关键词:斑点叶突变; 光合色素; 光合特性; 农艺性状; 遗传分析 Physiological Characteristics and Genetic Analysis on a Spotted-leaf Wheat Derived from Chemical Mutation DU Li-Fen1,**, LI Ming-Fei1,**, LIU Lu-Xiang2, WANG Chao-Jie1, LIU Yang1, XU Xi-Tang1, ZOU Shu-Fang1, XIE Yan-Zhou1,*, WANG Cheng-She1,* 1 State Key Laboratory of Crop Stress Biology in Arid Areas / College of Agronomy, Northwest A&F University, Yangling 712100, China
2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Fund: AbstractA light and temperature affected spotted-leaf mutant LF2010 (Triticum aestivum L.) was obtained from a mutagenic treatment with EMS on a wheat line H261. The bright yellow spots first appear on the primary leaf at three leaves stage, then covered later leaves and leaf sheaths of the whole plant including tissues of spike. The mutant plants differed from normal plants in terms of total chlorophyll content and net photosynthetic rate once symptom appeared on the leaves. The plant height, spike length, spike number per plant, grain weight per plant, grain number per spike, seed setting rate, and flag leaf length were lower in the mutant than in the wild type. However, the 1000-grain weight and flag leaf width of the mutant had no significant difference with those of the wild type. Genetic analysis based on F1, F2, and BC1 populations revealed that the yellow spot trait was controlled by a single recessive gene.
Keyword:Spotted-leaf mutant; Photosynthetic pigments; Photosynthetic characteristics; Agronomic traits; Inheritance Show Figures Show Figures
图1 突变体LF2010与野生型小麦的表型比较a: 苗期野生型; b:苗期突变体; c: 突变体, 箭头示保持绿色叶片; d: 灌浆期野生型; e: 灌浆期突变体; f: 田间生长的野生型(左)和突变体(右); g: 突变体(上)和野生型(下)的叶鞘颜色; h: 突变体(上)和野生型(下)的叶片颜色; i: 突变体部分遮光后(上)和遮光前(下)叶片。Fig. 1 Phenotype of mutant LF2010 and its wild-type wheata: wild type seedling; b: mutant seedling; c: mutant. The arrow shows the keep-greening leaf; d: Wild type plant at grain-filling stage; e: mutant plant at grain-filling stage; f: wild type (left) and mutant (right) growing in the field; g: sheath color in mutant (upper) and wild type (lower); h: leaf color in mutant (upper) and wild type (lower); i: mutant leaf after partially shading (upper) and before shading (lower).
表1 Table 1 表1(Table 1)
表1 突变体LF2010及其野生型H261的主要农艺性状差异 Table 1 Agronomic traits of wheat mutant LF2010 and its wild type H261
性状 Trait
H261
LF2010
比野生型减少 Lower than the wild type (%)
株高Plant height (cm)
90.38±5.95
63.29±4.00*
30
单株有效穗数Spike number per plant
7.60±2.70
5.80±1.23*
24
单株产量 Grain weight per plant (g)
18.85±5.64
7.32±1.86*
61
千粒重 1000-grain weight (g)
51.87±1.07
48.04±2.32
7
穗粒数 Grain number per spike
50.10±6.38
33.40±4.20*
33
穗长Spike length (cm)
14.29±0.57
11.51±0.83*
19
结实率Seed setting rate
0.94±0.05
0.57±0.08*
39
旗叶长Flag leaf length
14.29±1.62
11.51±1.22*
19
旗叶宽Flag leaf width
1.71±0.22
1.71±0.23
0
数据为10次重复的平均值±标准差。*突变体与野生型之间差异显著( P<0.05, Duncan’s检验)。 Data are means ± SD of 10 replicates.*Significant difference between mutant and the wild type at P<0.05 according to Duncan’s test.
