关键词:陕西省; 玉米品种; 籽粒产量; 农艺性状; 氮效率性状 Changes of Grain Yield and Nitrogen Use Efficiency of Maize Hybrids Released in Different Eras in Shaanxi Province ZHANG Ren-He1, DU Wei-Li1, GUO Dong-Wei1, ZHANG Ai-Ying2, HU Fu-Liang1, LI Feng-Yan1,*, XUE Ji-Quan1,* 1College of Agronomy, Northwest A&F University, Yangling 712100, China
2Weinan Seed Station, Weinan 714000, China
Fund: AbstractIdentifying the changes of grain yield and nitrogen use traits will facilitate the development of new maize hybrids with high yield and nitrogen use efficiency. In this study, 12 typical maize hybrids released from 1981 to 2010 in Shaanxi Province were grown in the field under three N rates (0, 120, and 240 kg ha-1) from 2011 to 2012 in Shaanxi, Northwest China. Nitrogen use efficiency and agronomic traits of maize were investigated. The result indicates that grain yield of maize hybrids increased with the increase of nitrogen rates, and the modern maize hybrids (2000s) showed better grain yield than the old ones (1980s) at three nitrogen levels. The yield genetic gains were 46, 65, and 83 kg ha-1 per year at N0, N120, and N240 levels repeat. The modern hybrids showed better biomass and grain yield than the old ones, but there was no clear changing trend in stover yield between hybrids of different ears. Increments of grain yield were achieved mainly through increasing the kernel number per ear, 1000-kernel weight and biomass, and the coefficient of light extinction decreased with the time process of cultivar development from 1981 to 2010. Changes of plant structure would allow the modern maize hybrids to improve light capture resulting in better grain yield than those of the old ones. For nitrogen use point of view, irrespective of nitrogen treatments, nitrogen use efficiency (NUE) of hybrids released increased in responses of time. But nitrogen use efficiency decreased with increasing nitrogen application rates, and nitrogen use efficiency (NUE) was highly correlated with N uptake efficiency (NUpE,r = 0.75), and not with N physiological efficiency (NUtE,r = 0.42). Increased NUE positively correlated with improved N uptake efficiency (NUpE), due to the greater post-anthesis N accumulation. The results indicated that improvements of 1000-kernel weight, kernel number per ear and nitrogen uptake efficiency (NUpE) should be considered during breeding for high yield and high nitrogen use efficiency of maize under low nitrogen and water limited conditions.
Keyword:Shaanxi Province; Maize hybrids released; Grain yield; Agronomic traits; Nitrogen use efficiency traits Show Figures Show Figures
图1 2011-2012年陕西省长武县旱地春玉米生长季节降雨量、温度和日辐射量的变化Fig. 1 Changes of precipitation, temperature and solar radiation of dryland spring maize at Changwu of Shaanxi Province in 2011 and 2012
1.2 试验设计选用1980—2010年以来各个年代陕西省大面积推广应用的12个代表性玉米品种可以反映陕西玉米主要推广区品种的演变概况(表1)。玉米品种由西北农林科技大学农学院提供。试验采取裂区设计, 3次重复。总施氮量设置3个处理为0、120和240 kg hm-2, 分别用N0、N120、N240表示。试验以品种为主区, 氮肥处理为裂区。每个小区5行, 行长7 m, 行距 0.60 m。2011年和2012年分别于4月22日和4月24日人工播种, 每穴播3粒, 于三叶期按设计密度定苗。播种时施入33.3%氮肥, 六叶期追施余下66.7%氮肥。其他管理措施与当地大田高产栽培技术措施一致。 表1 Table 1 表1(Table 1)
表1 试验玉米杂交种推广年代和选育单位 Table 1 Details of the maize hybrids used
