关键词:菊芋品系; 表型特征; 光合特性; 半干旱地区 Phenotypic Traits and Photosynthetic Characteristics of Jerusalem Artichoke (Helianthus tuberosus L.) in the Semi-arid Area L#cod#x000dc; Shi-Qi, KOU Yi-Xuan, YANG Bin, ZENG Jun, ZHAO Chang-Ming* State Key Laboratory of Grassland Agro-Ecosystems / School of Life Sciences, Lanzhou University, Lanzhou 730000, China Fund: AbstractTo speed up breeding process for Jerusalem artichoke in semi-arid area, it is necessary to investigate traits related to yield and photosynthetic characteristics. Four stable lines including two high-yield lines and two low-yield lines were screened as materials, agronomic traits and photosynthesis parameters were determined. The results showed that the tuber yield, shoot biomass and root biomass of Jerusalem artichoke high-yield lines were significantly higher than those of low-yield lines, and the plant height, stem diameter, leaf area, leaf number of high-yield lines were also significantly higher than those of low-yield lines, then compared with low-yield lines, the high-yield lines showed a stronger growth vigor. LCP andRd of high-yield lines were significantly lower than those of low-yield lines, but the difference of other parameters were not significant. Correlation analysis indicated that tuber yield had significantly positive correlation with plant height, stem diameter, leaf area, leaf number, shoot biomass and root biomass, while significantly negative correlation with LCP andRd. Hence, in semi-arid area more leaf number, larger leaf area and well-developed root system are very important and reliable indicators and lower LCP andRd are important reference value for breeding high-yield lines in Jerusalem artichoke.
Keyword:Jerusalem artichoke lines; Phenotypic traits; Photosynthetic characteristics; Semi-arid area Show Figures Show Figures
表1 不同菊芋品系块茎产量、根和地上生物量特征 Table 1 Comparison of tuber yield, root weight and shoot weight in Jerusalem artichoke lines
品系 Line
块茎产量 Tuber yield (kg)
根干重 Root dry weight (g)
茎叶干重 Shoot dry weight (kg)
2011
LZJ119
1.717±0.185 a
29.99±4.19 a
0.2063±0.0154 ab
LZJ004
1.657±0.191 a
26.28±2.23 a
0.2163±0.0209 a
LZJ188
1.287±0.065 b
19.96±1.28 b
0.1759±0.0158 bc
LZJ018
1.193±0.166 b
17.91±0.91 b
0.1559±0.0263 c
高产品系平均值MH
1.687±0.172 a
28.14±3.62 a
0.2113±0.0173 a
低产品系平均值ML
1.240±0.124 b
18.94±1.50 b
0.1659±0.0223 b
F值 F-value
26.728**
33.036**
15.514**
2012
LZJ119
1.699±0.216 a
26.18±2.63 ab
0.2085±0.0068 ab
LZJ004
1.529±0.134 a
27.89±6.93 a
0.2274±0.0452 a
LZJ188
1.201±0.143 b
18.84±3.42 bc
0.1781±0.0124 bc
LZJ018
1.108±0.061 b
15.04±2.89 c
0.1352±0.0119 c
高产品系平均值MH
1.614±0.186 a
27.04±4.78 a
0.2180±0.0307 a
低产品系平均值ML
1.154±0.111 b
16.93±3.51 b
0.1567±0.0259 b
F值 F-value
27.093**
17.378**
13.959**
MH: mean of high yield lines; ML: mean of low yield lines. Values followed by different letters in the same column are significantly different at 0.05 probability level.*Significant at 0.05 probability level.**Significant at 0.01 probability level. MH: 高产品系平均值; ML: 低产品系平均值。不同的小写字母表示品系间在0.05水平上差异显著,*表示0.05显著水平,**表示0.01显著水平。
表1 不同菊芋品系块茎产量、根和地上生物量特征 Table 1 Comparison of tuber yield, root weight and shoot weight in Jerusalem artichoke lines
