删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

光、氮及其互作对超级粳稻产量和氮、磷、钾吸收的影响

本站小编 Free考研考试/2021-12-26

王亚江, 魏海燕*, 颜希亭, 葛梦婕, 孟天瑶, 张洪程, 戴其根, 霍中洋, 许轲, 费新茹
扬州大学农学院江苏省作物遗传生理国家重点实验室 / 农业部长江流域稻作技术创新中心, 江苏扬州 225009
* 通讯作者(Corresponding author): 魏海燕, E-mail:wei_haiyan@163.com, Tel: 0514-87979220 第一作者联系方式: E-mail:wyj19900120@163.com
收稿日期:2014-04-16 基金:本研究由国家自然科学基金项目(31101102和30971732), 高等学校博士学科点专项科研基金项目(20103250120003), 国家粮食丰产科技工程项目(2011BAD16B03)和江苏高校优势学科建设工程项目资助;

摘要大田条件下以超级粳稻南粳44和宁粳3号为材料, 设置2种氮肥水平(N10: 150 kg hm-2, N20: 300 kg hm-2)和3种遮光处理(L1: 不遮光, L2: 抽穗前遮光20 d, L3: 抽穗后遮光20 d), 研究光、氮及其互作对超级粳稻产量和氮、磷、钾吸收的影响。结果表明, 同一氮肥水平下产量呈现L1>L3>L2。其中, L2使植株在拔节至抽穗阶段及抽穗期的氮、磷、钾积累量显著下降, 主要由于L2显著降低了抽穗前期的根系α-NA氧化量及根干重, 导致根系吸收养分能力下降, 最终产量显著低于L1, 达30.58%~35.26%。L3使植株在抽穗至成熟阶段及成熟期的氮、磷、钾积累量显著下降, 主要由于L3显著降低了抽穗后期的根系α-NA氧化量及根干重。尽管在抽穗后随着植株根系逐渐衰老及机能下降, L3对根系、养分吸收及最终产量的影响要小于L2, 但最终产量依然显著低于L1, 达10.91%~18.47%。L2和L3条件下, 随着氮肥水平增加, 植株根系α-NA氧化量及根干重显著增加, 导致拔节至成熟期各阶段的氮、磷、钾积累量显著增加, 最终产量及氮肥利用率显著提高。由此可见氮肥施用能部分弥补弱光逆境对超级粳稻氮、磷、钾吸收及产量的影响。

关键词:超级粳稻; 遮光; 氮肥; 产量; 养分吸收
Effects of Light, Nitrogen and Their Interaction on Grain Yield and Nitrogen, Phosphorus and Potassium Absorption inJaponica Super Rice
WANG Ya-Jiang, WEI Hai-Yan*, YAN Xi-Ting, GE Meng-Jie, MENG Tian-Yao, ZHANG Hong-Cheng, DAI Qi-Gen, HUO Zhong-Yang, XU Ke, FEI Xin-Ru
Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Agricultural College of Yangzhou University / Innovation Center of Rice Cultivation Technology in Yangtze Rive Valley, Ministry of Agriculture, Yangzhou 225009, China
Fund:
AbstractA field experiment was conducted usingjaponica super rice Nanjing 44 and Ningjing 3 with two nitrogen fertilization levels (N10: 150 kg ha-1; N20: 300 kg ha-1) and three shading treatments (L1: no shading; L2: shading 20 days before heading; L3: shading 20 days after heading) to study the effects of light, nitrogen and their interaction on grain yield and NPK absorption. Results showed that yield under the same level of nitrogen fertilizer was L1>L3>L2. Compared with L1, L2 significantly reduced NPK accumulation from jointing to heading and at whole heading stage, mainly due to the significant decrease of the root oxidation ability of α-NA and root dry weight before heading, resulting in decreased root nutrient uptake capacity and the final yield decrease of 30.58%-35.26%. L3 significantly reduced NPK accumulation from heading to maturity and at whole maturity stage, mainly due to the significant decrease of the root oxidation ability of α-NA and root dry weight after heading. Although the root was gradual aging with the function declining after heading, resulting in the reduced effect on root system, nutrient absorption and yield in L3 than in L2, the final yield was still 10.91%-18.47% lower in L3 than in L1. Under L2 and L3 conditions, with increasing nitrogen level, the root oxidation ability of α-NA and root dry weight increased significantly, resulting in that NPK accumulation increased significantly in various stages from jointing to maturity, then the final yield and nitrogen use efficiency improved significantly. This indicated that nitrogen fertilizer could partially offset the impact of low light stress on NPK nutrient absorption and grain yield injaponica super rice.

Keyword:Japonica super rice; Shading; Nitrogen; Yield; Nutrient uptake
Show Figures
Show Figures










