摘要以杂交粳稻常优5号为材料, 设置未施氮肥处理(0N)、当地高产栽培(对照)、超高产栽培和氮肥高效利用栽培等4种栽培模式, 观察其对水稻不同生育期根系形态生理和地上部生长的影响。结果表明, 不同栽培模式下水稻产量差异极显著。超高产栽培与氮肥高效利用栽培两年的平均产量分别为12.29 t hm-2和9.62 t hm-2, 平均分别较对照增产41.4%和10.7%。上述两种栽培模式的氮肥农学利用率(每kg施氮量增加的产量)分别较对照增加80.7%和76.8%, 灌溉水利用效率分别较对照提高62.1%和32.3%。与对照相比, 超高产栽培与氮肥高效利用栽培均增加了水稻地上部干物重、叶面积指数、根干重、根长, 提高了粒叶比, 改善了库源关系, 并提高了根冠比与根系伤流量。同时也提高了灌浆期剑叶净光合速率、根系氧化力、根系总吸收表面积与根系活跃吸收表面积, 生育中后期根系、叶片以及根系伤流液中的玉米素(Z)与玉米素核苷(ZR)含量、灌浆期籽粒中蔗糖合酶(SuSase)以及腺苷二磷酸葡萄糖焦磷酸化酶(AGPase)活性。这说明, 通过栽培技术的集成与优化可以提高水稻灌浆期根系和地上部的生理活性, 促进水稻高产与水分养分高效利用。
关键词:水稻; 栽培模式; 产量; 根系形态生理; 氮肥利用率; 水分利用率 Effects of Cultivation Patterns on Root Morph-physiological Traits and Aboveground Development ofJaponica Hybrid Rice Cultivar Changyou 5 CHU Guang1, ZHOU Qun1, XUE Ya-Guang1,3, YAN Xiao-Yuan2, LIU Li-Jun1, YANG Jian-Chang1,* 1 Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
2 Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
3Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong 226541, China
Fund: AbstractThe objective of this study was to investigate if a cultivation technique could coordinately increase both grain yield and nutrient use efficiency of rice through an improvement in morphological and physiological traits of roots. A field experiment was conducted usingjaponica hybrid rice cultivar Changyou 5 with four cultivation patterns including no nitrogen application (0N), local high yielding cultivation (control), super high yielding cultivation (SHY) and high nutrient use efficiency cultivation (HUEN). The results showed that, the grain yield was 12.29 t ha-1 under SHY and 9.62 t ha-1under HUEN, which was 41.4% and 10.7% higher than that under the control, on the average, respectively. When compared with the control, SHY and HUEN increased nitrogen (N) agronomic efficiency (the increase in grain yield divides by the amount of N application) by 80.7% and 76.8%, and irrigation water use efficiency by 62.1% and 32.3%, respectively. The SHY and HUEN also significantly increased biomass from heading to maturity, leaf area index, root dry weight and root length, grain-leaf ratio, root-shoot ratio, the amount of root bleeding, photosynthetic rate of the flag leaf, root oxidation activity, total absorbing surface area and active absorbing surface area, contents of cytokinins (zeatin + zeatin riboside) in roots, leaves and root bleedings, and activities of sucrose synthase and adenosine diphosphate-glucose pyrophosphorylase in grains during grain filling. The results indicate that higher grain yield and high nutrient and water use efficiencies can be coordinately achieved through using integrating and optimizing cultivation techniques in rice production.
Keyword:Rice; Cultivation pattern; Yield; Morphology and physiology of roots; Nitrogen use efficiency; Water use efficiency Show Figures Show Figures
表1 水稻不同栽培模式的施肥时期和施肥量 Table 1 Time and amount of fertilizer application for different cultivation patterns (kg hm-2)
处理 Treatment
基肥 Basal fertilizer
分蘖肥 Tillering fertilizer
促花肥 Spikelet-promoting fertilizer
保花肥 Spikelet-protecting fertilizer
氮、磷、钾用量 Amount of N, P and K
养分合计 Total
N
P2O5
K2O
N
P2O5
K2O
N
P2O5
K2O
N
P2O5
K2O
N
P2O5
K2O
0N
0
90
120
0
0
0
0
0
0
0
0
0
0
90
120
210
LHY
180
90
120
60
0
0
0
0
0
60
0
0
300
90
120
510
SHY
187.5
126
90
37.5
0
0
75
0
90
75
0
0
375
126
180
681
HUEN
112.5
90
60
22.5
0
0
45
0
60
45
0
0
225
90
120
435
0N: 不施用氮肥; LHY: 当地高产栽培; SHY: 超高产栽培; HUEN: 氮肥高效利用栽培。 0N: no nitrogen application; LHY: local high yielding cultivation; SHY: super high yielding cultivation; HUEN: high nutrient use efficiency cultivation.