MH: mean of high yield lines; ML: mean of low yield lines. Values followed by different letters in the same column are significantly different at the 0.05 probability level.*Significant at 0.05 probability level.**Significant at 0.01 probability level. MH: 高产品系平均值; ML: 低产品系平均值。不同的小写字母表示品系间在0.05水平上差异显著,*表示0.05显著水平,**表示0.01显著水平。
表3 菊芋各品系光响应曲线拟合的特征参数 Table 3 Fitting parameters of light response curve in Jerusalem artichoke lines
品系 Line
表观量子效率 AOY
光补偿点 LCP (µmol m-2 s-1)
光饱和点 LSP (µmol m-2 s-1)
最大光合速率 Pmax (µmol m-2 s-1)
暗呼吸速率 Rd (µmol m-2s-1)
LZJ119
0.0570±0.0026 a
22.38±4.36 d
567.07±11.26 c
31.04±1.11 b
1.27±0.19 c
LZJ004
0.0523±0.0025 a
32.56±1.12 c
662.97±14.47 b
33.02±2.37 ab
1.70±0.09 bc
LZJ188
0.0523±0.0035 a
42.05±2.42 b
789.38±29.04 a
39.07±2.28 a
2.21±0.28 ab
LZJ018
0.0507±0.0057 a
53.62±8.17 a
583.03±15.78 c
26.74±1.85 c
2.74±0.70 a
MH
0.0547±0.0034 a
27.47±6.26 b
615.02±53.79 a
32.03±1.98 a
1.49±0.27 b
ML
0.0515±0.0043 a
47.83±8.32 a
686.20±114.94 a
32.91±7.01 a
2.48±0.56 a
F值 F-value
1.968
22.949**
1.888
0.088
15.135**
MH: mean of high yield lines; ML: mean of low yield lines. Values followed by different letters in the same column are significantly different at the 0.05 probability level.*Significant at 0.05 probability level.**Significant at 0.01 probability level. AOY: apparent quantum efficiency; LCP: light compensation point; LSP: light saturation point; Pmax: maximum photosynthetic rate under light saturation; Rd: dark respiration rate. MH: 高产品系平均值; ML: 低产品系平均值。不同的小写字母表示品系间在0.05水平上差异显著,*表示0.05显著水平,**表示0.01显著水平。
表3 菊芋各品系光响应曲线拟合的特征参数 Table 3 Fitting parameters of light response curve in Jerusalem artichoke lines
表4 Table 4 表4(Table 4)
表4 菊芋各品系CO2响应曲线拟合的特征参数 Table 4 Fitting parameters of CO2 response curve in Jerusalem artichoke lines
品系 Line
羧化效率 CE
CO2补偿点 CCP (µmol mol-1)
CO2饱和点 CSP (µmol mol-1)
最大光合速率 Amax (µmol m-2 s-1)
光呼吸速率 Rp (µmol m-2s-1)
LZJ119
0.139±0.024 ab
48.36±6.35 b
573.09±87.10 a
71.64±1.89 b
6.63±0.46 ab
LZJ004
0.127±0.004 b
57.16±5.61 a
605.43±34.02 a
69.77±3.11 b
7.28±0.70 ab
LZJ188
0.154±0.008 a
49.26±1.76 ab
566.64±16.63 a
79.59±1.76 a
7.59±0.63 a
LZJ018
0.131±0.011 ab
49.30±2.83 ab
544.00±44.70 a
64.50±0.30 c
6.44±0.19 b
MH
0.133±0.017 a
52.76±7.21 a
589.26±61.74 a
70.70±2.52 a
6.95±0.63 a
ML
0.143±0.015 a
49.28±2.11 a
555.32±32.61 a
72.04±8.34 a
7.02±0.76 a
F值 F-value
1.022
1.291
1.418
0.142
0.023
MH: mean of high yield lines; ML: mean of low yield lines. Values followed by different letters in the same column are significantly different at 0.05 probability level.*Significant at 0.05 probability level.**Significant at 0.01 probability level. CE: carboxylation efficiency; CCP: CO2 compensation point; CSP: CO2 saturation point; Amax: maximum photosynthetic rate under CO2 saturation; Rp: light respiration rate. MH: 高产品系平均值; ML: 低产品系平均值。不同的小写字母表示品系间在0.05水平上差异显著,*表示0.05显著水平,**表示0.01显著水平。
表4 菊芋各品系CO2响应曲线拟合的特征参数 Table 4 Fitting parameters of CO2 response curve in Jerusalem artichoke lines
图1 菊芋各品系光合速率( Pn)随光照强度(PAR)和胞间CO2浓度( Ci)的变化黑色三角代表高产品系, 白色三角代表低产品系。Fig.1 Changes of net photosynthetic rate with different photosynthetically active radiation and intercellular CO2 concentrations in Jerusalem artichoke linesBlack triangles represent high yield lines, white triangles represent low yield lines. Pn: photosynthetic rate; PAR: photosynthetically active radiation; Ci: intercellular CO2 concentration.