在超级稻高产形成过程中, 光照时间及光照强度有重大影响[ 1, 2], 氮肥用量、运筹方式以及氮肥种类也有重要意义[ 3, 4, 5]。根据本课题组已有的研究表明[ 9], 超级稻生育过程中, 不同时间段的遮光对水稻LAI、光合势、干物质积累量均会造成一定的影响, 导致最终的群体颖花量、结实率、千粒重及产量有显著的差异, 氮肥施用能部分弥补弱光逆境对超级稻物质生产及产量的影响。而在产量的形成过程中, 氮、磷、钾元素对器官建成[ 7]、产量潜力发挥[ 8, 9, 10, 11]具有重要的作用, 但不同生育阶段遮光及氮肥施用对水稻吸收氮、磷、钾元素有何影响尚不清楚, 因此本文在前期研究的基础上, 继续深入研究以探明不同光、氮处理下氮、磷、钾养分吸收特性及其与产量、根系形态生理的关系, 为超级稻超高产栽培及养分管理提供理论依据。
1 材料与方法1.1 试验地点及供试材料扬州大学农学院试验农场的土质为沙壤土, 地力较好、营养平衡。前茬为小麦。土壤含全氮0.13%、碱解氮87.45 mg kg-1、速效磷32.8 mg kg-1、速效钾88.3 mg kg-1
供试品种为超级粳稻品种宁粳3号(生长前期分蘖强, 长势旺, 后期熟相较好, 抗倒性较强, 落粒性中等, 全生育期158 d左右, 株高98 cm左右)和南粳44 (生长前期分蘖较强, 株型紧凑, 后期群体整齐度好, 熟相好, 穗型大, 结实率高, 全生育期158 d左右, 株高100 cm左右)。
1.2 试验设计2011—2012年采用二因素随机区组设计, 设置2种氮素水平, 即N10 (150 kg hm-2)和N20 (300 kg hm-2); 3种遮光处理, 即L1 (不遮光)、L2 (抽穗前遮光20 d)和L3 (抽穗后遮光20 d), 使用黑色遮阳网遮光, 遮光率达50%。于5月17日播种, 6月14日移栽, 栽插密度为27万穴 hm-2 (14.4 cm × 26.0 cm)。双本栽插。小区面积15 m2, 各处理重复3次。为保证单独排灌, 作埂隔离各小区并用塑料薄膜覆盖埂体。为方便根系取样, 移栽前在各小区打入长轴半径为13.0 cm, 短轴半径为7.2 cm, 深30 cm的椭圆形铁管, 将管内泥土挖出, 装入特制的圆形营养袋, 再将袋紧贴管壁, 然后抽出铁管, 保留带土营养袋。营养袋材料为黑色耐氧化聚乙烯膜, 口径21 cm, 高30 cm, 袋底和侧面设8个口径为0.5 cm的滤水透气孔。每小区以S形填埋12个带土营养袋, 然后整地、覆水, 施用基肥, 在每个营养袋中央按照要求栽插水稻秧苗。基肥∶蘖肥∶穗肥=2.5∶2.5∶5.0, 其中穗肥分别于倒四叶和倒二叶叶龄期等量施入。每公顷分别以过磷酸钙和氯化钾的形式基施P2O5150 kg和K2O 150 kg。其他管理措施按常规栽培要求实施。
1.3 测定项目与方法1.3.1 植株氮、磷、钾的测定 分别于拔节、抽穗和成熟期从每小区取有代表性植株4穴, 105℃杀青, 80℃烘至恒重后测定各器官(茎鞘、叶片和穗)及全株的干物质重。植株经粉碎后, 用半微量凯氏定氮法测定氮素含量, 钒钼黄比色法测定磷素含量, 火焰光度计法测定钾素含量。
氮(磷、钾)素积累量(kg hm-2) = 该时期地上部干物重×含氮(磷、钾)率
氮(磷、钾)素阶段积累量(kg hm-2) = 后一时期的氮(磷、钾)素积累量-前一时期的氮(磷、钾)素积累量
氮肥吸收利用率(%) = (施氮区植株吸氮量-氮空白区植株吸氮量)/施氮量
氮(磷、钾)籽粒生产效率(kg kg-1) = 水稻稻谷产量/水稻吸氮(磷、钾)量
1.3.2 根系相关性状及活性测定 于拔节期、抽穗前10 d、抽穗期、抽穗后10 d和成熟期各取埋入土中的4个营养袋, 剥去袋体, 置40目尼龙网袋中用流水冲洗获得完整根系, 其中两穴用于地上部及根干重测定, 将鲜根及地上部105℃杀青30 min, 80℃烘干至恒重, 计算根冠比。用α-NA氧化法测定另外两穴根系对α-NA的氧化量。
1.3.3 数据计算和统计分析 两年试验的重复性较好, 处理间各指标值变化趋势一致, 因此, 本文取2012年数据。以Microsoft Excel 2003处理数据, DPS软件进行其他统计分析。

2 结果与分析2.1 光、氮及其互作对超级粳稻产量的影响由图1可知, 2个超级粳稻品种年度间产量差异均不大( F= 0.20, F= 3.24)。以2012年为例, 2个超级粳稻品种在2种氮肥水平的产量均呈现L1>L3> L2, 差异显著。其中N10条件下L1比L2高30.58%~35.26%, L1比L3高10.91%~14.43%; N20条件下L1比L2高30.71%~30.75%, L1比L3高15.42%~18.47%。不同光氮处理的产量, 两个品种均呈现N20L1>N20L3>N20L2>N10L1>N10L3>N10L2, 差异显著。
图1
Fig. 1
Figure OptionViewDownloadNew Window
图1 光、氮及其互作下超级粳稻的产量Fig. 1 Yield of super rice under effects of light, nitrogen and their interaction


2.2 光、氮及其互作对超级粳稻氮、磷、钾吸收利用的影响2.2.1 对氮素阶段积累量及比例的影响 由表1可知, 较之L1, L2使2个超级粳稻品种在拔节至抽穗阶段及抽穗至成熟阶段的氮素积累量显著下降; L3则使2个超级粳稻品种在抽穗至成熟阶段的氮素积累量显著下降。L2和L3条件下, 随着氮肥水平增加, 各生育阶段的氮素积累量均显著增加。
表1
Table 1
表1(Table 1)
表1 光、氮及其互作对超级粳稻氮素阶段积累量及比例的影响 Table 1 Effects of light, nitrogen and their interaction on periodical nitrogen accumulation and its ratio in super rice
品种
Cultivar
氮肥水平
Nitrogen level
光处理
Light treatment
拔节前 SO-EG拔节至抽穗 EG-HD抽穗至成熟 HD-MA
N积累量
Nitrogen accumulation
(kg hm-2)
比例
Ratio(%)
N积累量
Nitrogen accumulation
(kg hm-2)
比例
Ratio(%)
N积累量
Nitrogen accumulation
(kg hm-2)
比例
Ratio(%)
南粳44
Nanjing 44
N10L148.73 Bb34.49 Dd64.34 Cc45.53 Cc28.23 Cc19.98 Aa
L248.43 Bb39.55 Aa50.13 Dd40.94 Dd23.89 Dd19.51 Aa
L348.36 Bb37.15 Bb65.15 Cc50.04 Bb16.68 Ff12.81 Cc
N20L166.32 Aa32.57 Ee101.75 Aa49.97 Bb35.55 Aa17.46 Bb
L266.61 Aa36.84 Bb82.86 Bb45.83 Cc31.35 Bb17.34 Bb
L366.98 Aa35.29 Cc101.51 Aa53.48 Aa21.31 Ee11.23 Dd
F
F-value
Nitrogen (N)503.11**440.15**6137.75**626.29**621.69**347.96**
Light (L)0.01687.58**603.26**808.62**854.46**1522.38**
N × L0.147.05*9.79*6.35*12.59*5.99*
宁粳3号
Ningjing 3
N10L151.41 Bb33.02 Dd72.91 Cc46.82 Cd31.40 Cc20.17 Aa
L251.42 Bb37.76 Aa57.38 Dd42.14 Df27.36 Dd20.11 Aa
L351.94 Bb35.64 BCc73.67 Cc50.54 Bb20.15 Ff13.82 Cc
N20L171.47 Aa32.99 Dd106.62 Aa49.21 Bc38.58 Aa17.80 Bb
L271.41 Aa36.53 Bb89.39 Bb45.73 Ce34.68 Bb17.74 Bb
L371.94 Aa35.13 Cc107.08 Aa52.29 Aa25.77 Ee12.58 Dd
F
F-value
Nitrogen (N)550.87**23.79**29263.49**179.27**974.93**181.38**
Light (L)0.16393.34**3317.82**504.98**1085.91**673.69**
N × L0.018.31*7.41*7.85*6.43*6.44*
同一品种的相同数据列, 标以不同大小写字母的数值分别在1%和5%水平差异显著。N10: 150 kg hm-2纯氮; N20: 300 kg hm-2纯氮; L1: 不遮光; L2: 抽穗前遮光20 d; L3: 抽穗后遮光20 d。***分别表示在5%和1%水平上差异显著。
Values within the same column for a cultivar followed by different letters are significantly different at 1% (capital) and 5% (lowercase) probability levels, respectively. N10: 150 kg hm-2 N applied; N20: 300 kg hm-2 N applied; L1: no shading; L2: shading 20 days before heading; L3: shading 20 days after heading. SO: sowing; EG: elongation; HD: heading; MA: maturing.* and** denote significant difference at 5% and 1% probability levels, respectively.

