108.3
4.44
26.66
93.13
2.71
机插MT
ES
3
23.00
9.8
17.6
1.79
55.3
55.8
111.1
4.78
28.14
90.77
2.92
4
23.28
9.3
19.8
2.09
56.3
62.5
118.8
4.90
27.93
92.05
3.07
5
23.20
9.4
15.4
1.62
61.7
44.5
106.2
4.58
28.23
94.56
2.57
LS
2
20.00
14.0
29.0
2.07
78.0
89.0
167.0
8.35
30.26
97.01
4.90
3
21.72
9.9
10.5
1.02
54.2
31.8
86.05
3.94
30.57
95.86
2.53
4
20.49
8.6
10.5
0.92
64.7
28.8
93.53
4.64
29.22
94.31
2.37
5
21.70
11.0
10.5
0.93
54.0
31.5
85.5
2.78
29.84
95.98
2.95
手插AT
ES
1
21.22
7.1
12.6
1.70
43.4
41.2
84.6
4.35
27.32
91.91
2.12
2
24.20
9.0
20.5
2.16
56.0
79.8
135.8
5.61
28.34
94.39
3.63
4
21.10
9.0
16.9
1.89
52.5
52.0
104.5
4.98
26.43
89.12
2.46
LS
1
21.87
9.7
16.5
1.68
56.39
57.3
113.7
5.18
29.46
91.87
3.10
2
21.18
8.3
11.3
1.29
47.38
33.8
81.2
3.72
28.27
89.07
2.08
4
16.20
7.0
5.0
0.71
37.0
15.0
52.0
3.21
28.02
90.38
1.32
平均值 Mean
机直播MD
22.93
8.51 b
12.6
1.45
47.64 b
48.7
96.3
4.18
28.96
91.11
2.53
机插MT
22.52
9.85 a
15.4
2.46
60.59 a
47.1
107.5
4.63
29.05
93.54
2.86
手插AT
21.08
8.31 b
14.2
1.64
49.31 b
47.7
97.0
4.57
28.00
90.99
2.50
F值 F-value
播期P
2.78
7.58*
2.50
1.70
11.00**
0.08
2.55
2.55
0.81
0.37
0.85
种植方式D
0.18
0.68
3.36
13.41
0.22
1.43
4.53
2.27
0.00
0.21
0.77
P×D
4.98
0.77
10.30*
14.84
0.57
15.33
12.29**
3.15
5.26*
0.84
0.18
同列中标以不同小写字母的值差异达0.05显著水平。*,**分别表示方差分析在0.05和0.01水平上显著。LP: 叶位; PB: 一次枝梗; SB: 二次枝梗; NSPB: 一次枝梗粒数; NSSB: 二次枝梗粒数; NSP: 每穗粒数; GW: 粒重。其他缩写同表1和表3。 Values within a colum followed by a different small letter are significantly different at P<0.05.*,** denote significance of variance analysis at the 0.05 and 0.01 probability levels, respectively. LP: leaf position; PB: primary branches; SB: secondary branches; NSPB: No. of spikelets on primary branches; NSSB: No. of spikelets on secondary branches; NSP: No. of spikelets per panicle; GD: grain density; GW: grain weight; GWP: grain weight per panicle. Other abbreviations are the same as given in Table 1 and Table 3.
续表5 不同种植方式各叶位茎蘖的穗部性状 Table 5 Panicle traits of stem and tillers in each leaf position under different planting methods
杨文钰, 屠乃美. 作物栽培学各论. 北京: 中国农业出版社, 2003. p19YangW Y, TuN M. Individual Introduction to Crop Production. Beijing: China Agriculture Press, 2003. p19 (in Chinese)[本文引用:1]
[2]
张洪程, 吴桂成, 吴文革, 戴其根, 霍中洋, 许轲, 高辉, 魏海燕, 黄幸福, 龚金龙. 水稻“精苗稳前、控蘖优中、大穗强后”超高产定量化栽培模式. , 2010, 43: 2645-2660ZhangH C, WuG C, WuW G, DaiQ G, HuoZ Y, XuK, GaoH, WeiH Y, HuangX F, GongJ L. The SOI model of quantitative cultivation of super-high yielding rice. , 2010, 43: 2645-2660 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
[3]
凌启鸿, 苏祖芳, 张海泉. 水稻成穗率与群体质量的关系及其影响因素的研究. , 1995, 21: 463-469LingQ H, SuZ F, ZhangH Q. Relationship between ear bearing tiller percentage and population quality and its influential factors in rice. , 1995, 21: 463-469 (in Chinese with English abstract)[本文引用:6][CJCR: 1.667]
[4]
凌启鸿, 张洪程, 蔡建中, 苏祖芳, 凌励. 水稻高产群体质量及其优化控制探讨. , 1993, 26(6): 1-11LingQ H, ZhangH C, CaiJ Z, SuZ F, LingL. Investigation on the population quality of high yield and its optimizing control programme in rice. , 1993, 26(6): 1-11 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
[5]