图3 块茎产量与地上生物量、根生物量、LCP和 Rd的相互关系缩写同表3。Fig. 3 Relationship of tuber yield with shoot weight, root weight, LCP, and RdAbbreviations are the same as given in Table 3.
4 结论在菊芋高产品系的选育过程中较大的叶片数和叶面积以及发达的根系可作为比较直观可靠的选育标准, 而且较低LCP和 Rd也具有较高的参考价值。 The authors have declared that no competing interests exist. 作者已声明无竞争性利益关系。The authors have declared that no competing interests exist.
McLaurinW J, SomdaZ C, KaysS J. Jerusalem artichoke growth, development, and field storage: 1. Numerical assessment of plant development and dry matter acquisition and allocation. J Plant Nutr, 1999, 22: 1303-1313[本文引用:1][JCR: 0.526]
[2]
DenoroyP. The crop physiology of Helianthus tuberosus L. : a model orientated view. Biomass Bioenergy, 1996, 11: 11-32[本文引用:1][JCR: 2.975]
[3]
ZhuangD F, JiangD, LiuL, HuangY H. Assessment of bioenergy potential on marginal land in China. Renew Sustain Energy Rev, 2011, 15: 1050-1056[本文引用:1][JCR: 5.627]
[4]
WestleyL C. The effect of inflorescence bud removal on tuber production in Helianthus tuberosus L. (Asteraceae). Ecology, 1993, 74: 2136-2144[本文引用:1][JCR: 5.175]
[5]
隆小华, 刘兆普, 刘玲, 王琳. 盐生能源植物菊芋研究进展. 海洋科学进展, 2005, 33: 80-85LongX H, LiuZ P, LiuL, WangL. Advances in study on salt-tolerance energy source plant Helianthus tuberosus L. Adv Marine Sci, 2005, 33: 80-85 (in Chinese with English abstract)[本文引用:1]
[6]
SaengkanukA, NuchadomrongS, JogloyS, PatanothaiA, SrijaranaiS. A simplified spectrophotometric method for the determination of inulin in Jerusalem artichoke (Helianthus tuberosus L. ) tubers. Ear Food Res Technol, 2011, 233: 609-616[本文引用:1]
[7]
SaengthongpinitW, SajjaanantakilT. Influence of harvest time and storage temperature on characteristics of inulin from Jerusalem artichoke (Helianthus tuberosus L. ) tubers. Postharvest Biol Technol, 2005, 37: 93-100[本文引用:1][JCR: 2.454]
[8]
BaldimiM, DanusoF, TuriM, VannozziG P. Evaluation of new clones of Jerusalem artichoke (Helianthus tuberosus L. ) for inulin and sugar yield from stalks and tubers. Ind Crop Prod, 2004: 25-40[本文引用:1][JCR: 2.468]
[9]
寇一翾, 吕世奇, 刘建全, 赵长明. 寡糖类能源植物菊芋及其综合利用研究进展. 生命科学, 2014, 26: 451-457KouY X, LüS Q, LiuJ Q, ZhaoC M. The review of Helianthus tuberosus L. and its comprehensive utilization as a bioenergy plant rich in oligosaccharide. Chin Bull Life Sci, 2014, 26: 451-457 (in Chinese with English abstract)[本文引用:1][CJCR: 0.577]
[10]
LiX F, HouS L, SuM, YangS S, JiangG, QiD M, ChenS Y, LiuG S. Major energy plants and their potential for bioenergy development in China. Environ Manage, 2010, 46: 579-589[本文引用:1][JCR: 1.647]