表1 光、氮及其互作对超级粳稻氮素阶段积累量及比例的影响 Table 1 Effects of light, nitrogen and their interaction on periodical nitrogen accumulation and its ratio in super rice

对于氮素阶段积累比例, 较之L1, L2使2个超级粳稻品种在拔节至抽穗阶段显著下降, 而拔节前则显著增加; L3使2个超级粳稻品种在抽穗至成熟阶段显著下降, 而拔节前及拔节至抽穗阶段则显著增加。L2和L3条件下, 随着氮肥水平增加, 拔节至抽穗阶段的氮素积累比例呈增加趋势, 而拔节前及抽穗至成熟阶段呈下降趋势。
2.2.2 对氮素籽粒生产效率及氮肥利用率的影响
图2表明, 2个超级粳稻品种在2种氮肥水平下的氮素籽粒生产效率及氮肥利用率均呈现L1>L3>L2, 差异显著。其中氮素籽粒生产效率方面, N10条件下L1比L2高13.17%~18.27%; N20条件下L1比L2高16.10%~17.93%。2个品种的氮素籽粒生产效率均呈现N10L1>N20L1>N10L3>N20L3>N10L2>N20L2,差异均显著。氮肥吸收利用率方面, N10条件下L1比L2高39.41%~41.96%; N20条件下L1比L2高20.01%~21.49%。2个品种的氮肥吸收利用率均呈现N10L1>N20L1>N20L3>N10L3>N20L2>N10L2, 差异均显著。
图2
Fig. 2
Figure OptionViewDownloadNew Window
图2 光、氮及其互作下超级粳稻的氮素籽粒生产效率及氮肥利用率Fig. 2 Nitrogen grain production efficiency and nitrogen use efficiency of super rice under effects of light, nitrogen and their interaction

2.2.3 对磷素阶段积累量及比例的影响 由表2可知, 较之L1, L2使2个超级粳稻品种在拔节至抽穗阶段及抽穗至成熟阶段的磷素积累量显著下降; L3则得2个超级粳稻品种在抽穗至成熟阶段的磷素积累量显著下降。L2和L3条件下, 随着氮肥水平增加, 各生育阶段的磷素积累量均显著增加。
表2
Table 2
表2(Table 2)
表2 光、氮及其互作对超级粳稻磷素阶段积累量及比例的影响 Table 2 Effects of light, nitrogen and their interaction on periodical phosphorus accumulation and its ratio in super rice
品种
Cultivar
氮肥水平 Nitrogen level光处理
Light treatment
拔节前 SO-EG拔节至抽穗 EG-HD抽穗至成熟 HD-MA
P积累量
Phosphorus accumulation
(kg hm-2)
比例
Ratio(%)
P积累量
Phosphorusaccumulation
(kg hm-2)
比例
Ratio(%)
P积累量
Phosphorus accumulation
(kg hm-2)
比例
Ratio(%)
南粳44
Nanjing 44
N10L112.75 Bb23.93 CDcd25.18 Cc47.27 Dd15.34 Cc28.80 Aa
L212.75 Bb27.07 Aa20.93 Dd44.44 Ee13.42 De28.49 Aa
L313.05 Bb25.89 Bb25.97 Cc51.51 Bb11.40 Ef22.60 Cc
N20L118.24 Aa23.40 Dd40.09 Aa51.43 Bb19.62 Aa25.17 Bb
L218.13 Aa26.35 ABb33.51 Bb48.68 Cc17.19 Bb24.97 Bb
L317.89 Aa24.35 Cc40.62 Aa55.29 Aa14.96 Cd20.37 Dd
F
F-value
Nitrogen (N)133.55**60.21**3507.50**5619.88**2292.27**356.35**
Light (L)0.01215.30**263.93**5377.13**943.36**468.41**
N × L0.206.69*9.75*6.86*6.99*7.36*
宁粳3号
Ningjing 3
N10L113.03 Bb22.28 De28.61 Cc48.91 Cd16.85 Cc28.81 Aa
L213.20 Bb26.01 Ab22.97 Dd45.29 De14.56 Ee28.70 Aa
L312.83 Bb23.33 Cd29.63 Cc53.85 Bb12.55 Ff22.82 Cc
N20L119.14 Aa23.09 Cd43.42 Aa52.39 Bc20.32 Aa24.52 Bb
L219.47 Aa26.44 Aa36.39 Bb49.40 Cd17.79 Bb24.16 Bb
L319.42 Aa24.50 Bc44.07 Aa55.60 Aa15.78 Dd19.90 Dd
F
F-value
Nitrogen (N)194.73**88.73**6995.17**179.05**10611.45**440.67**
Light (L)0.12592.17**708.01**336.58**6324.49**344.10**
N × L0.106.28*6.04*9.19*6.20*7.28*
同一品种的相同数据列, 标以不同大小写字母的数值分别在1%和5%水平差异显著。N10: 150 kg hm-2纯氮; N20: 300 kg hm-2纯氮; L1: 不遮光; L2: 抽穗前遮光20 d; L3: 抽穗后遮光20 d。***分别表示在5%和1%水平上差异显著。
Values within the same column for a cultivar followed by different letters are significantly different at 1% (capital) and 5% (lowercase) probability levels, respectively. N10: 150 kg hm-2 N applied; N20: 300 kg hm-2 N applied; L1: no shading; L2: shading 20 days before heading; L3: shading 20 days after heading. SO: sowing; EG: elongation; HD: heading; MA: maturing.* and** denote significant difference at 5% and 1% probability levels, respectively.