表1 水稻不同栽培模式的施肥时期和施肥量 Table 1 Time and amount of fertilizer application for different cultivation patterns (kg hm-2)
表2 不同栽培模式下的水稻产量及其构成因素 Table 2 Grain yield and its yield components under different cultivation patterns
处理 Treatment
产量 Grain yield (t hm-2)
穗数 No. of panicles(×104 hm-2)
每穗粒数 Spikelets per panicle
总颖花量 Total spikelets(×106 hm-2)
结实率 Filled grains(%)
千粒重 1000-grain weight(g)
2012
0N
5.80 d
131.78 c
164.71 c
217.05 d
93.25 a
28.65 a
LHY
8.71 c
211.11 b
174.18 b
367.71 c
87.04 b
27.22 b
SHY
12.25 a
274.32 a
190.30 a
522.05 a
86.84 b
27.02 b
HUEN
9.59 b
215.78 b
191.24 a
412.65 b
85.96 bc
27.03 b
2013
0N
5.84 d
130.32 c
168.32 c
219.35 d
92.13 a
28.92 a
LHY
8.67 c
213.83 b
172.44 c
368.73 c
85.81 b
27.41 b
SHY
12.34 a
272.44 a
195.12 a
531.58 a
84.96 b
27.32 b
HUEN
9.66 b
219.33 b
189.33 ab
415.26 b
84.78 b
27.43 b
0N: 不施用氮肥; LHY: 当地高产栽培; SHY: 超高产栽培; HUEN: 氮肥高效利用栽培。同栏同年内比较, 不同字母表示 P=0.05水平上差异显著。 0N: no nitrogen application; LHY: local high yielding cultivation; SHY: super high yielding cultivation; HUEN: high nutrient use efficiency cultivation. Values within the same column and same year followed by different letters are significantly different at 0.05 probability level.
表2 不同栽培模式下的水稻产量及其构成因素 Table 2 Grain yield and its yield components under different cultivation patterns
表3 不同栽培模式下水稻的吸氮量、氮收获指数与氮肥利用效率 Table 3 N uptake, N harvest index, and N use efficiency under different cultivation patterns in rice
处理 Treatment
施氮量 N application rate(kg hm-2)
吸氮量 N uptake(kg hm-2)
氮收获指数 N harvest index
氮肥偏生产力 Partial factor productivity of N
吸收利用率 Recovery efficiency (%)
农学利用率 Agronomic efficiency (kg kg-1)
生理利用率 Physiological efficiency (kg kg-1)
2012
0N
0
83.37 c
0.71 a
—
—
—
—
LHY
300
181.45 b
0.58 c
29.02 c
32.69 c
9.69 c
29.64 b
SHY
375
297.95 a
0.53 d
32.67 b
57.22 a
17.20 a
30.06 b
HUEN
225
179.77 b
0.63 b
42.61 a
42.85 b
16.84 b
39.30 a
2013
0N
0
84.75 c
0.68 a
—
—
—
—
LHY
300
186.44 b
0.61 c
28.89 c
33.90 c
9.42 c
27.80 b
SHY
375
326.46 a
0.52 d
32.89 b
64.46 a
17.32 a
26.88 b
HUEN
225
183.06 b
0.67 b
42.91 a
43.70 b
16.96 b
38.81 a
0N: 不施用氮肥; LHY: 当地高产栽培; SHY: 超高产栽培; HUEN: 氮肥高效利用栽培。同栏同年内比较, 不同字母表示 P=0.05水平上差异显著。 0N: no nitrogen application; LHY: local high yielding cultivation; SHY: super high yielding cultivation; HUEN: high nutrient use efficiency cultivation. Values within the same column and same year followed by different letters are significantly different at 0.05 probability level.
