关键词:水稻; osles; 基因定位; 生理分析 Physiological Characterization and Gene Fine Mapping of a Leaf Early Senescence and Salt-sensitive Mutantosles in Rice MAO Jie-Jing1, ZHAO Chen-Chen1, HUANG Fu-Deng2, PAN Gang1,*, CHENG Fang-Min1,* 1College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
2Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
Fund: AbstractAosles (Oryza sativa leaf early-senescence and salt-sensitive) mutant, produced by60Co γ-radiation treatment ofindica cultivar Zixuan 1, was identified. Theosles showed yellow at tip and margin of leaf blade with red brown spots during growth at tillering stage. In addition, under salt stress, the leaves were rolled and wilted, and plant height and plant dry weight were significantly decreased. Compared with the control plant, in the mutant plant, the contents of chlorophyll and soluble protein decreased significantly, while the activities of SOD and POD increased significantly; higher soluble protein content appeared in the 1st and 2nd leaves from top, and decreased in the 3rd leaf. Genetic analysis indicated thatosles was controlled by a recessive nuclear gene, which was finely mapped in a 210 kb interval between two markers IN6-005769-11/12 and RM20547 on long arm of chromosome 6. These results will facilitate the positional cloning and functional studies of the gene.
图1 osles突变体与野生型(WT)的表型A: 分蘖期; B: 分蘖期叶片(1~4代表倒一至倒四叶); C: 抽穗开花期; Bar=5 cm。Fig. 1 Phenotype of osles mutant and the wild type (WT) plantsA: tillering stage; B: leaves at tillering stage (1-4 means the first leaf to fourth leaf from top); C: flowering stage; Bar=5 cm.
表1 Table 1 表1(Table 1)
表1 os les突变体及其野生型(WT)的主要农艺性状 Table 1 Main agronomic traits of os les mutant and the wild type (WT) plants
性状 Trait
2011
2012
野生型 WT
突变体 osles
野生型 WT
突变体 osles
株高 Plant height (cm)
105.69±2.71
75.59±2.42**
106.82±2.31
75.01±3.00**
有效穗数 Effective panicle number
6.92±0.83
6.73±0.94
6.82±0.79
6.61±0.59
穗长 Panicle length (cm)
24.78±0.39
20.72±0.79**
25.00±0.30
21.09±1.21**
每穗粒数 Grain number per panicle
157.23±9.80
88.41±10.92**
154.01±9.32
87.04±11.02**
结实率 Seed setting rate (%)
85.24±4.53
41.29±5.61**
83.20±9.30
37.41±4.11**
千粒重 1000-grain weight (g)
22.57±0.89
18.23±0.84**
22.67±0.84
18.39±1.12**
粒长 Seed length (cm)
0.88±0.011
0.88±0.013
0.87±0.012
0.86±0.022
粒宽 Seed width (cm)
0.28±0.012
0.26±0.021*
0.28±0.020
0.26±0.023*
*在0.05水平上差异显著;**在0.01水平上差异显著。 *Significantly different at P<0.05;**significantly different at P<0.01.
表1 os les突变体及其野生型(WT)的主要农艺性状 Table 1 Main agronomic traits of os les mutant and the wild type (WT) plants
图2 盐胁迫下 os les突变体与野生型的表型A: 100 mmol L-1 NaCl处理7 d; B: 恢复生长5 d; Bar=5 cm。Fig. 2 Phenotype of osles mutant and the wild type plants under salt stressA: salt stress for seven days; B: recovery for five days; Bar=5 cm.