表2 光、氮及其互作对超级粳稻磷素阶段积累量及比例的影响 Table 2 Effects of light, nitrogen and their interaction on periodical phosphorus accumulation and its ratio in super rice

对于磷素阶段积累比例, 较之L1, L2使2个超级粳稻品种在拔节至抽穗阶段显著下降, 而拔节前显著增加; L3使2个超级粳稻品种在抽穗至成熟阶段显著下降, 而拔节前及拔节至抽穗阶段显著增加。L2和L3条件下, 随着氮肥水平增加, 拔节至成熟阶段的磷素积累比例呈增加趋势, 而抽穗至成熟阶段呈下降趋势。
2.2.4 对磷素籽粒生产效率的影响 图3表明, 2个超级粳稻品种在2种氮肥水平下的磷素籽粒生产效率均呈现L1>L3>L2, 差异显著。其中N10条件下L1比L2高15.46%~17.32%; N20条件下L1比L2高15.45%~16.15%。对于磷素籽粒生产效率, 南粳44呈现N10L1 > N20L1 > N10L3 > N10L2 > N20L3 > N20L2; 宁粳3号呈现N10L1 > N10L3 > N20L1 > N20L3 > N10L2 > N20L2, 差异均显著。
图3
Fig. 3
Figure OptionViewDownloadNew Window
图3 光、氮及其互作下超级粳稻的磷素籽粒生产效率Fig. 3 Phosphorus grain production efficiency of super rice under effects of light, nitrogen and their interaction

2.2.5 对钾素阶段积累量及比例的影响 由表3可知, 较之L1, L2使2个超级粳稻品种在拔节至抽穗阶段及抽穗至成熟阶段的钾素积累量显著下降; L3则使2个超级粳稻品种在抽穗至成熟阶段的钾素积累量显著下降。L2和L3条件下, 随着氮肥水平增加, 各生育阶段的钾素积累量均显著增加。
表3
Table 3
表3(Table 3)
表3 光、氮及其互作对超级粳稻钾素阶段积累量及比例的影响 Table 3 Effects of light, nitrogen and their interaction on periodical potassium accumulation and its ratio in super rice
品种
Cultivar
氮肥水平 Nitrogen level光处理
Light treatment
拔节前 SO-EG拔节至抽穗 EG-HD抽穗至成熟 HD-MA
K积累量
Potassium accumulation
(kg hm-2)
比例
Ratio(%)
K积累量
Potassiumaccumulation
(kg hm-2)
比例
Ratio(%)
K积累量
Potassium accumulation
(kg hm-2)
比例
Ratio(%)
南粳44
Nanjing 44
N10L1100.13 Bb47.05 Cc103.32 Cc48.55 De9.35 Cc4.40 Aa
L2100.82 Bb51.07 Aa88.29 Dd44.73 Ef8.30 Dd4.20 Aa
L3101.01 Bb48.53 Bb104.22 Cc50.08 Cc2.88 Ff1.39 Cc
N20L1145.50 Aa43.82 Ee174.77 Aa52.63 Bb11.79 Aa3.55 Bb
L2145.48 Aa47.17 Cc152.74 Bb49.52 Cd10.23 Bb3.32 Bb
L3144.40 Aa44.84 Dd174.33 Aa54.02 Aa4.01 Ee1.14 Cc
F
F-value
Nitrogen (N)2472.61**2514.77**7696.90**1873.39**415.84**66.67**
Light (L)0.09905.23**252.22**876.63**2386.05**463.10**
N × L0.417.57*7.51*7.11*18.34**6.44*
宁粳3号
Ningjing 3
N10L1112.71 Bb45.28 BCc126.05 Cc50.64 Cc10.18 Cc4.09 Aa
L2112.83 Bb50.63 Aa101.30 Dd45.45 Dd8.74 Dd3.92 Aa
L3112.83 Bb46.43 Bb127.06 Cc52.28 Bb3.14 Ff1.29 Cc
N20L1158.68 Aa43.51 Dd192.85 Aa52.88 ABb13.14 Aa3.60 Bb
L2158.85 Aa46.83 Bb168.78 Bb49.76 Cc11.54 Bb3.40 Bb
L3158.11 Aa44.58 CDc192.80 Aa54.31 Aa4.12 Ee1.11 Cc
F
F-value
Nitrogen (N)2899.39**132.60**100580.90**151.10**344.89**80.36**
Light (L)0.06146.56**6112.04**213.45**1657.67**1484.78**
N × L0.089.55*5.80*9.78*27.55**6.03*
同一品种的相同数据列, 标以不同大小写字母的数值分别在1%和5%水平差异显著。N10: 150 kg hm-2纯氮; N20: 300 kg hm-2纯氮; L1: 不遮光; L2: 抽穗前遮光20 d; L3: 抽穗后遮光20 d。***分别表示在5%和1%水平上差异显著。
Values within the same column for a cultivar followed by different letters are significantly different at 1% (capital) and 5% (lowercase) probability levels, respectively. N10: 150 kg hm-2 N applied; N20: 300 kg hm-2 N applied; L1: no shading; L2: shading 20 days before heading; L3: shading 20 days after heading. SO: sowing; EG: elongation; HD: heading; MA: maturing.* and** denote significant difference at 5% and 1% probability levels, respectively.