表3 不同栽培模式下水稻的吸氮量、氮收获指数与氮肥利用效率 Table 3 N uptake, N harvest index, and N use efficiency under different cultivation patterns in rice
超高产栽培和氮肥高效利用栽培两年的平均灌溉用水量分别是4860 m3 hm-2与4661 m3 hm-2, 是当地高产栽培(对照)的87%和84%。超高产栽培和氮肥高效利用栽培的灌溉水分利用效率分别为2.53 kg m-3与2.06 kg m-3, 分别较对照增加62%与32% (表4)。 表4 Table 4 表4(Table 4)
表4 不同栽培模式下的水稻灌溉水利用效率 Table 4 Water use efficiency (WUE) for irrigation under different cultivation patterns in rice
处理 Treatment
灌溉用水量Irrigation water
灌溉水利用效率Water use efficiency (WUE) for irrigation
(m3hm-2)
(%)
(kg m-3)
(%)
2012
0N
5237 ab
94
1.11 d
71
LHY
5597 a
100
1.56 c
100
SHY
4867 c
87
2.52 a
162
HUEN
4668 c
83
2.05 b
132
2013
0N
5335 b
96
1.09 d
70
LHY
5532 a
100
1.57 c
100
SHY
4852 c
88
2.54 a
162
HUEN
4653 d
84
2.07 b
132
0N: 不施用氮肥; LHY: 当地高产栽培; SHY: 超高产栽培; HUEN: 氮肥高效利用栽培。同栏同年内比较, 不同字母表示 P=0.05水平上差异显著。 0N: no nitrogen application; LHY: local high yielding cultivation; SHY: super high yielding cultivation; HUEN: high nutrient use efficiency cultivation. Values within the same column and same year followed by different letters are significantly different at 0.05 probability level.
表4 不同栽培模式下的水稻灌溉水利用效率 Table 4 Water use efficiency (WUE) for irrigation under different cultivation patterns in rice
表5 不同栽培模式下的水稻抽穗期叶面积指数和粒叶比 Table 5 Leaf area index and grain-leaf ratio at heading stage under different cultivation patterns in rice
处理 Treatment
总叶面积指数 Total leaf area index
有效叶面积指数 Effective leaf area index
高效叶面积指数 High-effective leaf area index
颖花/叶Spikelets/leaf area (cm-2)
实粒/叶 Filled grains/leaf area (cm-2)
粒重/叶 Grain yield/leaf area (mg cm-2)
2012
0N
4.57 d
4.02 d
3.13 d
0.47 d
0.44 d
12.69 d
LHY
6.75 c
5.69 c
4.14 c
0.54 c
0.47 c
12.91 c
SHY
8.31 a
7.89 a
6.35 a
0.63 a
0.55 a
14.74 a
HUEN
7.05 b
6.53 b
4.92 b
0.59 b
0.50 b
13.60 b
2013
0N
4.62 d
4.08 d
3.19 d
0.47 d
0.43 d
12.52 d
LHY
6.76 c
5.63 c
4.19 c
0.54 c
0.47 c
12.79 c
SHY
8.26 a
7.93 a
6.42 a
0.63 a
0.54 a
14.67 a
HUEN
7.06 b
6.47 b
4.98 b
0.58 c
0.50 b
13.59 b
0N: 不施用氮肥; LHY: 当地高产栽培; SHY: 超高产栽培; HUEN: 氮肥高效利用栽培。同栏同年内比较, 不同字母表示 P=0.05水平上差异显著。 0N: no nitrogen application; LHY: local high yielding cultivation; SHY: super high yielding cultivation; HUEN: high nutrient use efficiency cultivation. Values within the same column and same year followed by different letters are significantly different at 0.05 probability level.