表1 突变体LF2010及其野生型H261的主要农艺性状差异 Table 1 Agronomic traits of wheat mutant LF2010 and its wild type H261
图2 突变体LF2010与野生型H261叶片锥虫蓝染色结果a: 染色前H261叶片; b: 染色后H261叶片; c: 染色前LF2010叶片; d: 染色后LF2010叶片。Fig. 2 Trypan blue staining results of mutant LF2010 and the wide typea: Leaf of H261 before staining; b: Leaf of H261 after staining; c: Leaf of LF2010 before staining; d: Leaf of the LF2010 after staining.
表2 不同时期突变体LF2010与野生型H261的叶绿素和类胡萝卜素含量及相对比值 Table 2 Contents of chlorophyll, carotenoid and chlorophyll a/b ratio in mutant LF2010 and the wild type H261 at different stages
色素 Pigment
斑点出现前 Before spots emergence
开始出现斑点 Initial emergence of spots
旗叶布满斑点 Spots all over flag leaf
H261
LF2010
H261
LF2010
H261
LF2010
叶绿素a Chl a ( mg dm-2)
8.83±1.42
5.62±1.08
7.96±0.52
4.45±0.25*
6.14±0.07
1.98±0.38*
叶绿素b Chl b (mg dm-2)
3.20±0.52
2.18±0.27
2.54±0.17
1.12±0.08*
1.74±0.28
0.38±0.08*
总叶绿素 Total Chl (mg dm-2)
12.03±1.67
7.80±0.33*
11.02±0.71
5.57±0.33*
7.88±0.34
2.37±0.46*
类胡萝卜素 Car (mg dm-2 )
1.90±0.46
1.20±0.40
1.63±0.16
1.52±0.07
1.65±0.09
0.66±0.15*
叶绿素a/b Chl a/b
2.81±0.56
2.57±0.37
3.13±0.39
3.98±0.11*
3.54±0.08
5.18±0.16*
数据为3次重复的平均值±标准差。*突变体与野生型之间差异显著( P<0.05, Duncan’s检验)。 Data are means ± SD of three replicates.*Significant difference between mutant and the wild type at P<0.05 according to Duncan’s test. Chl: chlorophyll; Car: carotenoid.
表2 不同时期突变体LF2010与野生型H261的叶绿素和类胡萝卜素含量及相对比值 Table 2 Contents of chlorophyll, carotenoid and chlorophyll a/b ratio in mutant LF2010 and the wild type H261 at different stages
表3 不同时期突变体LF2010与野生型H261叶片的光合特性 Table 3 Photosynthetic characteristics of mutant LF2010 and the wild type H261 at different stages
光合参数 Photosynthetic parameter
斑点出现前 Before spots emergence
开始出现斑点 Initial emergence of spots
旗叶布满斑点 Spots all over flag leaf
H261
LF2010
H261
LF2010
H261
LF2010
净光合速率 Pn (µmol m-2 s-1)
16.31±1.33
15.94±2.35
18.51±0.87
11.21±0.79*
20.46±1.73
10.38±1.96*
气孔导度 Gs (mmol m-2 s-1)
0.21±0.02
0.25±0.04
0.25±0.02
0.18±0.03*
0.29±0.03
0.17±0.04*
细胞间隙CO2浓度 Ci (µmol mol-1)
202.99±7.58
239.55±17.23*
214.99±7.58
244.96±12.03*
229.58±2.51
255.21±6.62*
蒸腾速率 Tr (mol H2O m-2 s-1)
5.37±0.04
5.82±0.81
5.39±0.04
4.34±0.53*
5.47±0.36
4.17±0.67*
数据为6次重复的平均值±标准差。*突变体与野生型之间差异显著( P<0.05, Duncan’s检验)。 Data are means ± SD of six replicates.*Significant difference between mutant and the wild type at P<0.05 according to Duncan’s test.