[11]
刘祖昕, 谢光辉. 菊芋作为能源植物研究进展. 中国农业大学学报, 2012, 17(6): 122-132LiuZ X, XieG H. An overview of researches on Jerusalem artichoke as a biofuel crop. J China Agric Univ, 2012, 17(6): 122-132 (in Chinese with English abstract)[本文引用:1]
[12]
贾敬敦, 马隆龙, 蒋丹平, 葛毅强. 生物质能源产业科技创新发展战略. 北京: 化学工业出版社, 2014. pp255-261JiaJ D, MaL L, JiangD P, GeY Q. Development Strategy for the Science and Technology Innovation of Biomass Energy Industry. Beijing: Chemical Industry Press, 2014. pp255-261(in Chinese)[本文引用:1]
[13]
LiuZ X, Spirtz J H J, ShaJ, XueS, XieG H. Growth and yield performance of Jerusalem artichoke clones in a semi-arid region of China. Agron J, 2012, 104: 1538-1546[本文引用:1][JCR: 1.518]
[14]
BaldiniM, DanusoF, MontiA, AmaducciM T, StevanatoP, MastroG D. Chicory and Jerusalem artichoke productivity in different areas of Italy, in relation to water availability and time of harvest. Italian J Agron, 2006, 1: 291-307[本文引用:1]
[15]
KouY X, ZengJ, LiuJ Q, ZhaoC M. Germplasm diversity and differentiation of Helianthus tuberosus L. revealed by AFLP maker and phenotypic traits. J Agric Sci, 2013, 5: 1-11[本文引用:1][JCR: 2.041]
[16]
ChenL, LongX H, ZhangZ H, ZhengX T, RengelZ, LiuZ P. Cadmium accumulation and translocation in two Jerusalem artichoke (Helianthus tuberosus L. ) cultivars. Pedosphere, 2011, 21: 573-580[本文引用:1][JCR: 1.232][CJCR: 0.8103]
[17]
LongX H, HuangZ R, HuangY L, KangJ, ZhangZ H, LiuZ P. Response of two Jerusalem artichoke (Helianthus tuberosus L. ) cultivars differing in tolerance to salt treatment. Pedosphere, 2010, 20: 515-524[本文引用:1][JCR: 1.232][CJCR: 0.8103]
[18]
张美兰. 基于GIS的耕地地力评价研究——以甘肃省榆中县为例. 兰州大学硕士学位论文, 甘肃兰州, 2010. pp23-64ZhangM L. Evaluation of Cultivated Land Fertility Based on GIS-a Case Study of Yuzhong County of Gansu Province. MS Thesis of Lanzhou University, Lanzhou, China, 2010. pp23-64 (in Chinese with English abstract)[本文引用:1]
[19]
EthierG J, LivingstonN J. On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar-von Caemmerer- Berry lead photosynthesis model. Plant Cell Environ, 2004, 27: 137-153[本文引用:1][JCR: 5.135]
[20]
Cannell M G R, Thornley J H M. Temperature and CO2 response of leaf and canopy photosynthesis: a clarification using the non- rectangular hyperbola model of photosynthesis. Ann Bot, 1998, 82: 883-892[本文引用:1][JCR: 0.657]
[21]
杜永, 王艳, 王学红, 孙乃力, 杨建昌. 黄淮地区不同粳稻品种株型/产量与品质的比较分析. 作物学报, 2007, 33: 1079-1085DuY, WangY, WangX H, SunN L, YangJ C. Comparisons of plant type, grain yield and quality of different japonica rice cultivars in the Huanghe-Huaihe River Area. Acta Agron Sin, 2007, 33: 1079-1085 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[22]