表2 Table 2 表2(Table 2)
表2 100 mmol L-1 NaCl盐胁迫下 os les突变体及其野生型(WT)的基本特性 Table 2 Basic characteristics of os les mutant and the wild type (WT) plants under 100 mmol L-1 NaCl stress
性状 Trait
处理前 Before stess
处理7 d后 Stress for seven days
恢复生长5 d后 Recovery for five days
野生型WT
突变体 osles
野生型WT
突变体 osles
野生型WT
突变体 osles
株高Plant height (cm)
5.01±0.29
4.80±0.10
15.32±0.34
13.69±0.28**
28.75±0.27
16.25±0.19**
根长Root length (cm)
4.87±0.23
5.15±0.12
7.39±0.19
7.42±0.24
8.55±0.61
8.45±0.79**
植株干重Plant dry weight (g)
4.30±0.59
5.30±0.61
3.10±0.79
2.20±0.71**
1.30±0.11
5.90±0.12**
**在0.01水平上差异显著;** Significantly different at P<0.01.
表2 100 mmol L-1 NaCl盐胁迫下 os les突变体及其野生型(WT)的基本特性 Table 2 Basic characteristics of os les mutant and the wild type (WT) plants under 100 mmol L-1 NaCl stress
图3 osles突变体与野生型(WT)叶片的叶绿素含量*在0.05水平上差异显著;**在0.01水平上差异显著。Fig. 3 Chlorophyll content of leaves in osles mutant and the wild type (WT) plants*Significantly different at P<0.05;**significantly different at P<0.01.
图4 分蘖期 osles突变体和野生型(WT)的生理特性A: SOD含量; B :POD含量; C: MDA含量; D: 可溶性蛋白含量。1: 倒一叶; 2: 倒二叶; 3: 倒三叶。 *在0.05水平上差异显著;**在0.01水平上差异显著。Fig. 4 Physiological characters of osles mutant and the wild type (WT) plants at tillering stageA: SOD content; B: POD content; C: MDA content; D: content of soluble protein. 1: 1st leaves from top; 2: 2nd leaves from top; 3: 3rd leaves from top.*Significantly different at P<0.05;**significantly different at P<0.01.
LimP O, KimH J, NamH G. Leaf senescence. Annu Rev Plant Biol, 2007, 58: 115-136[本文引用:6][JCR: 25.962]
[2]
杨建昌, 朱庆森, 王志琴, 郎有忠. 亚种间杂交稻光合特性及物质积累与运转的研究. 作物学报, 1997, 23: 82-88YangJ C, ZhuQ S, WangZ Q, LangY Z. Photosynthetic characteristics, dry-matter accumulation and its translocation in intersubspecific hybrid rice. Acta Agron Sin, 1997, 23: 82-88 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[3]
陆定志, 潘裕才, 马跃芳, 林宗达, 鮑为群, 金逸民, 游树鹏. 杂交水稻抽穗结实期间叶片衰老的生理生化研究. 中国农业科学, 1988, 21(3): 21-26LuD Z, PanY C, MaY F, LinZ D, BaoW Q, JinY M, YouS P. The physiological and biochemical research of leaf senescence during heading stage in hybrid rice. Sci Agric Sin, 1988, 21(3): 21-26 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
[4]
梁建生, 曹显祖. 杂交水稻叶片的若干生理指标与根系伤流强度关系. 江苏农学院学报, 1993, 14(4): 25-30LiangJ S, CaoX Z. Studies on the relationship between several physiological characteristics of leaf and bleeding rate of roots in hybrid rice. J Jiangsu Agric Coll, 1993, 14(4): 25-30 (in Chinese with English abstract)[本文引用:1]
[5]
WuX Y, KuaiB K, JiaJ Z, JingH C. Regulation of leaf senescence and crop genetic improvement. J Integr Plant Biol, 2012, 54: 936-952[本文引用:2][JCR: 3.75][CJCR: 0.7555]
[6]
AnsariM I, LeeR, ChenS G. A novel senescence-associated gene encoding g-aminobutyric acid (GABA): pyruvate transaminase is upregulated during rice leaf senescence. Physiol Plant, 2005, 123: 1-8[本文引用:1][JCR: 6.555]
[7]