表3 光、氮及其互作对超级粳稻钾素阶段积累量及比例的影响 Table 3 Effects of light, nitrogen and their interaction on periodical potassium accumulation and its ratio in super rice

对于钾素阶段积累比例, 较之L1, L2使2个超级粳稻品种在拔节至抽穗阶段显著下降, 而拔节前显著增加; L3使2个超级粳稻品种在抽穗至成熟阶段显著下降, 而拔节前及拔节至抽穗阶段显著增加。L2和L3条件下, 随着氮肥水平增加, 拔节至成熟阶段的钾素积累比例呈增加趋势, 而拔节前及抽穗至成熟阶段呈下降趋势。
2.2.6 对钾素籽粒生产效率的影响 图4表明, 2个超级粳稻品种在2种氮肥水平下的钾素籽粒生产效率均呈现L1>L3>L2, 差异显著。其中N10条件下L1比L2高21.09%~21.14%; N20条件下L1比L2高21.46%~ 21.57%。2个品种的钾素籽粒生产效率均呈现N10L1> N20L1>N10L3>N10L2>N20L3>N20L2, 差异均显著。
图4
Fig. 4
Figure OptionViewDownloadNew Window
图4 光、氮及其互作下超级粳稻的钾素籽粒生产效率Fig. 4 Potassium grain production efficiency of super rice under effects of light, nitrogen and their interaction


2.3 光、氮及其互作对超级粳稻根系形态生理的影响2.3.1 对根系α-NA氧化量的影响 由表4可知,
较之L1, L2使2个超级粳稻品种在抽穗前期的根系α-NA氧化量显著下降, 但遮光解除后水稻根系α-NA氧化量则显著增加; L3使2个超级粳稻品种在抽穗后期根系α-NA氧化量显著下降, 但遮光解除后水稻根系α-NA氧化量也显著增加。L2和L3条件下, 随着氮肥水平增加, 各生育期的根系α-NA氧化量均显著增加。
表4
Table 4
表4(Table 4)
表4 光、氮及其互作对超级粳稻根系α-NA氧化量的影响 Table 4 Effects of light, nitrogen and their interaction on root oxidation ability of α-NA of super rice (µg h-1 g-1)
品种
Cultivar
氮肥水平 Nitrogen level光处理
Light treatment
拔节
Elongation
抽穗前10 d
Ten days before heading
抽穗
Heading
抽穗后10 d
Ten days after heading
成熟
Maturing
南粳44
Nanjing 44
N10L185.12 Bb57.36 Cc48.48 Dd35.96 Dd12.22 Ee
L285.09 Bb51.15 Dd55.28 Cc42.51 Cc17.12 Cc
L385.14 Bb57.42 Cc48.52 Dd30.25 Ee15.44 Dd
N20L1104.18 Aa74.66 Aa65.24 Bb50.22 Bb16.24 CDd
L2104.16 Aa65.86 Bb73.32 Aa58.17 Aa23.12 Aa
L3104.16 Aa74.72 Aa65.34 Bb41.06 Cc20.07 Bb
F
F-value
Nitrogen (N)3701.06**2755.38**10792.60**1275.23**615.02**
Light (L)0.01257.37**888.44**497.34**302.10**
N × L0.017.60*6.34*14.37**8.84*
宁粳3号
Ningjing 3
N10L187.97 Bb59.55 Cc50.75 Dd38.54 Dd14.01 Ee
L287.99 Bb53.05 Dd57.28 Cc45.02 Cc19.08 Cc
L388.01 Bb59.61 Cc50.79 Dd32.56 Ee17.18 Dd
N20L1108.25 Aa76.59 Aa67.58 Bb53.81 Bb18.55 Cc
L2108.23 Aa67.76 Bb75.39 Aa61.51 Aa25.14 Aa
L3108.24 Aa76.84 Aa67.46 Bb44.48 Cc22.25 Bb
F
F-value
Nitrogen (N)4182.20**2938.80**12009.82**1883.53**1177.36**
Light (L)0.01293.82**949.07**644.21**494.10**
N × L0.017.24*7.27*16.58**8.56*
同一品种的相同数据列, 标以不同大小写字母的数值分别在1%和5%水平差异显著。N10: 150 kg hm-2纯氮; N20: 300 kg hm-2纯氮; L1: 不遮光; L2: 抽穗前遮光20 d; L3: 抽穗后遮光20 d。***分别表示在5%和1%水平上差异显著。
Values within the same column for a cultivar followed by different letters are significantly different at 1% (capital) and 5% (lowercase) probability levels, respectively. N10: 150 kg hm-2 N applied; N20: 300 kg hm-2 N applied; L1: no shading; L2: shading 20 days before heading; L3: shading 20 days after heading.* and** denote significant difference at 5% and 1% probability levels, respectively.

表4 光、氮及其互作对超级粳稻根系α-NA氧化量的影响 Table 4 Effects of light, nitrogen and their interaction on root oxidation ability of α-NA of super rice (µg h-1 g-1)

2.3.2 对根干重的影响 由表5可知, 较之L1, L2使2个超级粳稻品种在抽穗期及成熟期的根干重显著下降; L3使2个超级粳稻品种在成熟期的根干重显著下降。L2和L3条件下, 随着氮肥水平增加, 各生育期的根干重均显著增加。
表5
Table 5
表5(Table 5)
表5 光、氮及其互作对超级粳稻根干重的影响 Table 5 Effects of light, nitrogen and their interaction on root dry weight of super rice (t hm-2)
品种
Cultivar
氮肥水平
Nitrogen level
光处理
Light treatment
拔节
Elongation
抽穗
Heading
成熟
Maturing
南粳44
Nanjing 44
N10L10.707 Bb1.027 Cc0.889 Dd
L20.711 Bb0.970 Dd0.806 Ff
L30.709 Bb1.035 Cc0.837 Ee
N20L10.789 Aa1.296 Aa1.003 Aa
L20.785 Aa1.234 Bb0.954 Cc
L30.786 Aa1.290 Aa0.980 Bb
F
F-value
Nitrogen (N)202.27**12223.53**2356.72**
Light (L)0.32339.54**188.93**
N × L0.326.03*14.53**
宁粳3号
Ningjing 3
N10L10.787 Bb1.208 Cc0.980 Dd
L20.792 Bb1.117 Dd0.857 Ff
L30.789 Bb1.217 Cc0.941 Ee
N20L10.909 Aa1.466 Aa1.116 Aa
L20.906 Aa1.408 Bb1.070 Cc
L30.906 Aa1.471 Aa1.098 Bb
F
F-value
Nitrogen (N)412.77**4252.78**1788.00**
Light (L)0.34160.15**154.87**
N × L0.348.64*33.19**
同一品种的相同数据列, 标以不同大小写字母的数值分别在1%和5%水平差异显著。N10: 150 kg hm-2纯氮; N20: 300 kg hm-2纯氮; L1: 不遮光; L2: 抽穗前遮光20 d; L3: 抽穗后遮光20 d。***分别表示在5%和1%水平上差异显著。
Values within the same column for a cultivar followed by different letters are significantly different at 1% (capital) and 5% (lowercase) probability levels, respectively. N10: 150 kg hm-2 N applied; N20: 300 kg hm-2 N applied; L1: no shading; L2: shading 20 days before heading; L3: shading 20 days after heading.* and** denote significant difference at 5% and 1% probability levels, respectively.