品种 Variety
推广年代 Year used in production
杂交组合 Parental combination
选育单位 Breeding institution
陕单9号 Shaandan 9
1981
Mo17×武109 Mo17×Wu 109
陕西省农业科学院 Shaanxi Academy of Agricultural Sciences
户单1号Hudan 4
1982
Mo17×黄早四 Mo17×Huangzaosi
陕西秦龙玉米研究所 Maize Institute of Shaanxi Qinlong
中单2号 Zhongdan 2
1984
Mo17×自330 Mo17×Zi 330
中国农业科学院 Chinese Academy of Agricultural Sciences
丹玉13 Danyu 13
1987
掖478×E28 Ye 478×E28
丹东农业科学院 Dandong Academy of Agricultural Sciences
户单4号 Hudan 4
1991
掖478×天4号 Ye 478×Tian 4
陕西秦龙玉米研究所 Maize Institute of Shaanxi Qinlong
陕单902 Shaandan 902
1994
K12×K22
陕西省农业科学院 Shaanxi Academy of Agricultural Sciences
陕单911 Shaandan 911
1997
K12×K14
陕西省农业科学院 Shaanxi Academy of Agricultural Sciences
豫玉22 Yuyu 22
1999
87-3×综3号 87-3×Zong 3
河南农业大学 Henan Agricultural University
沈单16 Shendan 16
2001
K12×沈137 K12×Shen 137
沈阳市农业科学院 Shenyang Academy of Agricultural Sciences
郑单958 Zhengdan 958
2003
郑58×昌7-2 Zheng 58×Chang 7-2
河南省农业科学院 Henan Academy of Agricultural Sciences
浚单20 Xundan 20
2005
9058×浚92-8 9058×Xun 92-8
河南省浚县农科所 Henan Xunxian Institute of Agricultural Sciences
先玉335 Xianyu 335
2006
PH6WC×PH4CV
登海先锋种业有限公司 Denghai Seed-Pioneer Co., Ltd.
表1 试验玉米杂交种推广年代和选育单位 Table 1 Details of the maize hybrids used
2 结果与分析2.1 不同年代玉米品种产量增益对氮肥的响应表2显示, 3个氮水平下2011年和2012年平均产量分别为7.58 t hm-2和7.88 t hm-2; 所有氮水平下产量平均值在N0水平下, 2011年比2012年高出0.4 t hm-2, N240水平下2011和2012年为9.74 t hm-2和9.90 t hm-2, 可能是2012年开花后期降雨量偏少和高温降低了产量(图1)。统计分析结果显示(表3), 产量在年代、品种和氮肥间差异均显著或极显著, 而年代×品种、年代×氮肥和年代×品种×氮肥间的互作未达到了显著水平, 说明产量及相关性状可以利用2年平均值分析。 表2 Table 2 表2(Table 2)
表2 不同年代玉米品种3个氮肥水平下2011-2012年籽粒产量 Table 2 Grain yield and analysis of variance of maize hybrids released at three different nitrogen levels in 2011 and 2012
品种 Variety
推广年代 Year used in production
2011年产量 Grain yield (t hm-2)
2012年产量 Grain yield (t hm-2)
N0
N120
N240
N0
N120
N240
陕单9号 Shaandan 9
1981
4.50
6.84
8.02
4.24
5.70
7.12
户单1号Hudan 4
1982
4.98
8.24
8.29
4.86
7.12
8.64
中单2号 Zhongdan 2
1984
4.78
7.62
8.58
5.22
6.72
7.89
丹玉13 Danyu 13
1987
4.71
7.81
8.62
4.00
7.65
8.32
户单4号 Hudan 4
1991
5.58
7.58
9.89
4.84
8.12
8.58
陕单902 Shaandan 902
1994
5.42
8.20
10.38
5.40
7.10
9.36
陕单911 Shaandan 911
1997
5.62
8.89
10.52
4.93
8.38
9.98
豫玉22 Yuyu 22
1999
5.44
8.48
9.88
4.18
7.03
9.26
沈单16 Shendan 16
2001
5.97
8.82
11.18
5.32
8.50
9.61
郑单958 Zhengdan 958
2003
5.99
9.04
10.98
5.63
8.04
10.74
浚单20 Xundan 20
2005
6.88
9.98
11.48
6.24
9.91
10.26
先玉335 Xianyu 335
2006
5.93
9.85
10.84
6.35
8.64
10.48
表2 不同年代玉米品种3个氮肥水平下2011-2012年籽粒产量 Table 2 Grain yield and analysis of variance of maize hybrids released at three different nitrogen levels in 2011 and 2012
表3 Table 3 表3(Table 3)
表3 不同年代玉米品种3个氮肥水平下2011-2012年籽粒产量变异分析 Table 3 Analysis of yield variance of maize hybrids at three different nitrogen levels in 2011 and 2012
变异来源 Source of variation
自由度 df
均方 Mean of square
F值 F-value
年份 Year
1
735.7
32.84*
氮肥 Nitrogen
2
5592.7
37.77**
品种 Cultivar
11
1764.1
359.59**
年份×氮肥Year×nitrogen
2
43.7
27.75
年份×品种Year×cultivar
11
37.4
1.53
氮肥×品种Nitrogen×cultivar
22
480.9
60.47*
年份×氮肥×品种Year×nitrogen×cultivar
22
72.2
3.32
*和**分别表示在 P < 0.05 和 P < 0.01水平达到显著。* and** mean significance at P < 0.05 and P < 0.01, respectively.
