关键词:普通菜豆; 豇豆属; SSR标记; 通用性 Development of Genomic SSR Markers in Common Bean and Their Transfera-bility in Cowpea and Adzuki Bean CHEN Ming-Li1, WANG Lan-Fen1, WU Jing1, ZHANG Xiao-Yan2, YANG Guang-Dong3, WANG Shu-Min1,* 1Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
2Institute of Vegetables, Qingdao Academy of Agricultural Sciences, Qingdao 266100, China
3Keshan Branch, Heilongjiang Academy of Agricultural Sciences, Keshan 161606, China
Fund: AbstractTransferability analysis of molecular markers has significantly improved their development efficiency and reduced their development cost. A total of 560 novel SSR markers were successfully developed based on common bean genomic sequences, and 421 (75.2%) of those markers generated effective amplification bands from two accessions of the cultivated common bean. TwoVigna species, cowpea and adzuki bean were used to test the transferability and polymorphism of new genomic markers. The results indicated that the transferability rate of common bean genomic-SSR in cowpea and adzuki bean was 43.9% and 38.2%, and the ratio of polymorphism SSR markers in the crops was 34.0% and 24.8%, respectively. A total of 138 common bean genomic-SSR primers were detected to be highly transferable between two species ofVigna. In addition, the diversity of transferability gene-SSR markers was higher for cowpea and adzuki bean than that of intergenic regions-SSR. These transferable markers are useful for further genetic diversity analysis, genetic linkage map construction, quantitative trait loci annotation, genetic evolution and marker-assisted selection inVigna species because of their multi-allelic nature, reproducibility, co-dominant inheritance, high abundance in genome.
表2 普通菜豆基因内SSR标记和基因间序列SSR标记在豇豆和小豆中的通用性和多态性分布 Table 2 Transferability and polymorphism of gene-SSR markers and intergenic region-SSR for cowpea and adzuki bean
类别 Type
普通菜豆标记数目 No. of common bean marker
通用性标记数目 No. of transferable marker
多态性性标记数目 No. of polymorphic marker
豇豆 Cowpea
小豆 Adzuki bean
豇豆 Cowpea
小豆 Adzuki bean
基因内SSR标记Gene-SSR markers
213
112 (52.6%)
95 (44.6%)
36 (32.1%)
23 (24.2%)
基因间序列SSR标记Intergenic region-SSR
208
73 (35.1%)
66 (31.7%)
27 (37.0%)
17 (25.8%)
合计 Total
421
185 (43.9%)
161 (38.2%)
63 (34.0%)
40 (24.8%)
表2 普通菜豆基因内SSR标记和基因间序列SSR标记在豇豆和小豆中的通用性和多态性分布 Table 2 Transferability and polymorphism of gene-SSR markers and intergenic region-SSR for cowpea and adzuki bean
附表(续) 豇豆和小豆中通用性SSR标记信息及在豇豆和小豆中多样性评价Supplemental table(Continued) Information and diversity asscssments of transferability SSR markers in cowpea and adzuki bean
附表(续) 豇豆和小豆中通用性SSR标记信息及在豇豆和小豆中多样性评价Supplemental table(Continued) Information and diversity asscssments of transferability SSR markers in cowpea and adzuki bean
附表(续) 豇豆和小豆中通用性SSR标记信息及在豇豆和小豆中多样性评价Supplemental table(Continued) Information and diversity asscssments of transferability SSR markers in cowpea and adzuki bean
The authors have declared that no competing interests exist. 作者已声明无竞争性利益关系。The authors have declared that no competing interests exist.