表5 不同栽培模式下的水稻抽穗期叶面积指数和粒叶比 Table 5 Leaf area index and grain-leaf ratio at heading stage under different cultivation patterns in rice
图2 不同栽培模式下的水稻在不同生育时期地上部干物重(A, B)、根干重(C, D)和根-冠比(E, F)Fig. 2 Shoot dry weight (A, B), root dry weight (C, D), and root-shoot ratio (E, F) under different cultivation patterns in rice at different growth stages
图3 不同栽培模式下的水稻在不同生育时期根长(A, B)、根直径(C, D)和比根长(E, F)Fig. 3 Root length (A, B), diameter per root (C, D), and special root length (E, F) under different cultivation patterns in rice at different growth stages
图4 不同栽培模式下的水稻在不同生育时期根系氧化力(A, B)和根系伤流液强度(C, D)Fig. 4 Root oxidation activity (A, B) and root bleeding amount (C, D) under different cultivation patterns in rice at different growth stages
图5 不同栽培模式下的水稻在不同生育时期根系总吸收表面积(A, B)和活跃吸收表面积(C, D)Fig. 5 Total absorbing surface area (A, B) and active absorbing surface area (C, D) under different cultivation patterns in rice at different growth stages
图6 不同栽培模式下水稻根系(A, B)、叶片(C, D)和根系伤流液(E, F)中玉米素(Z)+玉米素核苷(ZR)含量Fig. 6 Zeatin (Z) + zeatin riboside (ZR) content in roots (A, B), leaves (C, D), and root bleeding (E, F) under different cultivation patterns in rice at different growth stages
表6 各处理的籽粒中蔗糖合酶及腺苷二磷酸葡萄糖焦磷酸化酶活性 Table 6 Activities of sucrose synthase (SuSase) and adenosine diphosphate glucose pyrophospgorylase (AGPase) in grains
处理 Treatment
蔗糖合酶 SuSase (μmol g-1 FW min-1)
腺苷二磷酸葡萄糖焦磷酸化酶 AGPase (μmol g-1 FW min-1)
8 DAH
17 DAH
26 DAH
8 DAH
17 DAH
26 DAH
2012
0N
8.95 c
5.91 c
3.86 d
6.03 c
3.85 c
1.97 d
LHY
8.32 d
5.85 c
4.64 c
5.45 d
3.87 c
2.67 c
SHY
11.21 a
7.64 a
6.45 a
7.54 a
5.32 a
4.54 a
HUEN
9.64 b
6.44 b
5.32 b
6.43 b
4.64 b
3.83 b
2013
0N
8.83 c
5.79 c
3.78 d
5.97 c
3.72 c
2.04 d
LHY
8.15 d
5.75 c
4.58 c
5.57 d
3.68 c
2.75 c
SHY
11.05 a
7.75 a
6.39 a
7.67 a
5.43 a
4.67 a
HUEN
9.53 b
6.54 b
5.16 b
6.54 b
4.75 b
3.94 b
0N: 不施用氮肥; LHY: 当地高产栽培; SHY: 超高产栽培; HUEN: 氮肥高效利用栽培; DAH: 抽穗后天数。同栏同年内比较, 不同字母表示 P=0.05水平上差异显著。 0N: no nitrogen application; LHY: local high yielding cultivation; SHY: super high yielding cultivation; HUEN: high nutrient use efficiency cultivation. DAH: days after heading. Values within the same column and same year followed by different letters are significantly different at 0.05 probability level.