表3 不同年代玉米品种3个氮肥水平下2011-2012年籽粒产量变异分析 Table 3 Analysis of yield variance of maize hybrids at three different nitrogen levels in 2011 and 2012
不同年代(1981—2010年)玉米产量呈显著递增趋势, 随着氮水平的增加而增加。与N0水平相比, 2000—2010年间的品种在高氮N240和低氮N120较1980—1989年间的品种产量分别提高11.6%和24.0%, 2000—2010年间的现代品种较1980—1989年间的老品种产量对氮肥反应强。依据Duvick[ 4]的方法分析可知, 在低氮N120和高氮N240水平下, 陕西玉米品种产量增益每年为65 kg hm-2和83 kg hm-2, 尽管在不施氮下籽粒产量增加幅度较小, 产量增益仍为每年46 kg hm-2。说明陕西省不同年代玉米品种演替过程中, 不同氮肥下植株生产力都得到了明显的提高。 2.2 不同年代玉米品种生物量与收获指数对氮肥的响应随着年代的递进, 玉米品种生物量和收获指数呈递增的趋势, 2000—2010年间的现代品种生物量和收获指数均显著高于1980—1989年间的老品种(图2)。各年代玉米品种的生物量和收获指数随着施氮水平的增加呈递增趋势。在不同氮水平下, 2000—2010年间的品种的生物量和收获指数显著高于1980—1989年间的品种, 在低氮N120和高氮N240水平下, 平均生物量分别增加14.1%和16.0% (图2-C)。收获指数增幅不变, 较对照分别平均增加11.5%和11.9% (图2-D)。而玉米秸秆产量随着年代的递进变化不明显, 且在不同氮肥水平下差异不显著(图2-B)。说明陕西省现代玉米品种增产主要是具有较高的光合产物(较高的生物量)。 图2 Fig. 2
图2 不同年代玉米品种3个氮肥水平下2011-2012年籽粒产量、秸秆产量、生物量和收获指数(HI)的变化Fig. 2 Changes of grain yield, stalk yield, biomass, and harvest index (HI) for maize hybrids at three nitrogen levels in 2011 and 2012
图3 不同年代玉米品种3个氮肥水平下2011-2012年穗粒数、千粒重、叶面积指数(LAI)和消光系数( k)的变化Fig. 3 Changes of kernel number per ear, 1000-grain weight, leaf area index (LAI), and coefficient of light extinction ( k) for maize hybrids at three nitrogen levels in 2011 and 2012
图4 不同年代玉米品种3个氮肥水平下2011-2012年氮肥农学利用率(NUE)和氮收获指数(NHI)的变化Fig. 4 Changes of nitrogen use efficiency (NUE) and nitrogen harvest index (NHI) for maize hybrids released at three nitrogen levels in 2011 and 2012
玉米品种氮肥农学利用率(NUE)是吸收效率(NUpE)和生理利用效率(NUtE)二者的乘积。相关分析显示(图5), 在低氮N120和高氮N240水平下NUE与NUpE显著相关( r = 0.77; r = 0.74), 与NUtE相关性不显著( r = 0.46, 0.38)。因而玉米氮肥农学利用率增加归因于氮肥吸收效率的改善。在低氮N120和高氮N240水平下花后氮素积累量与NUE显著相关( r = 0.73; r = 0.71), 花后氮素积累量与NUE相关性不显著( r = 0.48; r = 0.31)说明氮吸收效率(NUpE)的改善是玉米花后氮素积累量增加的结果。 图5 Fig. 5
图5 不同年代玉米品种2个氮肥水平下2011-2012年氮吸收效率(NUpE)、氮生理效率(NUtE)、花前氮积累量和花后氮积累量与氮肥农学利用率(NUE)间的相关性Fig. 5 Relationship between nitrogen uptake efficient (NUpE), nitrogen physiological efficiency (NUtE), pre-anthesis nitrogen accumulation, post-anthesis nitrogen accumulation, and nitrogen use efficiency (NUE) for maize hybrids at two nitrogen levels in 2011 and 2012