LiX Y, QianQ, FuZ M, WangY H, XiongG S, ZengD L, WangX Q, LiuX F, TengS, HiroshiF, YuanM, LuoD, HanB, LiJ Y. Control of tillering in rice. , 2003, 422: 618-621[本文引用:1][JCR: 38.597]
[6]
AoH J, PengS B, ZouY B, TangQ Y, VisperasR M. Reduction of unproductive tillers did not increase the grain yield of irrigated rice. , 2010, 116: 108-115[本文引用:1][JCR: 2.474]
[7]
李荣田, 崔成焕, 姜廷波, 秋太权, 龚振平. 水稻品种分蘖特性对产量影响分析. , 1996, 27(1): 9-14LiR T, CuiC H, JiangT B, QiuT Q, GongZ P. Analysis of effect of tillering traits on yielding among rice varieties. , 1996, 27(1): 9-14 (in Chinese with English abstract)[本文引用:1][CJCR: 0.1053]
[8]
詹可, 邹应斌. 水稻分蘖特性及成穗规律研究进展. , 2007, 21: 588-592ZhanK, ZouY B. Research progress in tillering characteristics and panicle laws of rice. , 2007, 21: 588-592 (in Chinese)[本文引用:1][CJCR: 0.7044]
[9]
汪秀志, 钱永德, 吕艳东, 刘丽华, 郑桂萍. 施肥和密度对寒地水稻分蘖状况及产量的影响. , 2011, 37(1): 69-76WangX Z, QianY D, LüY D, LiuL H, ZhengG P. Effects of N-fertilizer application and density on tiller and yield of rice in cold area. , 2011, 37(1): 69-76 (in Chinese with English abstract)[本文引用:2]
[10]
丁艳锋, 黄丕生, 凌启鸿. 水稻分蘖发生及与特定部位叶片叶鞘含氮率的关系. , 1995, 18(4): 14-18DingY F, HuangP S, LingQ H. Relationship between emergence of tiller and nitrogen concentration of leaf blade or leaf sheath on specific node of rice. , 1995, 18(4): 14-18 (in Chinese with English abstract)[本文引用:1][CJCR: 0.916]
[11]
郑永美, 丁艳锋, 王强盛, 李刚华, 王惠芝, 王绍华. 起身肥对水稻分蘖和氮素吸收利用的影响. , 2008, 34: 513-519ZhengY M, DingY F, WangQ S, LiG H, WangH Z, WangS H. Effect of nitrogen applied before transplanting on tillering and nitrogen utilization in rice. , 2008, 34: 513-519 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[12]
苏祖芳, 周兴安, 张亚洁, 李国生, 姚志发, 沈富荣, 姚友权. 搁田始期对水稻成穗率、产量形成和群体质量的影响. , 1996, 10: 95-102SuZ F, ZhouX A, ZhangY J, LiG S, YaoZ F, ShenF R, YaoY Q. Effect of the beginning period of draining paddy field on the percentage of effective tillers, yield formation and population quality in rice. , 1996, 10: 95-102 (in Chinese with English abstract)[本文引用:1][CJCR: 1.494]
[13]
俞爱英, 林贤青, 曾孝元, 吴增琪, 朱贵平. 不同灌溉方式对水稻分蘖成穗规律及产量影响研究. , 2007, 26(1): 66-68YuA Y, LinX Q, ZengX Y, WuZ Q, ZhuG P. Studies of different water managements on tillers and panicles and mechanism of high-yield of rice. , 2007, 26(1): 66-68 (in Chinese with English abstract)[本文引用:1][JCR: 1.126]
[14]
陈慧哲, 朱德峰, 林贤青, 张玉屏. 稀植条件下杂交稻分蘖成穗规律和穗粒结构研究. , 2004, 19(6): 51-54ChenH Z, ZhuD F, LinX Q, ZhangY P. Studies on the tillering dynamics, panicle formation and composition of panicles of hybrid rice under sparse transplanting density. , 2004, 19(6): 51-54 (in Chinese with English abstract)[本文引用:1][CJCR: 0.605]
[15]
乔晶, 王强盛, 王绍华, 刘正辉, 郝建华, 丁艳锋. 机插杂交粳稻基本苗数对分蘖发生与成穗的影响. , 2010, 33(1): 6-10QiaoJ, WangQ S, WangS H, LiuZ H, HaoJ H, DingY F. Effects of basic seedlings on tiller emerging and earbearing of machine-transplanted hybrid japonica rice. , 2010, 33(1): 6-10 (in Chinese with English abstract)[本文引用:5][CJCR: 0.916]
[16]
苏昌龙, 杨桂兰, 黄姚英, 吴文和, 李佳林. 不同分蘖苗移栽与氮肥运筹对超高产杂交水稻产量的影响. , 2013, 41(3): 19-22SuC L, YangG L, HuangY Y, WuW H, LiJ L. Effects of transplantation of tillering seedlings and nitrogen management on super high-yield hybrid rice yield. Guizhou, 2013, 41(3): 19-22 (in Chinese with English abstract)[本文引用:1][JCR: 0.796]