表6 各处理的籽粒中蔗糖合酶及腺苷二磷酸葡萄糖焦磷酸化酶活性 Table 6 Activities of sucrose synthase (SuSase) and adenosine diphosphate glucose pyrophospgorylase (AGPase) in grains
回归分析表明, 在不同栽培模式下水稻灌浆期根系、叶片以及根系伤流液中Z+ZR的含量、根系氧化力以及根系总吸收表面积和根系活跃吸收表面积与灌浆期剑叶净光合速率、籽粒中蔗糖合酶(SuSase)以及腺苷二磷酸葡萄糖焦磷酸化酶(AGPase)活性均呈极显著正相关关系( r = 7289**~0.9419**)(图7)。 图7 Fig. 7
图7 水稻剑叶净光合速率(A1~A6)、蔗糖合酶活性(B1~B6)和腺苷二磷酸葡萄糖焦磷酸化酶活性(C1~C6)与根系(A1~C1)、叶片(A2~C2)和根系伤流液(A3~C3)中Z+ZR含量、根系氧化力(A4~C4)、根系总吸收表面积(A5~C5)以及根系活跃吸收表面积(A6~C6)之间的关系Fig. 7 Correlation of flag leaf photosynthetic rate (A1-A6), the activities of sucrose synthase (SuSase) (B1-B6) and adenosine diphosphoglucose pyrophosphorylase (AGPase)(C1-C6) with zeatin (Z) + zeatin riboside (ZR) content in roots (A1-C1), leaves (A2-C2) and root bleeding (A3-C3), root oxidation activity (A4-C4), total absorbing surface area (A5-C5), and active absorbing surface area (A6-C6)
ZhangH, XueY G, WangZ Q, YangJ C, ZhangJ H. Morphological and physiological traits of roots and their relationships with shoot growth in “super” rice. , 2009, 113: 31-40[本文引用:1][JCR: 2.474]
[2]
敖和军, 王淑红, 邹应斌, 彭少兵, 唐启源, 方远祥, 肖安民, 陈玉梅, 熊昌明. 超级杂交稻干物质生产特点与产量稳定性研究. , 2008, 41: 1927-1936AoH J, WangS H, ZouY B, PengS B, TangQ Y, FangY X, XiaoA M, ChenY M, XiongC M. Study on yield stability and dry matter characteristics of super hybrid rice. , 2008, 41: 1927-1936 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
[3]
YangJ C, PengS B, ZhangZ J, WangZ Q, VisperasR M, ZhuQ S. Grain and dry matter yields and partitioning of assimilates in japonica/indica hybrid rice. , 2002, 42: 766-772[本文引用:1][JCR: 1.513]
[4]
朱兆良, 金继运. 保障我国粮食安全的肥料问题. , 2013, 19: 259-273ZhuZ L, JinJ Y. Fertilizer use and food security in China. , 2013, 19: 259-273 (in Chinese with English abstract)[本文引用:1][CJCR: 1.883]
[5]
YingJ F, PengS B, HeQ R, YangH, YangC D, VisperasR M, CassmanK G. Comparison of high-yield rice in tropical and subtropical environments: I. Determinants of grain and dry matter yields. , 1998, 57: 71-84[本文引用:1][JCR: 2.474]
[6]
YingJ F, PengS B, YangG Q, ZhouN, VisperasR M, CassmanK G. Comparison of high-yield rice in tropical and subtropical environments: II. Nitrogen accumulation and utilization efficiency. , 1998, 57: 85-93[本文引用:1][JCR: 2.474]
[7]
刘立军, 杨立年, 孙小淋, 王志琴, 杨建昌. 水稻实地氮肥管理的氮肥利用效率及其生理原因. , 2009, 35: 1672-1680LiuL J, YangL N, SunX L, WangZ Q, YangJ C. Fertilizer- nitrogen use efficiency and its physiological mechanism under site-specific nitrogen management in rice. , 2009, 35: 1672-1680 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[8]
敖和军, 王淑红, 邹应斌, 彭少兵, 程兆伟, 刘武, 唐启源. 不同施肥水平下超级杂交稻对氮、磷、钾的吸收积累. , 2008, 41: 3123-3132AoH J, WangS H, ZouY B, PengS B, ChengZ W, LiuW, TangQ Y. Characteristics of nutrient uptake and utilization of super hybrid rice under different fertilizer application rates. , 2008, 41: 3123-3132 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
[9]
付景, 陈露, 黄钻华, 王志琴, 杨建昌. 超级稻叶片光合特性和根系生理性状与产量的关系. , 2012, 38: 1264-1276FuJ, ChenL, HuangZ H, WangZ Q, YangJ C. Relationship of leaf photosynthetic characteristics and root physiological traits with grain yield in super rice. , 2012, 38: 1264-1276 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[10]
