关键词:水稻; 穗部性状; QTL定位 Dissection of QTLs for Panicle Traits in Rice (Oryza sativa) WU Ya-Hui, TAO Xing-Xing, XIAO Wu-Ming*, GUO Tao, LIU Yong-Zhu, WANG Hui, CHEN Zhi-Qiang* National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
AbstractRice yield potential is closely related to panicle traits. QTLs for five panicle traits including panicle length, number of primary branches, number of secondary branches, spikelets per panicle and seed setting density were identified by using 172 plants and 138 plants from a F2 population derived from a cross between Nipponbare and H71D in 2011 and 2012 respectively. A total of 38 QTLs were detected in the two trials, including 21 QTLs in 2011 and 17 QTLs in 2012, of them four QTLs (only 10.5%) were repeatedly detected in both years. Some QTLs controlling different traits shared the same maker interval on the chromosome with each other, which was consistent with their significant phenotypic correlations. QTLs with large effects are easily to be detected in kinds of populations and different environments. These QTLs provide useful information for meta-analysis and fine mapping, as well as MAS for high-yield rice breeding.
表1 亲本及F2代群体穗部性状的表现 Table 1 Phenotypic performance of panicle traits between parents and the F2 population from the cross of Nipponbare/H71D
性状 Trait
年份 Year
亲本 Parent
F2群体 F2 population
Nip
H71D
变异范围 Range
均值±标准差 Mean ± SD
峰值 Kurtosis
偏度 Skewness
穗长 Panicle length (cm)
2011
22.2±1.5
26.3±1.5*
19.7-34.1
26.5±2.6
-0.117
-0.032
2012
19.8±1.1
27.0±1.3**
17.7-33.1
24.7±2.8
-0.239
0.001
一次枝梗数 Number of primary branches
2011
8.8±1.2
15.6±1.6**
10.0-21.0
13.6±2.2
0.297
0.514
2012
7.6±1.1
17.4±3.1**
8.0-19.0
12.2±2.2
0.137
0.455
二次枝梗数 Number of secondary branches
2011
19.5±1.9
72.0±16.9**
15.0-93.0
52.8±14.2
0.038
0.234
2012
15.4±3.0
63.8±14.0**
10.0-75.0
37.4±14.4
-0.319
0.371
总粒数 Spikelets per panicle
2011
109.7±12.7
367.9±85.2**
37.0-459.0
187.0±107.8
-1.015
0.276
2012
107.0±16.6
368.0±73.5**
81.0-466.0
230.5±84.2
-0.381
0.542
穗着粒密度 Seed setting density (grain cm-1)
2011
5.0±0.5
13.9±2.8**
3.2-17.7
10.1±2.7
0.143
0.474
2012
5.5±0.6
13.7±3.0**
4.1-17.0
9.2±2.9
-0.521
0.486
*和**分别表示0.05和0.01的显著水平。*,** Significant at 0.05 and 0.01 probability levels, respectively.
表1 亲本及F2代群体穗部性状的表现 Table 1 Phenotypic performance of panicle traits between parents and the F2 population from the cross of Nipponbare/H71D
表2 Table 2 表2(Table 2)
表2 各性状间的相关性 Table 2 Correlation coefficient between observed traits in the F2 population
性状 Trait
穗长 Panicle length
一次枝梗数 Number of primary branches
二次枝梗数 Number of secondary branches
总粒数 Spikelets per panicle
穗着粒密度 Seed setting density
穗长Panicle length
0.200**
0.255**
0.070
-0.055
一次枝梗数Number of primary branches
0.598**
0.669**
0.056
0.566**
二次枝梗数Number of secondary branches
0.516**
0.702**
0.248**
0.831**
总粒数Spikelets per panicle
0.541**
0.742**
0.926**
0.306**
穗着粒密度Seed setting density
0.285**
0.643**
0.885**
0.956**
上三角和下三角中的数据分别表示2011年和2012年性状间的相关系数;*和**分别表示0.05和0.01的显著水平。 The data in the top right and the left lower triangles of the table were the correlation coefficients between the traits in 2011 and 2012, respectively;*,** Significant at 0.05 and 0.01 probability levels, respectively.
表2 各性状间的相关性 Table 2 Correlation coefficient between observed traits in the F2 population
表3 2年间5个穗部性状的QTL定位结果及遗传参数估算 Table 3 Identification of QTLs for five panicle traits in F2 population and their genetic parameters estimated in 2011 and 2012
性状 Trait
位点 QTL
染色体 Chr.