凌启鸿. 作物群体质量. 上海: 上海科学技术出版社, 2000. pp42-120(in Chinese)LingQ H. Quality of Crop Population. Shanghai: Shanghai Scientific and Technical Publishers, 2000. pp42-120(in Chinese)[本文引用:1]
[23]
李俊, 钟英娜, 郭春华. 马铃薯叶面积与产量和品系关系研究. 中国马铃薯, 2013, 27(1): 34-37LiJ, ZhongY N, GuoC H. Correlation of leaf area with yield and quality in potato. Chin Potato J, 2013, 27(1): 34-37 (in Chinese with English abstract)[本文引用:1][CJCR: 0.6024]
[24]
王义芹, 杨兴洪, 李滨, 童依平, 李振声. 小麦叶面积及光合速率与产量关系的研究. 华北农学报, 2008, 23: 10-15WangY Q, YangX H, LiB, TongY P, LiZ S. Study on the relation between leaf area, photosynthetic rate and yield of wheat. Acta Agric Boreali-Sin, 2008, 23: 10-15 (in Chinese with English abstract)[本文引用:1][CJCR: 0.951]
[25]
孙锐, 彭畅, 丛艳霞, 董志强, 王志敏, 赵明. 不同密度春玉米叶面积系数动态特征及其对产量的影响. 玉米科学, 2008, 16(4): 61-65SunY, PengC, CongY X, DongZ Q, WangZ M, ZhaoM. Dynamic characteristics of leaf area index and their effects on yield in different density spring-maize. J Maize Sci, 2008, 16(4): 61-65 (in Chinese with English abstract)[本文引用:1][CJCR: 0.965]
[26]
王萍, 黄洁, 李开锦, 叶剑秋, 许瑞丽. 旱稻主要农艺性状与产量相关及通径分析. 热带农业科学, 2006, 26(1): 18-20WangP, HuangJ, LiK J, YeJ Q, XuR L. Correlation between grain yield and main agronomic traits of upland rice. Chin J Trop Agric, 2006, 26: 18-20 (in Chinese with English abstract)[本文引用:1][CJCR: 0.4375]
[27]
魏臻武, 符昕, 曹致中, 王晓俊, 耿小丽, 赵艳, 朱铁霞. 苜蓿生长特性和产草量关系的研究. 草业学报, 2007, 16(4): 1-8WeiZ W, FuX, CaoZ Z, WangX J, GengX L, ZhaoY, ZhuT X. Forage yield component and growth characteristics of Medicago sative. Acta Pratac Sin, 2007, 16(4): 1-8 (in Chinese with English abstract)[本文引用:1]
[28]
隆小华, 刘兆普. 菊芋株型在高产育种中的作用. 中国农学通报, 2010, 26(9): 263-266LongX H, LiuZ P. Function of ideal plant type in breeding of Helianthus tuberosus L. for high yield and good grain quality. Chin Agric Sci Bull, 2010, 26(9): 263-266 (in Chinese with English abstract)[本文引用:1]
[29]
钟启文, 王怡, 王丽慧, 李莉. 菊芋生长发育动态及光合性能指标研究. 西北植物学报, 2007, 27: 1843-1848ZhongQ W, WangY, WangL H, LiL. Change of growth, development and photosynthesis indicators of jerusalem artichoke. Acta Bot Boreal-Occident Sin, 2007, 27: 1843-1848 (in Chinese with English abstract)[本文引用:1]
[30]
李伟忠, 安英辉, 许崇香, 孙梅, 闵丽, 姜森, 陈庆山, 胡国华. 玉米自交系表型性状与产量的灰色关联分析. 作物杂志, 2012, (5): 105-108LiW Z, AnY H, XuC X, SunM, MinL, JiangS, ChenQ S, HuG H. Grey relational analysis between phenotypic traits and yield of maize inbred lines. Crops, 2012, (5): 105-108 (in Chinese with English abstract)[本文引用:1][CJCR: 0.6276]