朱德峰, 林贤青, 曹卫星. 超高产水稻品种的根系分布特点. , 2000, 23: 5-8ZhuD F, LinX Q, CaoW X. Characteristics of root distribution of super high-yielding rice varieties. , 2000, 23: 5-8 (in Chinese with English abstract)[本文引用:1][CJCR: 0.916]
[11]
陈达刚, 周新桥, 李丽君, 刘传光, 张旭, 陈友订. 华南主栽高产籼稻根系形态特征及其与产量构成的关系. , 2013, 39: 1899-1908ChenD G, ZhouX Q, LiL J, LiuC G, ZhangX, ChenY D. Relationship between root morphological characteristics and yield components of major commercial indica rice in South China. Ac, 2013, 39: 1899-1908 (in Chinese with English abstract)[本文引用:1]
[12]
李洪亮, 孙玉友, 曲金玲, 魏才强, 孙国宏, 赵云彤, 柴永山. 施氮量对东北粳稻根系形态生理特征的影响. , 2012, 26: 723-730LiH L, SunS Y, QuJ L, WeiC Q, SunG H, ZhaoY T, ChaiY S. Influence of nitrogen levels on morphological and physiological characteristics of root system in japonica rice in northeast China. , 2012, 26: 723-730 (in Chinese with English abstract)[本文引用:1][CJCR: 1.494]
[13]
秦华东, 江立庚, 肖巧珍, 徐世宏. 水分管理对免耕抛秧水稻根系生长及产量的影响. , 2013, 27: 209-212QinH D, JiangL G, XiaoQ Z, XuS H. Effect of moisture management on rice root growth and rice grain yield at different growth stages under no tillage. , 2013, 27: 209-212 (in Chinese with English abstract)[本文引用:1][CJCR: 1.494]
[14]
李杰, 张洪程, 常勇, 龚金龙, 胡雅杰, 龙厚元, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉. 高产栽培条件下种植方式对超级稻根系形态生理特征的影响. , 2011, 37: 2208-2220LiJ, ZhangH C, ChangY, GongJ L, HuY J, LongH Y, DaiQ G, HuoZ Y, XuK, WeiH Y, GaoH. Influence of planting methods on root system morphological and physiological characteristics of super rice under high-yielding cultivation condition. , 2011, 37: 2208-2220 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[15]
李敏, 张洪程, 杨雄, 葛梦婕, 魏海燕, 戴其根, 霍中洋, 许轲. 高产氮高效型粳稻品种的叶片光合及衰老特性研究. , 2013, 27: 168-176LiM, ZhangH C, YangX, GeM J, WeiH Y, DaiQ G, HuoZ Y, XuK. Leaf photosynthesis and senescence characteristics of japonica rice cultivars with high yield and high N-efficiency. , 2013, 27: 168-176 (in Chinese with English abstract)[本文引用:1][CJCR: 1.494]
[16]
薛亚光, 王康君, 严晓元, 尹斌, 刘立军, 杨建昌. 不同栽培模式对杂交粳稻常优3号产量及养分吸收利用效率的影响. , 2011, 44: 4781-4792XueY G, WangK J, YanX Y, YinB, LiuL J, YangJ C. Effects of different cultivation patterns on grain yield and nutrient absorption and utilization efficiency of japonica hybrid rice Changyou 3. , 2011, 44: 4781-4792 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
[17]
李鸿伟, 杨凯鹏, 曹转勤, 王志琴, 杨建昌. 稻麦连作中超高产栽培小麦和水稻的养分吸收与积累特征. , 2013, 39: 464-477LiH W, YangK P, CaoZ Q, WangZ Q, YangJ C. Characteristics of nutrient uptake and accumulation in wheat and rice with continuous cropping under super-high-yielding cultivation. , 2013, 39: 464-477 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[18]
杨建昌, 王志琴, 朱庆森. 不同土壤水分状况下氮素营养对水稻产量的影响及其生理机制的研究. , 1996, 29: 58-66YangJ C, WangZ Q, ZhuQ S. Effect of nitrogen nutrition on rice yield and its physiological mechanism under different status of soil moisture. , 1996, 29: 58-66 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