LeeR, LinM, ChenS. A novel alkaline α-galactosidase gene is involved in rice leaf senescence. Plant Mol Biol, 2004, 55: 281-295[本文引用:1][JCR: 3.518]
[8]
JiangH, LiM, LiangN, YanH, WeiY, XuX, LiuJ, XuZ, ChenF, WuG. Molecular cloning and function analysis of the stay green gene in rice. Plant J, 2007, 52: 197-209[本文引用:1][JCR: 6.582]
[9]
ParkS Y, YuJ W, ParkJ S, LiJ, YooS C, LeeN Y, LeeS K, JeongS W, SeoH S, KohH J, JeonJ S, ParkY I, PaekN C. The senescence-induced staygreen protein regulates chlorophyll degradation. Plant Cell, 2007, 19: 1649-1664[本文引用:1][JCR: 9.251]
[10]
KusabaM, ItoH, MoritaR, IidaS, SatoY, FujimotoM, KawasakiS, TanakaR, HirochikaH, NishimuraM, TanakaA. Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell, 2007, 19: 1362-1375[本文引用:1][JCR: 9.251]
[11]
KongZ, LiM, YangW, XuW, XueY. A novel nuclear-localized CCCH-type zinc finger protein, OsDOS, is involved in delaying leaf senescence in rice. Plant Physiol, 2006, 141: 1376-1388[本文引用:1][JCR: 6.555]
孙波, 周勇, 林拥军. 一个水稻叶片衰老上调表达基因的初步生物学功能分析. 作物学报, 2012, 38: 1988-1996SunB, ZhouY, LinY. Preliminary functional analysis of a rice leaf senescence up-regulated gene. Acta Agron Sin, 2012, 38: 1988-1996[本文引用:1][CJCR: 1.667]
[14]
QiaoY, JiangW, LeeJ, ParkB, ChoiM S, PiaoR, WooM O, RohJ H, HanL, PaekN C, SeoH S, KohH J. SPL28 encodes a clathrin-associated adaptor protein complex 1, medium subunit μ1 (AP1M1) and is responsible for spotted leaf and early senescence in rice (Oryza sativa). New Phytol, 2010, 185: 258-274[本文引用:1][JCR: 6.736]
[15]
MoritaR, SatoY, MasudaY, NishimuraM, KusabaM. Defect in non-yellow coloring 3, an α/β hydrolase-fold family protein, causes a stay-green phenotype during leaf senescence in rice. Plant J, 2009, 59: 940-952[本文引用:1][JCR: 6.582]
[16]
TangY, LiM, ChenY, WuP, WuG, JiangH. Knockdown of OsPAO and OsRCCR1 cause different plant death phenotypes in rice. J Plant Physiol, 2011, 168: 1952-1959[本文引用:1][JCR: 2.699]
[17]
JiaoB, WangJ, ZhuX, ZengL, LiQ, HeZ. A novel protein RLS1 with NB-ARM domains is involved in chloroplast degradation during leaf senescence in rice. Mol Plant, 2012, 5: 205-217[本文引用:2][JCR: 6.126][CJCR: 0.9487]
[18]
PitakrattananukoolS, KawakatsuT, AnuntalabhochaiS, TakaiwaF. Overexpression of OsRab7B3, a small GTP-binding protein gene, enhances leaf senescence in transgenic rice. Biosci Biotechnol Biochem, 2012, 76: 1296-1302[本文引用:1]
[19]
GaoQ, YangZ, ZhouY, YinZ, QiuJ, LiangG, XuC. Characterization of an Abc1 kinase family gene OsABC1-2 conferring enhanced tolerance to dark-induced stress in rice. Gene, 2012, 498: 155-163[本文引用:1][JCR: 2.196]
[20]
UndanJ R, TamiruM, AbeA, YoshidaK, KosugiS, TakagiH, YoshidaK, KanzakiH, SaitohH, FekihR, SharmaS, UndanJ, YanoM, TerauchiR. Mutation in OsLMS, a gene encoding a protein with two double-strand ed RNA binding motifs, causes lesion mimic phenotype and early senescence in rice (Oryza sativa L. ). Genes Genet Syst, 2012, 87: 169-179[本文引用:1][JCR: 1.132]