表5 光、氮及其互作对超级粳稻根干重的影响 Table 5 Effects of light, nitrogen and their interaction on root dry weight of super rice (t hm-2)

2.3.3 对根冠比的影响 由表6可知, 较之L1, L2使2个超级粳稻品种在抽穗期及成熟期的根冠比显著增加; L3使2个超级粳稻品种在成熟期的根冠比显著增加, 而根冠比显著增加的主要原因是遮光
条件下植株地上部干物重降低的幅度远远大于根部干物重降低的幅度。L2和L3条件下, 随着氮肥水平增加, 各生育期的根冠比均显著下降。
表6
Table 6
表6(Table 6)
表6 光、氮及其互作对超级粳稻根冠比的影响 Table 6 Effects of light, nitrogen and their interaction on ratio of root to shoot of super rice
品种
Cultivar
氮肥水平
Nitrogen level
光处理
Light treatment
拔节
Elongation
抽穗
Heading
成熟
Maturing
南粳44
Nanjing44
N10L10.2171 Aa0.1236 Bb0.0596 Cc
L20.2165 Aa0.1343 Aa0.0638 Aa
L30.2167 Aa0.1227 BCb0.0621 Bb
N20L10.1881 Bb0.1021 Dd0.0474 Ff
L20.1894 Bb0.1163 Cc0.0532 Dd
L30.1896 Bb0.1038 Dd0.0513 Ee
F
F-value
Nitrogen (N)189.77**2270.66**3367.26**
Light (L)0.03399.94**229.55**
N × L0.096.59*6.81*
宁粳3号
Ningjing 3
N10L10.2259 Aa0.1271 Bb0.0602 Cc
L20.2258 Aa0.1448 Aa0.0648 Aa
L30.2245 Aa0.1251 Bb0.0621 Bb
N20L10.1918 Bb0.1121 Cc0.0516 Ff
L20.1919 Bb0.1249 Bb0.0573 Dd
L30.1920 Bb0.1113 Cc0.0547 Ee
F
F-value
Nitrogen (N)243.26**585.22**2656.70**
Light (L)0.03250.49**382.90**
N × L0.057.51*6.38*
同一品种的相同数据列, 标以不同大小写字母的数值分别在1%和5%水平差异显著。N10: 150 kg hm-2纯氮; N20: 300 kg hm-2纯氮; L1: 不遮光; L2: 抽穗前遮光20 d; L3: 抽穗后遮光20 d。***分别表示在5%和1%水平上差异显著。
Values within the same column for a cultivar followed by different letters are significantly different at 1% (capital) and 5% (lowercase) probability levels, respectively. N10: 150 kg hm-2 N applied; N20: 300 kg hm-2 N applied; L1: no shading; L2: shading 20 days before heading; L3: shading 20 days after heading.* and** denote significant difference at 5% and 1% probability levels, respectively.

表6 光、氮及其互作对超级粳稻根冠比的影响 Table 6 Effects of light, nitrogen and their interaction on ratio of root to shoot of super rice

2.4 超级粳稻氮、磷、钾积累量、根系形态生理指标与产量的相关相关分析表明(表7), 不同光、氮条件下, 产量与主要生育期的氮、磷、钾元素积累量、根系干重和根系α-NA氧化量均呈正相关, 除与抽穗后10 d及成熟期的根系α-NA氧化量相关性不显著外, 其余都达到显著或极显著水平。而与根冠比呈极显著负相关。
表7
Table 7
表7(Table 7)
表7 超级粳稻氮、磷、钾积累量、根系形态生理指标与产量的相关系数 Table 7 Correlation coefficients of nitrogen, phosphorus and potassium accumulation, root characteristics with yield of super rice
拔节
EG
抽穗前10 d
Ten days before HD
抽穗
HD
抽穗后10 d
Ten days after HD
成熟
MA
氮素积累量 Nitrogen accumulation0.812**0.914**0.937**
磷素积累量 Phosphorus accumulation0.798**0.906**0.938**
钾素积累量 Potassium accumulation0.811**0.884**0.891**
根系干重 Root dry weight0.666*0.837**0.881**
根冠比 Ratio of root to shoot-0.755**-0.827**-0.900**
根系α-NA氧化量 Root oxidation ability of α-NA0.798**0.938**0.591*0.4700.215
***表示在5%和1%水平上差异显著。“—”表示未计算。
EG: elongation; HD: heading; MA: maturing.* and** denote significant difference at 5% and 1% probability levels, respectively. “—” represents without calculation.

表7 超级粳稻氮、磷、钾积累量、根系形态生理指标与产量的相关系数 Table 7 Correlation coefficients of nitrogen, phosphorus and potassium accumulation, root characteristics with yield of super rice


3 讨论3.1 光、氮及其互作对超级粳稻产量及氮、磷、钾养分吸收特性的影响前人研究表明, 不同光照条件对水稻产量有显
著影响, 如各生育阶段遮光均导致水稻产量显著下降[ 9, 15]。氮、磷、钾是水稻正常生长发育必不可少的三大营养元素, 对水稻产量潜力的发挥起着重要作用, 然而不同时期遮光对超级粳稻氮、磷、钾养分吸收又有怎样的影响呢?本研究表明, L2使植株拔节至抽穗阶段及抽穗期的氮、磷、钾元素积累量显著下降, 最终产量显著下降, 同时氮肥利用率及氮、磷、钾元素籽粒生产效率也显著下降; L3使植株抽穗至成熟阶段及成熟期的氮、磷、钾元素积累量显著下降, 最终产量显著下降, 同时氮肥利用率及氮、磷、钾元素籽粒生产效率也显著下降, 但下降幅度均低于L2, 主要因为拔节至抽穗阶段是水稻一生中氮、磷、钾元素积累的高峰期, 该阶段的养分积累与群体叶面积发展、颖花分化及最终产量密切相关[ 13]。L2和L3条件下, 随着氮肥水平增加, 拔节至抽穗阶段、抽穗期及抽穗至成熟阶段、成熟期的氮、磷、钾元素积累量均显著增加, 最终产量及氮肥利用率显著提高, 这说明氮肥施用能部分弥补因弱光逆境对超级粳稻氮、磷、钾元素吸收特性及产量的影响。同时, 不同光、氮条件下的氮、磷、钾养分吸收还具有协同性。
3.2 光、氮及其互作对超级粳稻根系形态生理及氮、磷、钾养分吸收特性的影响根系不仅是水稻的支持器官, 水分、养分的吸收器官, 同时也是植株地下部与地上部物质交换和代谢的重要器官。水稻根系与植株氮[ 14, 15, 16]、磷[ 17, 18]、钾[ 19, 20]元素的吸收效率有密切的关系。本研究表明, L2显著降低了植株抽穗前期的根系活力及根干重, 导致抽穗前期的氮、磷、钾元素积累量显著下降, 最终氮肥利用率及氮、磷、钾元素籽粒生产效率显著下降。L3显著降低了植株抽穗后期的根系活力及根干重, 导致抽穗后期的氮、磷、钾元素积累量显著下降, 最终氮肥利用率及氮、磷、钾元素籽粒生产效率显著下降, 但下降幅度均低于L2, 主要由于抽穗后植株根系逐渐衰老及机能下降[ 21]。此外, 弱光逆境解除后, 水稻根系活力得以适当恢复, 表现为抽穗期及成熟期根系α-NA氧化量高于不遮光处理。L2和L3条件下, 通过增施氮肥可促进根系生长, 提高根系活力, 延缓后期根系衰老, 进而促进生育中后期水稻根系对氮、磷、钾养分的吸收以提高最终产量。这说明氮肥施用能部分弥补因弱光逆境对超级粳稻根系形态生理及氮、磷、钾养分吸收特性的影响。