陈远平, 杨文钰. 卵叶韭休眠芽中GA3、IAA、ABA和ZT的高效液相色谱法测定. , 2005, 23: 498-500ChenY P, YangW Y. Determination of GA3, IAA, ABA and ZT in dormant buds of allium ovalif olium by HPLC. J Sichuan, 2005, 23: 498-500 (in Chinese with English abstract)[本文引用:1][CJCR: 0.1053]
[21]
YangJ C, ZhangJ H, WangZ Q, ZhuQ S, LiuL. Activities of enzymes involved in sucrose-to-starch metabolism in rice grains subjected to water stress during filling. , 2003, 81: 69-81[本文引用:1][JCR: 2.474]
[22]
YangJ C, ZhangJ H, WangZ Q, XuG W, ZhuQ. Activities of key enzymes in sucrose-to-starch conversion in wheat grains subjected to water deficit during grain filling. , 2004, 135: 1621-1629[本文引用:1][JCR: 6.555]
[23]
CassmanK G. Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture. , 1999, 96: 5952-5959[本文引用:1][JCR: 9.737]
[24]
CassmanK G, DobermannA, WaltersD T. Meeting cereal demand while protecting natural resources and improving environmental quality. , 2003, 28: 315-358[本文引用:1][JCR: 4.968]
[25]
TilmanD K, CassmanK G, MatsonP A. Agricultural sustainabi-lity and intensive production practices. , 2002, 418: 671-678[本文引用:1][JCR: 38.597]
[26]
杨建昌. 水稻根系形态生理与产量、品质形成及养分吸收利用的关系. , 2011, 44: 36-46YangJ C. Relationships of rice root morphology and physiology with the formation of grain yield and quality and the nutrient absorption and utilization. , 2011, 44: 36-46 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
[27]
杨肖娥, 孙曦. 不同水稻品种对低氮反应的品种差异及其机制的研究. , 1992, 29: 73-79YangX E, SunX. Varietal difference of rice plants in response to the low N level and its mechanism. , 1992, 29: 73-79 (in Chinese with English abstract)[本文引用:1][CJCR: 1.979]
[28]
CassmanK G, DobermannA, WaltersD T. Agroecosystems, nitrogen-use efficiency, and nitrogen management. , 2002, 31: 132-140[本文引用:1][JCR: 2.295]
[29]
程建峰, 戴廷波, 荆奇, 姜东, 潘晓云, 曹卫星. 不同水稻基因型的根系形态生理特性与高效氮素吸收. , 2007, 44: 266-272ChengJ F, DaiT B, JingQ, JiangD, PanX Y, CaoW X. Root morphological and physiological characteristics in relation to nitrogen absorption efficiency in different rice genotypes. Acta Pe, 2007, 44: 266-272 (in Chinese with English abstract)[本文引用:1]
[30]
魏海燕, 张洪程, 张胜飞, 杭杰, 戴其根, 霍中洋, 许轲, 马群, 张庆, 刘艳阳. 不同水稻氮利用效率基因型的根系形态与生理指标研究. , 2008, 34: 429-436WeiH Y, ZhangH C, ZhangS F, HangJ, DaiQ G, HuoZ Y, XuK, MaQ, ZhangQ, LiuY Y. Root morphological and physiological characteristics in rice genotypes with different N use efficiencies. , 2008, 34: 429-436 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[31]
戢林, 李廷轩, 张锡洲, 余海英. 氮高效利用基因型水稻根系形态和活力特征. , 2012, 45: 4770-4781JiL, LiT X, ZhangX Z, YuH Y. Root morphological and activity characteristics of rice genotype with high nitrogen utilization efficiency. , 2012, 45: 4770-4781 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
[32]
石庆华, 李木英, 涂起红. 杂交水稻根系N素营养效率及其生理因素研究. , 2002, 17: 45-48ShiQ H, LiM Y, TuQ H. Studies on efficiency of N nutrition and physiological factors in roots of hybrid rice. , 2002, 17: 45-48 (in Chinese with English abstract)[本文引用:1][CJCR: 0.605]
[33]