[21]
FukaoT, YeungE, Bailey-SerresJ. The submergence tolerance gene SUB1A delays leaf senescence under prolonged darkness through hormonal regulation in rice. Plant Physiol, 2012, 160: 1795-1807[本文引用:1][JCR: 6.555]
[22]
JanA, MaruyamaK, TodakaD, KidokoroS, AboM, YoshimuraE, ShinozakiK, NakashimaK, Yamaguchi-ShinozakiK. OsTZF1, a CCCH-tand em zinc finger protein, confers delayed senescence and stress tolerance in rice by regulating stress-related genes. Plant Physiol, 2013, 161: 1202-1216[本文引用:1][JCR: 6.555]
YamataniH, SatoY, MasudaY, KatoY, MoritaR, FukunagaK, NagamuraY, NishimuraM, SakamotoW, TanakaA, KusabaM. NYC4, the rice ortholog of Arabidopsis THF1, is involved in the degradation of chlorophyll-protein complexes during leaf senescence. Plant J, 2013, 74: 652-662[本文引用:1][JCR: 6.582]
[25]
RongH, TangY, ZhangH, WuP, ChenY, LiM, WuG, JiangH. The Stay-Green Rice like (SGRL) gene regulates chlorophyll degradation in rice. Plant Physiol, 2013, 170: 1367-1373[本文引用:1][JCR: 6.555]
[26]
ChenL J, WuriyanghanH, ZhangY Q, DuanK X, ChenH W, LiQ T, LuX, HeS J, MaB, ZhangW K, LinQ, ChenS Y, ZhangJ S. An S-domain receptor-like kinase OsSIK2 confers abiotic stress tolerance and delays dark-induced leaf senescence in rice. Plant Physiol, 2013, Oct 18, DOI: 10.1104/pp.113.224881[本文引用:1]
[27]
ZhouY, HuangW, LiuL, ChenT, ZhouF, LinY. Identification and functional characterization of a rice NAC gene involved in the regulation of leaf senescence. BMC Plant Biol, 2013, 13: 132[本文引用:1][JCR: 4.354]
[28]
HudsonD, GuevaraD R, Hand A J, XuZ, HaoL, ChenX, ZhuT, BiY M, RothsteinS J. Rice cytokinin GATA transcription Factor1 regulates chloroplast development and plant architecture. Plant Physiol, 2013, 162: 132-44[本文引用:1][JCR: 6.555]
[29]
ChenY, XuY, LuoW, LiW, ChenN, ZhangD, ChongK. The F-box protein OsFBK12 targets OsSAMS1 for degradation and affects leaf senescence and seed size in rice. Plant Physiol, 2013, Oct 21, DOI: 10.1104/pp.113.224527[本文引用:1]
[30]
SinghS, GiriM K, SinghP K, SiddiquiA, Nand iA K. Down-regulation of OsSAG12-1 results in enhanced senescence and pathogen-induced cell death in transgenic rice plants. J Biosci, 2013, 38: 583-592[本文引用:2][JCR: 1.759]
[31]
YoshidaS, FornoD A, CockJ H, GomezK A. Laboratory Manual for Physiological Studies of Rice. Philippines: IRRI, 1976. p83[本文引用:1]
[32]
张治安, 陈展宇. 植物生理学实验技术. 长春: 吉林大学出版社, 2008. p7ZhangZ A, ChenZ Y. Experiment Technology of Plant Physio-logy. Changchun: Jilin University Press, 2008. p7 (in Chinese)[本文引用:1]
[33]
RogersS O, BendichA J. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol, 1985, 5: 69-76[本文引用:1][JCR: 3.518]
[34]
ShenY, JiangH, JinJ, ZhangZ, XiB, HeY, WangG, WangC, QianL, LiX, YuQ, LiuH, ChenD, GaoJ, HuangH, ShiT, YangZ. Development of genome-wide DNA polymorphism database for map-based cloning of rice genes. Plant Physiol, 2004, 135: 1198-205[本文引用:1][JCR: 6.555]