表3 不同时期突变体LF2010与野生型H261叶片的光合特性 Table 3 Photosynthetic characteristics of mutant LF2010 and the wild type H261 at different stages
WallsJ. The homozygous and heterozygous effects of an aurea mutation on plastid development in spruce (Picea abies (L. ) Karst). Stud For Suec, 1967, 60: 1-20[本文引用:1]
[2]
BealeS I. Enzymes of chlorophyll biosynthesis, Photosynth Res, 1999, 60: 43-73[本文引用:1][JCR: 3.15]
[3]
姜卫兵, 庄猛, 韩浩章, 戴美松, 花国平. 彩叶植物呈色机理及光合特性研究进展. 园艺学报, 2005, 32: 352-358JiangW B, ZhuangM, HanH Z, DaiM S, HuaG P. Progress on color emerging mechan ism and photosynthetic characteristics of colored-leaf plants. Acta HorticSin, 2005, 32: 352-358 (in Chinese with English abstract)[本文引用:1][JCR: 1.44]
[4]
FrankH A, ViolettelC A, TrautmanJ K, ShrevezA P, OwensT G. , Albrecht A C. Cartenoids in photosynthesis: structure and photochemistry. Pure Appl Chem, 1991, 63: 109-114[本文引用:1][JCR: 3.386]
[5]
GrimmB, PorraR J, RüdigerW, ScheerH. Chlorophylls and Bacterio chlorophylls: Biochemistry Biophysics, Functions and Applications, Advances in Photosynthesis and Respiration, Dordrecht, the Netherland s: Springer, 2006. pp397-412[本文引用:1]
[6]
曹莉, 王辉, 孙道杰, 冯毅. 小麦黄化突变体光合作用及叶绿素荧光特性研究. 西北植物学报, 2006, 26: 2083-2087CaoL, WangH, SunD J, FengY. Photosynthesis and chlorophyll fluorescence characters of xantha wheat mutants. Acta Bot Boreali-Occident Sin, 2006, 26: 2083-2087 (in Chinese with English abstract)[本文引用:1][CJCR: 1.321]
[7]
韩锁义, 杨玛丽, 陈远东, 于静静, 赵团结, 盖钧镒, 喻德跃. 大豆“南农94-16”突变体库的构建及部分性状分析. 核农学报, 2008, 22: 131-135HanS Y, YangM L, ChenY D, YuJ J, ZhaoT J, GaiJ Y, YuD Y. Construction of mutant library for soybean ‘Nannong 94-16’ and analysis of some characters. J Nucl Agric Sci, 2008, 22: 131-135 (in Chinese with English abstract)[本文引用:1][CJCR: 1.237]
[8]
赵洪兵, 郭会君, 赵林姝, 古佳玉, 赵世荣, 李军辉, 刘录祥. 空间环境诱变小麦叶绿素缺失突变体的主要农艺性状和光合特性. 作物学报, 2011, 37: 119-126ZhaoH B, GuoH J, ZhaoL S, GuJ Y, ZhaoS R, LiJ H, LiuL X. Agronomic traits and photosynthetic characteristics of chlorophyll-deficient wheat mutant induced by spaceflight environment. Acta Agron Sin, 2011, 37: 119-126 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[9]
AwanM A, KonzakC F, RutgerJ N, NilanR A. Mutagenic deflects of Sodium azide in rice. Crop Sci, 1980, 20: 663-668[本文引用:1][JCR: 1.513]
[10]
TakahashiA, KawasakiT, HenmiK, ShiiK, KodamaO, SatohH, ShimamotoK. Lesion mimic mutants of rice with alterations in early signaling events of defense. Plant J, 1999, 17: 535-545[本文引用:1][JCR: 6.582]
[11]
BadigannavarA M, KaleD M, Eapen, Murty G S S. Inheritance of disease lesion mimic leaf trait in groundnut. J Hered, 2002, 93: 50-52[本文引用:1][JCR: 1.995]
[12]