4 结论光、氮及其互作对超级粳稻产量及氮、磷、钾养分吸收特性有显著的影响。L2显著降低了植株抽穗前期的根干重及根系活力, 导致该阶段的氮、磷、钾元素积累量显著下降, 最终产量显著低于L1。L3显著降低了植株抽穗后期的根干重及根系活力, 导致该阶段的氮、磷、钾元素积累量显著下降, 尽管抽穗后植株根系逐渐衰老及机能下降, L3对根系、养分吸收及最终产量的影响小于L2, 但最终产量依然显著低于L1。L2和L3条件下, 随着氮肥水平增加, 植株根干重及根系活力显著增加, 导致植株生育中后期的养分吸收能力提高, 最终产量及氮肥利用率显著提高。由此可见氮肥施用能部分弥补弱光逆境下超级粳稻对氮、磷、钾养分吸收能力, 使产量有所提高。
The authors have declared that no competing interests exist.
作者已声明无竞争性利益关系。

参考文献View Option
原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

[1]池再香, 龙先菊, 杨桂兰, 史勋凤. 黔东南州生态气候条件对准两优527超级稻产量的影响. 中国农业气象, 2009, 30: 219-222
Chi Z X, Long X J, Yang G L, Shi X F. Effects of ecological and climatic conditions on super rice yields of Zhunliangyou 527 in Southeast Guizhou. Chin J Agrometeorol, 2009, 30: 219-222 (in Chinese with English abstract)[本文引用:1][CJCR: 1.474]
[2]朱萍, 杨世民, 马均, 李树杏, 陈宇. 遮光对杂交水稻组合生育后期光合特性和产量的影响. 作物学报, 2008, 34: 2003-2009
Zhu P, Yang S M, Ma J, Li S X, Chen Y. Effect of shading on the photosynthetic characteristics and yield at later growth stage of hybrid rice combination. Acta Agron Sin, 2008, 34: 2003-2009 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[3]张洪程, 王秀芹, 戴其根, 霍中洋, 许轲. 施氮量对杂交稻两优培九产量、品质及吸氮特性的影响. 中国农业科学, 2003, 36: 800-806
Zhang H C, Wang X Q, Dai Q G, Huo Z Y, Xu K. Effects of N-application rate on yield, quality and characters of nitrogen uptake of hybrid rice variety Liangyoupeijiu. Sci Agric Sin, 2003, 36: 800-806 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
[4]李世峰, 刘蓉蓉, 朱从海, 吴九林, 陈慧. 氮肥运筹对超级稻生长和产量的影响. 安徽农业科学, 2009, 37(2): 705-707
Li S F, Liu R R, Zhu C H, Wu J L, Chen H. Effects of nitrogen application on growth and yield of super rice. J Anhui Agric Sci, 2009, 37(2): 705-707 (in Chinese with English abstract)[本文引用:1][CJCR: 0.687]
[5]罗连光, 田昌, 颜应成, 刘朝晖. 无机肥配施生物有机肥对超级稻Y两优1号产量及碳氮代谢的影响. 杂交水稻, 2011, 26(1): 61-64
Luo L G, Tian C, Yan Y C, Liu C H. Effects of combined application of inorganic fertilizers with bio-organic fertilizers on grain yield and carbon and nitrogen metabolism of super hybrid rice Y Liangyou 1. Hybrid Rice, 2011, 26(1): 61-64 (in Chinese with English abstract)[本文引用:1][CJCR: 0.605]
[6]王亚江, 葛梦婕, 颜希亭, 魏海燕, 张洪程, 戴其根, 霍中洋, 许轲. 光、氮及其互作对超级粳稻产量和物质生产特征的影响. 作物学报, 2014, 40: 154-165
Wang Y J, Ge M J, Yan X T, Wei H Y, Zhang H C, Dai Q G, Huo Z Y, Xu K. Effects of light, nitrogen and their interaction on grain yield and matter production characteristics of japonica super rice. Acta Agron Sin, 2014, 40: 154-165 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[7]王忠. 植物生理学. 北京: 中国农业出版社, 2000. pp84-86
Wang Z. Plant Physiology. Beijing: China Agriculture Press, 2000. pp84-86(in Chinese)[本文引用:1][CJCR: 0.849]
[8]敖和军, 王淑红, 邹应斌, 彭少兵, 程兆伟, 刘武, 唐启源. 不同施肥水平下超级杂交稻对氮、磷、钾的吸收累积. 中国农业科学, 2008, 41: 3123-3132
Ao H J, Wang S H, Zou Y B, Peng S B, Cheng Z W, Liu W, Tang Q Y. Characteristics of nutrient uptake and utilization of super hybrid rice under different fertilizer application rates. Sci Agric Sin, 2008, 41: 3123-3132 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
[9]周江明, 余华波, 周海鹏, 俞乒乒, 王晓东, 章秀福. 不同地力条件下不同养分水平对超级稻产量及养分利用率的影响. 华北农学报, 2008, 23: 267-273
Zhou J M, Yu H B, Zhou H P, Yu P P, Wang X D, Zhang X F. Effects of different nutrient levels in different fertility soils on super rice yields and nutrient use efficiency. Acta Agric Boreali-Sin, 2008, 23: 267-273 (in Chinese with English abstract)[本文引用:3][CJCR: 0.951]
[10]邹长明, 秦道珠, 徐明岗, 申华平, 王伯仁. 水稻的氮磷钾养分吸收特性及其与产量的关系. 南京农业大学学报, 2002, 25(4): 6-10
Zou C M, Qin D Z, Xu M G, Shen H P, Wang B R. Nitrogen, phosphorous and potassium uptake characteristics of rice and its relationship with grain yield. J Nanjing Agric Univ, 2002, 25(4): 6-10 (in Chinese with English abstract)[本文引用:1][CJCR: 0.916]