SchoonhovenA V, VoysestO. Common Beans: Research for Crop Improvement. Wallingford, UK: CAB. International, 1991[Cited within: 1]
[2]
董玉琛, 郑殿升. 中国作物及其野生近缘植物. 北京: 中国农业出版社, 2006. pp412-425DongY C, ZhengD S. Crops and Their Wild Relatives in China. Beijing: China Agriculture Press, 2006. pp412-425(in Chinese)[Cited within: 1]
[3]
郑卓杰, 王述民, 宗绪晓. 中国食用豆类学. 北京: 中国农业出版社, 1997. pp3-6ZhengZ J, WangS M, ZongX X. Chinese Legumes. Beijing: China Agriculture Press, 1997. pp3-6(in Chinese)[Cited within: 1]
[4]
郑殿升, 刘旭, 黎裕. 起源于中国的栽培植物. 植物遗传资源学报, 2012, 13: 1-10ZhengD S, LiuX, LiY. Cultivated Plants Originated in China. J Plant Genet Res, 2012, 13: 1-10 (in Chinese with English abstract)[Cited within: 1]
[5]
瓦维洛夫著, 董玉琛译. 主要栽培植物的世界起源中心. 北京: 农业出版社, 1982Vavilov N I ed, Dong Y C trans. The Center of Origin of Cultivated Plants. Beijing: Agriculture Press, 1982 (in Chinese)[Cited within: 1]
[6]
RichardF. New opportunities in Vigna. In: Janick J, Whipkey A, eds. Trends in New Crops and New Uses. Alexand ria, VA, USA: ASHA Press, 2002. pp424-428[Cited within: 1]
[7]
AndargieM, PasquetR S, GowdaB S, MuluviG M, TimkoM P. Construction of a SSR-based genetic map and identification of QTL for domestication traits using recombinant inbred lines from a cross between wild and cultivated cowpea (V. unguiculata (L. ) Walp. ). Mol Breed, 2011, 28: 413-420[Cited within: 1][JCR: 3.251]
ChenM L, WuJ, WangL F, ZhangX Y, BlairM W, JiaJ Z, WangS M. Development of mapped simple sequence repeat markers from common bean (Phaseolus vulgaris L. ) based on genome sequences of a Chinese land race and diversity evaluation. Mol Breed, 2014, 33: 489-496[Cited within: 1][JCR: 3.251]
[10]
SinghaR K, JenabS N, KhanaS, YadavaS, BanarjeeaN. Development, cross-species/genera transferability of novel EST-SSR markers and their utility in revealing population structure and genetic diversity in sugarcane. Gene, 2013, 524: 309-329[Cited within: 1][JCR: 2.196]
[11]
张扬勇, 方智远, 王庆彪, 刘玉梅, 杨丽梅, 庄木, 孙培田. 拟南芥叶绿体SSR引物在甘蓝上的应用. 园艺学报, 2011, 38: 549-555ZhangY Y, FangZ Y, WangQ B, LiuY M, YangL M, ZhuangM, SunP T. Utility of Arabidopsis chloroplast simple sequence repeat (cpSSR) primers in cabbage (Brassica oleracea L. var. capitata L. ). Acta HorticSin, 2011, 38: 549-555 (in Chinese with English abstract)[Cited within: 1][JCR: 1.44]
[12]
WangM L, ChenZ B, BakleyN A, NewmanM L, KimW, RaymerP, PedersonG A. Characterization of seashore paspalum (Paspalumm vaginatum Swartz) germplasm by transferred SSRs from wheat, maize and sorghum. Genetic Resour Crop Evol, 2006, 53: 779-791[Cited within: 1][JCR: 1.593]
[13]
HuJ B, ZhouX Y, LiJ W. Development of novel EST-SSR markers for cucumber (Cucumis sativus) and their transferability to related species. Sci Hortic, 2010, 125: 534-538[Cited within: 1][JCR: 2.277]
[14]
王丽侠, 程须珍, 王素华, 刘长友, 梁辉. 小豆SSR引物在绿豆基因组中的通用性分析. 作物学报, 2009, 35: 816-820WangL X, ChengX Z, WangS H, LiuC Y, LiangH. Transferability of SSR from adzuki bean to mungbean. Acta Agron Sin, 2009, 35: 816-820 (in Chinese with English abstract)[Cited within: 1][CJCR: 1.667]
[15]
钟敏, 程须珍, 王丽侠, 王素华, 王小宝. 绿豆基因组SSR 引物在豇豆属作物中的通用性. 作物学报, 2012, 38: 223-230ZhongM, ChengX Z, WangL X, WangS H, WangX B. Transferability of mungbean genomic-SSR markers in other Vigna species. Acta Agron Sin, 2012, 38: 223-230 (in Chinese with English abstract)[Cited within: 2][CJCR: 1.667]
[16]
da MaiaL C, PalmieriD A, de SouzaV Q, KoppM M, de CarvalhoF I, Costa de OliveiraA. SSR locator: tool for simple sequence repeat discovery integrated with primer design and PCR simulation. Int J Plant Genomics, 2008, DOI: 10.1155/2008/412696[Cited within: 1]
[17]
高东, 杜飞, 朱有勇. 低背景、高分辨率PAGE简易银染法. 遗传, 2009, 31: 668-672GaoD, DuF, ZhuY Y. Low-background and high-resolution contracted silver-stained method in polyacrylamide gels electrophoresis. Hereditas (Beijing), 2009, 31: 668-673 (in Chinese with English abstract)[Cited within: 1]
[18]
YehF C, YangR C, BoyleB J T, YeZ H, MaoX J. POPGENE 32 version 1. 32, the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta, Canada, 1999 Available athttp://www.ualberta.ca/~fyeh/popgene_download.html[Verified2000-12-01] [Visited time2013-10-15][Cited within: 1]
[19]