奉保华, 杨杨, 施勇烽, 林璐, 陈洁, 黄奇娜, 魏彦林, HeiLEUNG, 吴建利. 水稻淡褐斑叶突变体lbsl1的遗传分析与基因定位. 中国水稻科学2012, 26: 297-301FengB H, YangY, ShiY F, LinL, ChenJ, HuangQ N, WeiY L, HeiLEUNG, WuJ L. Genetic analysis and gene mapping of a light brown spotted leaf mutant in rice. Chin J Rice Sci, 2012, 26: 297-301 (in Chinese with English abstract)[本文引用:1][CJCR: 1.494]
[13]
BüschgesR, HollricherK, PanstrugaR, SimonsG, WolterM, FrijtersA, vanDaelen R, van der Lee T, DiergaardeP, GroenendijkJ, TöpschS, VosP, SalaminiF, Schulze-LefertP. The barley Mlo gene: a novel control element of plant pathogen resistance. Cell, 1997, 88: 695-705[本文引用:1][JCR: 31.957]
[14]
IshikawaA, OkamotoH, IwasakiY, AsahiT. A deficiency of coproporphyrinogen III oxidase causes lesion formation in Arabidopsis. Plant J, 2001, 27: 89-99[本文引用:1][JCR: 6.582]
[15]
黄奇娜, 杨杨, 施勇烽, 陈洁, 吴建利. 水稻斑点叶变异研究进展. 中国水稻科学, 2010, 24: 108-115HuangQ N, YangY, ShiY F, ChenJ, WuJ L. Recent advances in research on spotted-leaf mutants of rice (Oryza sativa). Chin J Rice Sci, 2010, 24: 108-115 (in Chinese with English abstract)[本文引用:2][CJCR: 1.494]
[16]
NeufferM G, CalvertO H. Dominant disease lesion mimics in maize. J Hered, 1975: 66: 265-270[本文引用:1][JCR: 1.995]
[17]
HuG S, YalpaniN, BriggsS P, JohalG S. A porphyrin pathway impairment is responsible for the phenotype of a dominant disease lesion mimic mutant of maize. Plant Cell, 1998, 10: 1095-1105[本文引用:1][JCR: 9.251]
[18]
NairS K, Tomar S M S. Genetical and anatomical analyses of a leaf flecking mutant in Triticum aestivum L. Euphytica, 2001, 121: 53-58[本文引用:3][JCR: 1.643]
[19]
KamlofskiC A, AntonelliE, BenderC, JaskelioffM, DannaC H, UgaldeR, AcevedoA. A lesion-mimic mutant of wheat with enhanced resistance to leaf rust. Plant Pathol, 2007, 56: 46-54[本文引用:3][JCR: 2.729]
[20]
KamlofskiC A, AcevedoA. The HLP mutation confers enhanced resistance to leafrust in different wheat genetic backgrounds. Agric Sci, 2010, 1: 56-61[本文引用:1][JCR: 0.796]
[21]
LuoP G, RenZ L. Wheat leaf chlorosis controlled by a single recessive gene. J Plant Physiol Mol Biol, 2006, 32: 330-338[本文引用:2][CJCR: 1.344]
[22]
LiT, BaiG H. Lesion mimic associates with adult plant resistance to leaf rust infection in wheat. Theor Appl Genet, 2009, 119: 13-21[本文引用:2][JCR: 3.658]
[23]
YaoQ, ZhouR H, FuT H, WuW R, ZhuZ D, LiA L, JiaJ Z. Characterization and mapping of complementary lesion-mimic genes lm1 and lm2 in common wheat. Theor Appl Genet, 2009, 119: 1005-1012[本文引用:3][JCR: 3.658]
[24]
王建军, 朱旭东, 王林友, 张利华, 薛庆中, 何祖华. 水稻类病变突变体lrd40的抗病性与细胞学分析. 中国水稻科学, 2005, 19: 111-116WangJ J, ZhuX D, WangL Y, ZhangL H, XueQ Z, HeZ H. Disease resistance and cytological analyses on lesion resembling disease mutant lrd40 in Oryza sativa. Chin J Rice Sci, 2005, 19: 111-116 (in Chinese with English abstract)[本文引用:1][CJCR: 1.494]