3 讨论对玉米产量的遗传增益分析, 有利于了解产量潜力以及进一步实现产量改良[ 2, 3]。慈晓科等[ 26]采用Duvick的直接种植法评估我国(1970—2000年)玉米产量, 每年增益为94.7 kg hm-2。本研究采用同样的方法, 表明在1981—2010年, 随着年代的推进和中国陕西玉米高产品种的推广, 籽粒产量逐年增加, 其中施氮240 kg hm-2水平下玉米产量增益每年83 kg hm-2, 低于阿根廷(1979—1998年)的107 kg hm-2和巴西(1963—1993年)玉米的123 kg hm-2 [ 22, 23], 但与加拿大82 kg hm-2 [ 2]和美国57~89 kg hm-2 [ 13]相近。同时发现所有氮水平下现代玉米品种比老品种具明显的产量优势。说明低氮下选育出的玉米高产品种同样在高氮下具有较高的产量, 但其间生理机制仍不清楚[ 25], 可能氮肥差异的多地点、多环境测试体系能够筛选出2种氮肥水平下的高产品种[ 18]。 分析产量改良的相关性状是理解玉米育种过程中选育效率的最佳方法[ 28]。从产量构成性状看, 穗粒数和粒重是影响产量重要因素[ 9, 29]。不同****持有不同的研究观点, Tollernaar等[ 15]研究玉米产量改良中, 籽粒产量与穗粒数显著正相关, 而粒重相关不显著。Eyherabide等[ 23]研究阿根廷1965—1993年间玉米产量增益也显示了一致的结果。Duvick[ 4]指出增加玉米产量贡献来源于增加粒重比增加穗粒数多; 而董树亭[ 28]报道玉米产量增加是粒重和穗粒数增加的结果。本研究中不同年代品种随着产量水平的提高穗粒数和千粒重均显著增加, 与N0相比, 高氮N240 kg hm-2水平下平均穗粒数每10年增加(6.5%)幅度比千粒重增加(3.2%)大, 说明穗粒数和粒重都贡献于产量的增加。从同化物分配性状看, 玉米籽粒产量由生物学量和收获指数决定[ 7, 16]。玉米产量增加中生物量和收获指数的相对重要性也存在分歧[ 6, 14, 28]。本研究中, 随着玉米品种演进中3个氮肥水平下, 每10年平均生物量增加0.8 t hm-2, 收获指数每10年增加2%。而秸秆产量没有明显的变化(图3)。说明陕西省现代玉米品种具有较高的光合产物向籽粒转运, 导致粒数和粒重增加。因此, 改善源( LAI和 k)、库(粒数和粒重)性状是陕西旱区玉米高产高效育种的重要目标。 从氮肥利用性状看, 氮肥农学利用率是单位面积氮素供应量(土壤和施氮)生产籽粒的量, 由土壤中获取氮肥的能力(氮肥吸收效率)和植物氮转运到籽粒的效率(氮肥生理效率)两部分组成[ 26]。提高氮肥农学利用率直接或间接影响玉米产量[ 11]。而氮肥农学利用率及其组分存在较大的遗传变异[ 18, 21]。在大麦上的研究指出, 是氮肥农学利用率而不是氮肥生理效率显著与氮肥吸收效率相关[ 20]。本研究表明, 陕西省玉米品种演替过程中(1981—2010年), 玉米籽粒产量提高的同时, 氮肥农学利用率得到了显著提高, 且在N120和N240 kg hm-2水平下2000—2010年间的品种氮肥利用效率比1980—1989品种分别高出20.5%和35.8%。同时, 发现玉米氮肥农学利用率与氮肥吸收效率(NUpE)显著相关( r = 0.75), 而与氮肥生理效率(NUtE)相关性不显著( r = 0.39)。而玉米花后氮素积累量与氮肥农学利用率显著相关(图5)。说明氮吸收效率(NUpE)的改善是玉米花后氮素积累量增加的结果。而如何在花后氮素积累量基础上优化氮素的再运转, 利用新育种技术协同提高氮肥生理效率(NUtE)和氮肥吸收效率(NUpE), 改善陕西旱区玉米氮肥农学利用率, 仍需要进一步深入研究。 4 结论1981—2010年, 陕西省玉米品种籽粒产量和氮肥农学利用率均明显提高, 玉米籽粒产量改良主要得益于穗粒数、千粒重和生物量显著增加。玉米氮肥农学利用率增加归因于氮肥吸收效率和花后氮素积累量的改善。因此, 陕西玉米育种应注重穗粒数、千粒重、氮吸收效率性状和株型结构改良, 低氮环境压力选择将有助于旱区玉米高产氮高效新品种培育。 The authors have declared that no competing interests exist. 作者已声明无竞争性利益关系。The authors have declared that no competing interests exist.