DaveyJ W, HohenloheP A, EtterP D, BooneJ Q, CatchenJ M, BlaxterM L. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet, 2011, 12: 499-510[Cited within: 1][JCR: 41.063]
[20]
TrebbiD, MaccaferriM, DeHeer P, SørensenA, GiulianiS, SalviS, SanguinetiM, MassiA, Vander-Vossen E, TuberosaR. High-throughput SNP discovery and genotyping in durum wheat (Triticum durum Desf. ). Theor Appl Genet, 2011, 123: 555-569[Cited within: 1][JCR: 3.658]
[21]
McCouchS R, TeytelmanL, XuY, LobosK B, ClareK, WaltonM, FuB, MaghirangR, LiZ, XingY, ZhangQ, KonoI, YanoM, FjellstromR, DeClerckG, SchneiderD, CartinhourS, WareD, SteinL. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L. ). DNA Res, 2002, 9: 199-207[Cited within: 1][JCR: 4.425]
[22]
WangZ Y, FangB P, ChenJ Y, ZhangX J, LuoZ X, HuangL F, ChenX L, LiY C. De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweetpotato (Ipomoea batatas). BMC Genom, 2010, 11: 726-739[Cited within: 1][JCR: 4.397]
[23]
CavagnaroP F, SenalikD A, YangL M, SimonP W, HarkinT T, KodiraC D, HuangS W, WengY Q. Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L. ). BMC Genomics, 2010, 11: 569-586[Cited within: 1][JCR: 2.277]
[24]
BlancaJ, CañizaresJ, RoigC, ZiarsoloP, NuezF, PicóB. Transcriptome characterization and high throughput SSRs and SNPs discovery in cucurbita pepo (Cucurbitaceae). BMC Genom, 2011, 12: 104-118[Cited within: 1][JCR: 4.397]
[25]
TangphatsornruangS, SomtaP, UthaipaisanwongP, ChanprasertJ, SangsrakruD, SeehalakW, SommanasW, TragoonrungS, SrinivesP. Characterization of microsatellites and gene contents from genome shotgun sequences of mungbean (Vigna radiata (L. ) Wilczek). BMC Plant Biol, 2009, 9: 137[Cited within: 1][JCR: 4.354]
[26]
KaurS, CoganN O, PembletonL W, ShinozukaM, SavinK W, MaterneM, ForsterJ W. Transcriptome sequencing of lentil based on second-generation technology permits large-scale unigene assembly and SSR marker discovery. BMC Genomics, 2011, 12: 265[Cited within: 1][JCR: 2.277]
[27]
GargR, PatelR K, TyagiA K, JainM. De novo assembly of chickpea transcriptome using short reads for gene discovery and marker identification. DNA Res, 2011, 18: 53-63[Cited within: 1][JCR: 4.425]
[28]
DuttaS, KumawatG, SinghB P, GuptaD K, SinghS, DograV, GaikwadK, SharmaT R, RajeR S, Band hopadhyaT K, DattaS, SinghM N, BashasabF, KulwalP, WanjariK B, VarshneyR K, CookD R, SinghN K. Development of genic-SSR markers by deep transcriptome sequencing in pigeonpea [Cajanus cajan (L. ) Millspaugh]. BMC Plant Biol, 2011, 11: 17[Cited within: 1][JCR: 4.354]
[29]
KaliaR K, RaiM K, KaliaS, SinghR, DhawanA K. Microsatellite markers: an overview of the recent progress in plants. Euphytica, 2011, 177: 309-334[Cited within: 1]
[30]
GuptaS, PrasadM. Development and characterization of genic SSR markers in Medicago truncatula and their transferability in leguminous and non-leguminous species. Genome, 2009, 52: 761-771[Cited within: 1][JCR: 1.668]
[31]
文明富, 陈新, 王海燕, 卢诚, 王文泉. 木薯基因组SSR和EST-SSR在麻疯树和橡胶树中的通用性分析. 作物学报, 2011, 37: 74-78WenM F, ChenX, WangH Y, LuC, WangW Q. Transferability analysis of cassava EST-SSR and genomic-SSR markers in jatropha and rubber tree. Acta Agron Sin, 2011, 37: 74-78 (in Chinese with English abstract)[Cited within: 1][CJCR: 1.667]
[32]
VarshneyR K, SigmundR, BornerA, KorzunV, SteinN, SorrellsM E, LangridgeP, GranerA. Interspecific transferability and comparative mapping of barley EST-SSR markers in wheat, rye and rice. Plant Sci, 2005, 168: 195-202[Cited within: 1][JCR: 2.922]
[33]
PejicI, Ajmone-MarsanP, MorganteM, VozumplickK, CastiglioniP, TaraminoG, MottoM. Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs, and AFLPs. Theor Appl Genet, 1998, 97: 1248-1255[Cited within: 1][JCR: 3.658]
[34]
FrankhamR, BallouJ D, BriscoeD A. Introduction to Conservation Genetics. New York: Cambridge University Press, 2002. pp29-62[Cited within: 1]
[35]
王丽, 赵桂仿. 植物不同种属间共用微卫星引物的研究. 西北植物学报, 2005, 25: 1540-1546WangL, ZhaoG F. Mico-satellite primers shared by different plant species and genera. Acta Bot Boreali-Occid Sin, 2005, 25: 1540-1546 (in Chinese with English abstract)[Cited within: 1]
[36]
SumanasingheV A, TomookaN, FukuokaS. Phylogenetic relationships of the subgenus Ceratotropis based on rand om amplified polymorphic DNA. J Nat Sci Coun Sri Lanka, 1997, 25: 73-82[Cited within: 1]