[17]
廖学群, 隗溟, 朱自均. 秧田秧苗分蘖结构对水稻生长发育的影响. , 2005, 27(1): 9-13LiaoX Q, WeiM, ZhuZ J. Effects of tillering components of seedlings on the growth and development of rice. , 2005, 27(1): 9-13 (in Chinese with English abstract)[本文引用:1][CJCR: 0.45]
[18]
周美兰, 周连玉, 李小勇, 唐启源, 邹应斌. 早稻分蘖化学控制的研究. , 2001, 27: 425-427ZhouM L, ZhouL Y, LiX Y, TangQ Y, ZouY B. Chemical control of rice tillering of early rice. , 2001, 27: 425-427 (in Chinese with English abstract)[本文引用:1]
[19]
袁钊和, 陈巧敏, 杨新春. 论我国水稻抛秧、插秧、直播机械化技术的发展. , 1998, 29(3): 181-183YuanZ H, ChenQ M, YangX C. Development of mechanized cast-transplanting, transplanting and seeding in China. , 1998, 29(3): 181-183 (in Chinese)[本文引用:1]
[20]
顾建清, 徐嘉梁, 戴鼎, 朱阿多, 袁继栋. 不同水稻机械化种植方案技术经济分析. , 2012, (5): 37-40GuJ Q, XuJ L, DaiD, ZhuA D, YuanJ D. Technical and economic analysis of different mechanized rice planting schemes. , 2012, (5): 37-40 (in Chinese with English abstract)[本文引用:1]
[21]
袁奇, 于林惠, 石世杰, 邵建国, 丁艳锋. 机插秧每穴栽插苗数对水稻分蘖与成穗的影响. , 2007, 23(10): 121-125YuanQ, YuL H, ShiS J, ShaoJ G, DingY F. Effects of different tiller production planting seedlings per hill on outgrowth and quantities of for machine-transplanted rice. , 2007, 23(10): 121-125(in Chinese with English abstract)[本文引用:4][CJCR: 1.299]
[22]
郑家国, 杨文钰, 池忠志, 任万军, 姜心禄, 樊高琼, 陈兴福. 四川盆地稻田周年高产高效种植模式. , 2010, (5): 20-21ZhengJ G, YangW Y, ChiZ Z, RenW J, JiangX L, FanG Q, ChenX F. Annual high-yield, high-efficiency paddy cropping patterns of Sichuan basin. Sichuan Agric Sci &, 2010, (5): 20-21 (in Chinese)[本文引用:1]
[23]
Samonte S O P B, WilsonL T, TabienR E. Maximum node production rate and main culm node number contributions to yield and yield-related traits in rice. , 2006, 96: 313-319[本文引用:1][JCR: 2.474]
李刚华, 王绍华, 杨从党, 黄庆宇, 李德安, 宁加朝, 凌启鸿, 丁艳锋. 超高产水稻适宜单株成穗数的定量计算. , 2008, 41: 3556-3562LiG H, WangS H, YangC D, HuangQ Y, LiD A, NingJ C, LingQ H, DingY F. Quantitative calculation of optimum panicle number per plant of super high-yield rice. Sci, 2008, 41: 3556-3562 (in Chinese with English abstract)[本文引用:3]
[26]
李杰, 张洪程, 龚金龙, 常勇, 吴桂成, 郭振华, 戴其根, 霍中洋, 许轲, 魏海燕. 稻麦两熟地区不同栽培方式超级稻分蘖特性及其与群体生产力的关系. , 2011, 37: 309-320LiJ, ZhangH C, GongJ L, ChangY, WuG C, GuoZ H, DaiQ G, HuoZ Y, XuK, WeiH Y. Tillering characteristics and its relationships with population productivity of super rice under different cultivation methods in rice-wheat cropping areas. , 2011, 37: 309-320 (in Chinese with English abstract)[本文引用:6][CJCR: 1.667]
[27]
雷小龙, 刘利, 苟文, 马荣朝, 任万军. 种植方式对杂交籼稻植株抗倒伏特性的影响. , 2013, 39: 1814-1825LeiX L, LiuL, GouW, MaR C, RenW J. Effects of planting methods on culm lodging resistance of indica hybrid rice (Oryza sativa L. ). , 2013, 39: 1814-1825 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[28]
李刚华, 李德安, 宁加朝, 黄庆宇, 顾伟, 杨从党, 王绍华, 凌启鸿, 丁艳锋. 种植密度和施肥量对超高产杂交籼稻秧苗素质的影响. , 2008, 22: 610-616LiG H, LiD A, NingJ C, HuangQ Y, GuW, YangC D, WangS H, LingQ H, DingY F. Effects of nitrogen level and seeding density on seeding quality of indica-type super-high yielding hybrid rice. , 2008, 22: 610-616 (in Chinese with English abstract)[本文引用:1][CJCR: 1.494]