TollenaarM, LeeE A. Dissection of physiplogical processes underlying grain yield in maize by examining genetic improvement and heterosis. , 2006, 51: 399-408[本文引用:3][JCR: 0.368]
[3]
WangT Y, MaX L, YuL, BaiD P, LiuC, LiuZ Z, TanX J, ShiY S, SongY C, MarioC, DavidB, HansB, ElizabethJ, KevinW, StephenS. Changes in yield and yield components of single-cross maize hybrids released in China between 1964 and 2001. , 2011, 51: 512-525[本文引用:2][JCR: 1.513]
[4]
DuvickD N. Genetic progress in yield of United States maize (Zea mays L. ). , 2005, 50: 193-202[本文引用:3][JCR: 0.368]
[5]
谢振江, 李明顺, 徐家舜, 张世煌. 遗传改良对中国华北不同年代玉米单交种产量的贡献. , 2009, 47: 781-789XieZ J, LiM S, XuJ S, ZhangS H. Contributions of genetic improvement to yields of maize hybrids during different eras in North China. , 2009, 47: 781-789 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
[6]
QiaoC G, WangY J, GuoH A, ChenXJ, LiuJ Y, LiS Q. A review of advances in maize production in Jilin province during 1974-1993. , 1996, 47: 65-75[本文引用:2][JCR: 2.474]
[7]
LuqueS F, CiriloA G, OteguiM E. Genetic gains in grain yield and related physiological attributes in Argentine maize hybrids. , 2006, 95: 383-397[本文引用:2][JCR: 2.474]
[8]
DuvickD N. Genteic rates of gain in hybrid maize yields during the past 40 years. , 1977, 22: 187-196[本文引用:1][JCR: 0.368]
[9]
CiX K, LiM S, XuJ S, LuZ Y, BaiP F, RuG L, LiangX L, ZhangD G, LiX H, BaiL, XieC X, HaoZ F, ZhangS H, DongS T. Trends of grain yield and plant traits in Chinese maize cultivars from the 1950s to the 2000-2010. , 2011, 185: 395-406[本文引用:2][JCR: 1.643]
[10]
DingL, WangK J, JiangG M, LiuM Z, NiuS L, GaoL M. Post-anthesis changes in photosynthetic traits of maize hybrids released in different years. , 2005, 93: 108-115[本文引用:1][JCR: 2.474]
[11]
张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风. 中国主要禾谷类作物氮肥利用效率及改进途径. , 2008, 6: 915-924ZhangF S, WangJ Q, ZhangW F, CuiZ L, MaW Q, ChenX P, JiangR F. Nutrient use efficiencies of major ceral crops in China and measures for improvement. , 2008, 6: 915-924 (in Chinese with English abstract)[本文引用:2][CJCR: 1.979]
[12]
Cunha Fernand esJ S, FranzonJ F. Thirty years of genetic progress in maize (Zea mays L. ) in a tropical environment. , 1997, 42: 21-27[本文引用:1][JCR: 0.368]
[13]
DuvickD N, CassmanK G. Post-green revolution trends in yield potential of temperate maize in the North-central United States. , 1999, 39: 1622-1630[本文引用:2][JCR: 1.513]
[14]
CarloneM R, RussellW A. Response to plant densities and nitrogen levels for four maize cultivars from different eras of breeding. , 1987, 3: 465-470[本文引用:2][JCR: 1.513]
[15]
TollenaarM. Genetic improvement in grain yield of commercial maize hybrids grown in Ontario from 1959 to 1988. , 1989, 29: 1365-1371[本文引用:2][JCR: 1.513]
[16]