[25]
马健阳, 陈孙禄, 张建辉, 董彦君, 滕胜. 一个水稻类病条纹斑突变体的鉴定和遗传定位. 中国水稻科学, 2011, 25: 150-156MaJ Y, ChenS L, ZhangJ H, DongY J, TengS. Identification and genetic mapping of a lesion mimic strip mutant in rice. Chin J Rice Sci, 2011, 25: 150-156 (in Chinese with English abstract)[本文引用:1][CJCR: 1.494]
[26]
KochE, SlusarenkoA. Arabidopsis is susceptible to ilnfection by a downy mildew fungus. Plant Cell, 1990, 2: 437-445[本文引用:1][JCR: 9.251]
[27]
HillC M, PearsonS A, SmithA J, RogersL J. Inhibition of chlorophyll synthesis in Hordeum vulgare by 3-amino 2, 3-dihydro-benzoic acid (gabaculin). Biosci Rep, 1985, 5: 775-781[本文引用:1][JCR: 15.333]
[28]
王建军, 张礼霞, 王林友, 张利华, 竺朝娜, 何祖华, 金庆生, 范宏环, 于新. 水稻类病变(lesion resembling disease)突变体对光照和温度的诱导反应. 中国农业科学, 2010, 43: 2039-2044WangJ J, ZhangL X, WangL Y, ZhangL H, ZhuC N, HeZ H, JinQ S, FanH H, YuX. Response to illumination induction and effect of temperature on lesion formation of lrd (lesion resembling disease) in rice. Sci Agric Sin, 2010, 43: 2039-2044 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
[29]
HuG, RichterT E, HulbertS H, PryorT. Disease lesion mimicry caused by mutations in the rust resistance gene rp1. Plant Cell, 1996, 8: 1367-1376[本文引用:1][JCR: 9.251]
[30]
DavisM S, FormanA, FajerJ. Ligated chlorophyll cation radicals: their function in photosystem II of plant photosynthesis. Proc Natl Acad Sci USA, 1979, 76: 4170-4174[本文引用:1][JCR: 9.737]
[31]
汪斌, 兰涛, 吴为人, 李维明. 水稻叶绿素含量的QTL定位. 遗传学报, 2003, 30: 1127-1132WangB, LanT, WuW R, LiW M. Mapping of QTLs controlling chlorophyll content in rice. Acta Genet Sin, 2003, 30: 1127-1132 (in Chinese with English abstract)[本文引用:1]
[32]
AvensonT J, CruzJ A, KanazawaA, KramerD M. Regulating the proton budget of higher plant photosynthesis. Proc Natl Acad Sci USA, 2005, 102: 9709-9713[本文引用:1][JCR: 9.737]
[33]
许大全. 光合作用气孔限制分析中的一些问题. 植物生理学通讯, 1997, 33: 241-244XuD Q. Some problems in stomatal analysis of phtosynthesis. Plant Physiol Commun, 1997, 33: 241-244 (in Chinese)[本文引用:1][CJCR: 0.849]
[34]
孙艳丽, 李卓夫, 张喜君. 小麦主要农艺性状协调关系研究. 黑龙江农业科学, 2002, (2): 13-15SunY L, LiZ F, ZhangX J. Study on the coordinating activity among major agromomic traits in wheat. Heilongjiang Agric Sci, 2002, (2): 13-15 (in Chinese with English abstract)[本文引用:1][CJCR: 0.3268]
[35]
RyalsJ A, Neuenschwand erU H, WillitsM G. Systemic acquired resistance. Plant Cell, 1996, 8: 1809-1819[本文引用:1][JCR: 9.251]
[36]
WuC J, BordeosA, Madamba M R S, BaraoidanM, RamosM, WangG L, LeachJ E, LeungH. Rice lesion mimic mutants with enhanced resistance to diseases. Mol Genet Genomics, 2008, 279: 605-619[本文引用:1][JCR: 2.277]