[31]
韦还和, 姜元华, 赵可, 许俊伟, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 郑飞. 甬优系列杂交稻品种的超高产群体特征. 作物学报, 2013, 39: 2201-2210WeiH H, JiangY H, ZhaoK, XuJ W, ZhangH C, DaiQ G, HuoZ Y, XuK, WeiH Y, ZhengF. Characteristic of super-high yield population in yongyou series of hybrid rice. Acta Agron Sin, 2013, 39: 2201-2210 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[32]
SwantonC J, CaversP B. Biomass and nutrient allocation patterns in Jerusalem artichoke (Helianthus tuberosus L. ). Can J Bot, 1989, 67: 2880-2887[本文引用:1][JCR: 1.397]
[33]
HaaseJ, Brand lR, CcheuS, SchadlerM. Above- and below- ground interactions are mediated by nutrient availability. Ecology, 2008, 89: 3072-3081[本文引用:1][JCR: 5.175]
[34]
许大全. 光合速率、光合效率与作物产量. 生物学通报, 1999, 34(8): 8-10XuD Q. Relationship between photosynthetic rate and its efficiency. Bull Biol, 1999, 34(8): 8-10[本文引用:1][CJCR: 0.3175]
[35]
梁军生, 陈晓鸣. 杨子祥, 刘娟, 王健敏, 陈航. 云南松与华山松人工混交林针叶光合速率对光合CO2浓度的响应特征. 林业科学研究, 2009, 22: 21-25LiangJ S, ChenX M, YangZ X, LiuJ, WangJ M, ChenH. Photosynthesis rate in response to light intensity and CO2 concentration in the mixed plantation of Pinus yunnanensis and Pinus amand ii. For Res, 2009, 22: 21-25 (in Chinese with English abstract)[本文引用:1][JCR: 1.847]
[36]
宋庆安, 童方平, 易霭琴, 李贵, 皮兵. 光胁迫下欧洲荚蒾的光合生理生态特性. 中国农学通报, 2008, 24(5): 166-171SongQ A, TongF P, YiA Q, LiG, PiB. Studies on physiological characteristics of photosynthetic of Vihurnum opulus L. under light stress. Chin Agric Sci Bull, 2008, 24(5): 166-171 (in Chinese with English abstract)[本文引用:1]
[37]
DonaldC M. The breeding of crop ideotypes. Euphytica, 1968, 17: 385-403[本文引用:1][JCR: 1.643]
[38]
MontiA, AmaducciM T, VenturiG. Growth response, leaf gasexchange and fructans accumulation of Jerusalem artichoke (Helianthus tuberosus L. ) as affected by different water regimes. Eur J Agron, 2005, 23: 136-145[本文引用:1][JCR: 2.8]
[39]
董志新, 韩清芳, 贾志宽, 任广鑫. 不同苜蓿品种光合速率对光和CO2浓度响应特征. 生态学报, 2007, 27: 2272-2277DongZ X, HanQ F, JiaZ K, RenG X. Photosynthesis rate in response to light intensity and CO2 concentration in different alfalfa varieties. Acta Ecol Sin, 2007, 27: 2272-2277 (in Chinese with English abstract)[本文引用:1]
[40]
张振文, 张保玉, 童海峰, 房林. 葡萄开花期光合作用光补偿点和光饱和点的研究. 西北林学院学报, 2010, 25(1): 24-29ZhangZ W, ZhangB Y, TongH F, FangL. Photosynthesis LCP and LSP of different grapevine cultivars. J Northwest For Univ, 2010, 25(1): 24-29 (in Chinese with English abstract)[本文引用:1]