[11]徐富贤, 熊洪, 张林, 郭晓艺, 朱永川, 周兴兵, 刘茂. 西南稻区不同地域和施氮水平对杂交中稻氮、磷、钾吸收累积的影响. 作物学报, 2011, 37: 882-894
Xu F X, Xiong H, Zhang L, Guo X Y, Zhu Y C, Zhou X B, Liu M. Characteristics of nutrient uptake and utilization of mid-season hybrid rice under different nitrogen application rates in different locations of Southwest China. Acta Agron Sin, 2011, 37: 882-894 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[12]蔡昆争, 骆世明. 不同生育期遮光对水稻生长发育和产量形成的影响. 应用生态学报, 1999, 10: 193-196
Cai K Z, Luo S M. Effect of shading on growth, development and yield formation of rice. Chin J Appl Ecol, 1999, 10: 193-196 (in Chinese with English abstract)[本文引用:1][CJCR: 1.742]
[13]凌启鸿, 张洪程, 苏祖芳, 郭文善, 陈德华, 陆卫平, 冷锁虎, 凌励, 杨建昌, 丁艳锋, 吴云康, 曹显祖, 朱庆森, 朱耕如. 作物群体质量. 上海科学技术出版社, 2000. pp154-196
Ling Q H, Zhang H C, Su Z F, Guo W S, Chen D H, Lu W P, Leng S H, Ling L, Yang J C, Ding Y F, Wu Y K, Cao X Z, Zhu Q S, Zhu G R. Quality of Crop Population. Shanghai: Shanghai Scientific and Technical Publisher, 2000. pp154-196(in Chinese)[本文引用:1]
[14]李敏, 张洪程, 杨雄, 葛梦婕, 马群, 魏海燕, 戴其根, 霍中洋, 许轲, 曹利强, 吴浩. 水稻高产氮高效型品种的根系形态生理特征. 作物学报, 2012, 38: 648-656
Li M, Zhang H C, Yang X, Ge M J, Ma Q, Wei H Y, Dai Q G, Huo Z Y, Xu K, Cao L Q, Wu H. Root morphological and physiological characteristics of rice cultivars with high yield and high nitrogen use efficiency. Acta Agron Sin, 2012, 38: 648-656 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[15]魏海燕, 张洪程, 张胜飞, 杭杰, 戴其根, 霍中洋, 许轲, 马群, 张庆, 刘艳阳. 不同氮利用效率水稻基因型的根系形态与生理指标的研究. 作物学报, 2008, 34: 429-436
Wei H Y, Zhang H C, Zhang S F, Hang J, Dai Q G, Huo Z Y, Xu K, Ma Q, Zhang Q, Liu Y Y. Root morphological and physiological characteristics in rice genotypes with different N use efficiencies. Acta Agron Sin, 2008, 34: 429-436 (in Chinese with English abstract)[本文引用:2][CJCR: 1.667]
[16]戢林, 李廷轩, 张锡洲, 余海英. 氮高效利用基因型水稻根系形态和活力特征. 中国农业科学, 2012, 45: 4770-4781
Ji L, Li T X, Zhang X Z, Yu H Y. Root morphological and activity characteristics of rice genotype with high nitrogen utilization efficiency. Sci Agric Sin, 2012, 45: 4770-4781 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
[17]李锋, 曲雪艳, 潘晓华, 姚锋先, 杨福孙. 不同水稻品种对难溶性磷利用能力的初步研究. 植物营养与肥料学报, 2003, 9: 420-424
Li F, Qu X Y, Pan X H, Yao F X, Yang F S. Preliminary study on the utilization ability of insoluble phosphate in various rice cultivars. Plant Nutr Fert Sci, 2003, 9: 420-424 (in Chinese with English abstract)[本文引用:1][CJCR: 1.883]
[18]郭玉春, 林文雄, 石秋梅, 梁义元, 何华勤, 陈芳育. 低磷胁迫下不同磷效率水稻苗期根系的生理适应性研究. 应用生态学报, 2003, 14: 61-65
Guo Y C, Lin W X, Shi Q M, Liang Y Y, He H Q, Chen F Y. Physiological adaptability of seeding rice genotypes with different P uptake effciency under low P-deficient stress. Chin J Appl Ecol, 2003, 14: 61-65 (in Chinese with English abstract)[本文引用:1][CJCR: 1.742]
[19]刘建祥, 杨肖娥, 杨玉爱, 吴良欢. 低钾胁迫下水稻钾高效基因型若干生长特性和营养特性的研究. 植物营养与肥料学报, 2003, 9: 190-195
Liu J X, Yang X E, Yang Y A, Wu L H. Some agronomic and nutritional characteristics for potassium efficient rice genotypes under low potassium stress. Plant Nutr Fert Sci, 2003, 9: 190-195 (in Chinese with English abstract)[本文引用:1][CJCR: 1.883]
[20]台德卫, 张效忠, 苏泽胜, 王元垒, 罗彦长, 夏家发. 全球水稻分子育种核心种质资源耐低钾品种的苗期筛选. 植物遗传资源学报, 2004, 5: 356-359
Tai D W, Zhang X Z, Su Z S, Wang Y L, Luo Y C, Xia J F. Screening for low-kalium tolerance varieties at seedling stage from the core germplasm of integrated international rice. J Plant Genet Resour, 2004, 5: 356-359 (in Chinese with English abstract)[本文引用:1][CJCR: 1.1628]
[21]褚光, 杨凯鹏, 王静超, 张耗. 水稻根系形态与生理研究进展. 安徽农业科学, 2012, 40: 5097-5101
Zhu G, Yang K P, Wang J C, Zhang H. Research progress on root morphology and physiology of rice. J Anhui Agric Sci, 2012, 40: 5097-5101 (in Chinese with English abstract)[本文引用:1][CJCR: 0.687]
相关话题/比例 生育 生理 营养 数据