[35]
PanaudO, ChenX, McCouchS R. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSR) in rice (Oryza sativa L. ). Mol Gen Genet, 1996, 252: 597-607[本文引用:1]
[36]
ShimodaY, ItoH, TanakaA. Conversion of chlorophyll b to chlorophyll a precedes magnesium dechelation for protection against necrosis in Arabidopsis. Plant J, 2012, 72: 501-511[本文引用:1][JCR: 6.582]
华春, 王任雷. 杂交稻及其三系叶片衰老过程中SOD、CAT活性和MDA含量的变化. 西北植物学报, 2003, 23: 406-409HuaC, WangR L. Changes of SOD and CAT activities and MDA content during senescence of hybrid rice and three lines leaves. Acta Bot Boreal-Occident Sin, 2003, 23: 406-409 (in Chinese with English abstract)[本文引用:1]
[39]
汪媛. 水稻叶片衰老过程生理变化及蛋白质降解与蛋白酶活性变化研究. 扬州大学硕士学位论文, 2010WangY. The Research of Physiological Changes, Protein Degradation and Protease Activity in the Process of Leaf Senescence in Rice. MS Thesis of Yangzhou University, Yanzhou, China, 2010 (in Chinese with English abstract)[本文引用:1]
[40]
董秋丽, 夏方山, 董宽虎. 碱性盐胁迫对芨芨草苗期脯氨酸和可溶性蛋白含量的影响. 畜牧与饲料科学, 2010, 31(4): 11-12DongQ L, XiaF S, DongK H. Effects of alkaline salinity stress on proline content and soluble protein content of Achnatherum splendens at seedling stage. Anim Husband Feed Sci, 2010, 31(4): 11-12 (in Chinese with English abstract)[本文引用:1]
[41]
田晓艳, 刘延吉, 郭迎春. 盐胁迫对NHC牧草Na+、K+、Pro、可溶性糖及可溶性蛋白的影响. 草业科学, 2008, 25(10): 34-38TianX Y, LiuY J, GuoY C. Effect of salt stress on Na+, K+, proline, soluble sugar and protein of NHC. Pratacult Sci, 2008, 25(10): 34-38 (in Chinese with English abstract)[本文引用:1][CJCR: 1.06]
[42]
杜青, 方立魁, 桑贤春, 凌英华, 李云峰, 杨正林, 何光华, 赵芳明. 水稻叶尖早衰突变体lad的形态、生理分析与基因定位. 作物学报, 2012, 38: 168-173DuQ, FangL K, SangX C, LingY H, LiY F, YangZ L, HeG H, ZhaoF M. Analysis of phenotype and physiology of leaf apex dead mutant (lad) in rice and mapping of mutant gene. Acta Agron Sin, 2012, 38: 168-173 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[43]
RicachenevskyF K, SperottoR A, MenguerP K, FettJ P. Identification of Fe-excess-induced genes in rice shoots reveals a WRKY transcription factor responsive to Fe, drought and senescence. Mol Biol Rep, 2010, 37: 3735-3745[本文引用:1][JCR: 2.506]
[44]
HuB, ZhuC, LiF, TangJ, WangY, LinA, LiuL, CheR, ChuC. LEAF TIP NECROSIS1 plays a pivotal role in the regulation of multiple phosphate starvation responses in rice. Plant Physiol, 2011, 156: 1101-1115[本文引用:1][JCR: 6.555]
[45]
YangS D, SeoP J, YoonH K, ParkC M. The Arabidopsis NAC transcription factor VNI2 integrates abscisic acid signals into leaf senescence via the COR/RD genes. Plant Cell, 2011, 23: 2155-2168[本文引用:1][JCR: 9.251]
[46]
ZhangX, JuH, ChungM, HuangP, AhnS, KimC S. The R-R-Type MYB-Like transcription factor, AtMYBL, is involved in promoting leaf senescence and modulates an abiotic stress response in Arabidopsis. Plant Cell Physiol, 2011, 52: 138-148[本文引用:1][JCR: 4.134]