李敏, 张洪程, 杨雄, 葛梦婕, 马群, 魏海燕, 戴其根, 霍中洋, 许轲, 曹利强, 吴浩. 水稻高产氮高效型品种的根系形态生理特征. , 2012, 38: 648-656LiM, ZhangH C, YangX, GeM J, MaQ, WeiH Y, DaiQ G, HuoZ Y, XuK, CaoL Q, WuH. Root morphological and physiological characteristics of rice cultivars with high yield and high nitrogen use efficiency. , 2012, 38: 648-656 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[34]
薛亚光, 葛立立, 王康君, 颜晓元, 尹斌, 刘立军, 杨建昌. 不同栽培模式对杂交粳稻群体质量的影响. , 2013, 39: 280-291XueY G, GeL L, WangK J, YanX Y, YinB, LiuL J, YangJ C. Effects of different cultivation patterns on population quality of japonica hybrid rice. , 2013, 39: 280-291 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[35]
XueY G, DuanH, LiuL J, WangZ Q, YangJ C, ZhangJ H. An improved crop management increases grain yield and nitrogen and water use efficiency in rice. , 2013, 53: 271-284[本文引用:1][JCR: 1.513]
[36]
凌启鸿. 作物群体质量. 上海: 上海科学技术出版社, 2000. pp42-209LingQ H. . Shanghai: Shanghai Scientific and Technical Publishers, 2000. pp42-209(in Chinese)[本文引用:1]
[37]
凌启鸿, 张洪程, 戴其根, 丁艳锋, 凌励, 苏祖芳, 徐茂, 阙金华, 王绍华. 水稻精确定量施氮研究. , 2005, 38: 2457-2467LingQ H, ZhangH C, DaiQ G, DingY F, LingL, SuZ F, XuM, QueJ H, WangS H. Study on precise and quantitative N application in rice. , 2005, 38: 2457-2467 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
[38]
杨建昌, 杜永, 吴长付, 刘立军, 王志琴, 朱庆森. 超高产粳型水稻生长发育特性的研究. , 2006, 39: 1336-1345YangJ C, DuY, WuC F, LiuL J, WangZ Q, ZhuQ S. Growth and development characteristics of super-high-yielding mid- season japonica rice. , 2006, 39: 1336-1345 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
[39]
周胜, 宋祥甫, 颜晓元. 水稻低碳生产研究进展. , 2013, 27: 213-222ZhouS, SongX F, YanX Y. Progress in research on low-carbon rice production technology. , 2013, 27: 213-222 (in Chinese with English abstract)[本文引用:1][CJCR: 1.494]
[40]
王旭东, 张一平, 吕家珑, 樊小林. 不同施肥条件对土壤有机质及胡敏酸特性的影响. , 2000, 33: 75-81WangX D, ZhangY P, LüJ L, FanX L. Effect of long term different fertilization on properties of soil organic matter and humic acids. , 2000, 33: 75-81 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
[41]
隋跃宇, 张兴义, 焦晓光, 王其存, 赵军. 长期不同施肥制度对农田黑土有机质和氮素的影响. , 2005, 19: 190-194SuiY Y, ZhangX Y, JiaoX G, WangQ C, ZhaoJ. Effect of long-term different fertilizer applications on organic matter and nitrogen of black farmland . , 2005, 19: 190-194 (in Chinese with English abstract)[本文引用:1][JCR: 1.265]
[42]
KaurT, BrarB S, DhillonN S. Soil organic matter dynamics as affected by long-term use of organic and inorganic fertilizers under maize-wheat cropping system. , 2007, 10: 110-121[本文引用:1][JCR: 1.416]
[43]
ZhangH, ChenT T, WangZ Q, YangJ C, ZhangJ H. Involvement of cytokinins in the grain filling of rice under alternate wetting and drying irrigation. , 2010, 49: 2246-2260[本文引用:1][JCR: 5.242]
[44]
ZhangH, LiH W, WangZ Q, YangJ C, ZhangJ H. Post-anthesis alternate wetting and moderate soil drying enhances activities of key enzymes in sucrose-to-starch conversion in inferior spikelets of rice. , 2012, 63: 215-227[本文引用:1][JCR: 5.242]
[45]
ChenT T, XuY J, WangJ C, WangZ Q, YangJ C, ZhangJ H. Polyamines and ethylene interact in rice grains in response to soil drying during grain filling. , 2013, 64: 2523-2538[本文引用:1][JCR: 5.242]