EcharteL, RotnsteinS, TollenaarM. Response of leaf photosythesis and dry matter accumulation to nitrogen supply in old and a new maize hybrids. , 2008, 48: 656-665[本文引用:2][JCR: 1.513]
[17]
CastleberryR M, CrumC W, KrullC F. Genetic yield improvement of US maize cultivars under varying fertility and climatic environments. , 1984, 24: 33-36[本文引用:1][JCR: 1.513]
[18]
MaB L, DwyerL M, GregorichE G. Soil nitrogen amendment effects on nitrogen uptake and grain yield of maize. , 1999, 91: 650-656[本文引用:3][JCR: 1.518]
[19]
FreiO M. Changes in yield physiology of corn as a result of breeding in northern Europe. , 2000, 45: 173-183[本文引用:1][JCR: 0.368]
[20]
BinghamI J, KarleyA J, WhiteP J, ThomasW T B, RusellJ R. Analysis of improvements in nitrogen use efficiency associated with 75 years of spring barley breeding. , 2012, 42: 49-58[本文引用:2][JCR: 2.8]
[21]
WorkuM, BanzigerM, ErleyG S A, FriesenD, DialloA O, HorstW J. Nitrogen uptake and utilization in contrasting nitrogen efficiency tropical maize hybrids. , 2007, 47: 519-528[本文引用:2][JCR: 1.513]
[22]
SangoiL, GraciettiM A, RampazzoC, BianchettiP. Response of Brazilian maize hybrids from different eras to changes in plant density. , 2002, 79: 39-51[本文引用:2][JCR: 2.474]
[23]
EyherabideG H, DamilanoA L. Comparison of genetic gain for grain yield of maize between the 1980—1989 and 1990s in Argentina. , 2001, 46: 277-281[本文引用:3][JCR: 0.368]
[24]
钱春荣, 于洋, 宫秀杰, 姜宇博, 赵杨, 郝玉波, 李梁, 张卫建. 黑龙江省不同年代玉米杂交种氮肥利用效率对种植密度和施氮水平的响应. , 2012, 38: 2069-2077QianC R, YuY, GongX J, JiangY B, ZhaoY, HaoY B, LiL, ZhangW J. Response of nitrogen use efficiency to plant density and nitrogen application rate for maize hybrids from different eras in Heilongjiang Province. , 2012, 38: 2069-2077 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[25]
MaddonniG A, OteguiM E, CiriloA G. Plant population density, row spacing and hybrid effects on maize canopy architecture and light attenuation. , 2001, 71: 183-193[本文引用:2][JCR: 2.474]
[26]
慈晓科, 张世煌, 谢振江, 徐家舜, 卢振宇, 茹高林, 张德贵, 李新海, 谢传晓, 白丽, 李明顺, 董树亭. 1970-2000年代玉米单交种的遗传产量增益分析方法的比较. , 2010, 36: 2185-2190CiX K, ZhangS H, XieZ J, XuJ S, LuZ Y, RuG L, ZhangD G, LiX H, XieC X, BaiL, LiM S, DongS T. Comparison of analysis method of genetic yield gain for the single-cross hybrids released during 1970s-2000s. , 2010, 36: 2185-2190 (in Chinese with English abstract)[本文引用:3][CJCR: 1.667]
[27]
MollR H, KamprathE J, JacksonW A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. , 1982, 74: 562-564[本文引用:1][JCR: 1.518]
李从峰, 赵明, 刘鹏, 张吉旺, 杨今胜, 刘京国, 王空军, 董树亭. 中国不同年代玉米单交种及其亲本主要性状演变对密度的响应玉米. , 2013, 46: 2421-2429LiC F, ZhaoM, LiuP, ZhangJ W, YangJ S, LiuJ G, WangK J, DongS T. Responses of main traits of maize hybrids and their parents to density in different eras of China. , 2013, 46: 2421-2429 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]