标记区间 Marker interval
LOD值 LOD score
加性效应 Additive effect
贡献率 PVE (%)
2011
2012
2011
2012
2011
2012
穗长 Panicle length
qPL-6-1
6
RM3628-RM412
3.23
-1.13
15.22
qPL-12-1
12
RM277-RM519
3.19
-0.52
15.85
qPL-12-2
12
RM519-RM270
3.04
-0.38
15.99
一枝次梗数 Number of primary branches
qPB-1-1
1
RM495-RM84
3.04
-0.70
7.17
qPB-3-1
3
RM16-RM6266
6.17
0.67
16.00
qPB-7-1
7
RM82-RM214
3.41
-0.39
12.53
qPB-8-1
8
RM152-RM310
6.30
-1.25
17.90
qPB-10-1
10
RM311-RM304
3.33
-0.74
8.44
qPB-10-2
10
RM147-RM228
4.96
0.15
19.67
二次枝梗数 Number of secondary branches
qSB-1-1a
1
RM495-RM84
5.05
3.06
-7.10
-6.29
15.92
10.09
qSB-1-2
1
RM84-RM490
3.84
-7.32
13.75
qSB-2-1
2
RM1358-RM29
5.42
-8.32
25.02
qSB-2-2
2
RM262-RM263
3.07
-7.28
11.55
qSB-6-1
6
RM584-RM276
3.06
-5.67
9.29
qSB-8-1
8
RM310-RM339
4.08
-8.07
13.86
qSB-10-1
10
RM304-RM147
3.92
-11.36
21.35
总粒数 Spikelets per panicle
qSPP-1-1
1
RM495-RM84
3.47
-34.97
13.10
qSPP-1-2
1
RM84-RM490
4.00
-38.27
15.12
qSPP-2-1
2
RM555-RM5345
3.26
-41.44
12.38
qSPP-2-2
2
RM262-RM263
3.37
-36.26
11.37
qSPP-6-1
6
RM584-RM276
3.25
-32.85
10.40
qSPP-8-1
8
RM152-RM310
3.07
-38.68
13.76
qSPP-10-1a
10
RM147-RM228
4.87
3.72
-33.33
-64.29
25.67
52.62
qSPP-11-1
11
RM167-RM202
3.20
-45.65
14.59
穗着粒密度 Seed setting density
qSD-1-1a
1
RM495-RM84
4.41
5.79
-1.15
-1.54
11.35
15.45
qSD-1-2
1
RM84-RM490
4.57
-1.60
17.36
qSD-1-3
1
RM23-RM24
4.23
-0.71
10.81
qSD-2-1
2
RM29-RM341
3.08
-1.39
10.57
qSD-2-2
2
RM475-RM262
3.43
-0.56
9.30
qSD-5-1
5
RM164-RM274
4.06
-1.41
13.20
qSD-7-1
7
RM10-RM505
3.25
0.68
11.90
qSD-7-2
7
RM505-RM234
5.99
1.44
15.20
qSD-8-1
8
RM152-RM310
4.36
-1.51
15.53
qSD-10-1a
10
RM147-RM228
6.94
3.19
-0.72
-2.06
24.58
45.33
PVE (%)为可解释的表型变异;a表示2011年和2012年都被检测到的QTL。 PVE (%): Phenotypic variation explained (%);a represents QTL detected in both 2011 and 2012.
表3 2年间5个穗部性状的QTL定位结果及遗传参数估算 Table 3 Identification of QTLs for five panicle traits in F2 population and their genetic parameters estimated in 2011 and 2012
图1 2年中检测到的穗部性状QTL在染色体上的位置*表示2年重复检测到的QTL。Fig. 1 Location of the QTLs for panicle traits detected in 2011 and 2012 in the genetic map* Indicates the QTL detected in two years.
靳德明, 王维金, 蓝盛银, 徐珍秀, 杨书化. 培矮64s/E32产量构成因素和穗部性状的杂种优势及相关分析. 华中农业大学学报, 2001, 20: 516-521JinD M, WangW J, LanS Y, XuZ X, YangS H. Heterosis and correlative analysis of yield components and panicle characters of Pei’ai 64s/E32. J Huazhong Agric Univ, 2001, 20: 516-521 (in Chinese with English abstract)[本文引用:1][CJCR: 0.849]
2
徐正进, 陈温福, 孙占惠, 张树林, 刘丽霞, 周淑清. 辽宁水稻籽粒在穗轴上分布特点及其与结实性的关系. 中国农业科学, 2004, 37: 963-967XuZ J, ChenW F, SunZ H, ZhangS L, LiuL X, ZhouS Q. Distribution of rice grain on panicle axis and its relationship with seed setting in Liaoning. Sci Agric Sin, 2004, 37: 963-967 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
3
董桂春, 居静, 于小风, 张燕, 赵江宁, 李进前, 田昊, 张彪, 王余龙. 不同穗重类型常规籼稻品种产量形成的差异研究. 扬州大学学报(农业与生命科学版), 2010, 31(1): 49-54DongG C, JuJ, YuX F, ZhangY, ZhaoJ N, LiJ Q, TianH, ZhangB, WangY S. Study of difference of yield formation in conventional Indica rice cultivars with different panicle weight. J Yangzhou Univ (Agric & Life Sci Edn), 2010, 31(1): 49-54 (in Chinese with English abstract)[本文引用:1]
4
郭龙彪, 罗利军, 邢永忠, 徐才国, 梅捍卫, 王一平, 钟代彬, 钱前, 应存山, 石春海. 水稻重要农艺性状的两年QTL剖析. 中国水稻科学, 2003, 17: 211-218GuoL B, LuoL J, XingY Z, MeiH W, WangY P, ZhongD B, QianQ, YingC S, ShiC H. Dissection of QTLs in two years for important agronomic traits in rice (Oryza sativa L. ). Chin J Rice Sci, 2003, 17: 211-218 (in Chinese with English abstract)[本文引用:2][CJCR: 1.494]
5
叶少平, 张启军, 李杰勤, 赵兵, 李平. 用(培矮64s/Nipponbare) F2群体对水稻产量构成性状的QTL定位分析. 作物学报, 2005, 31: 1620-1627YeS P, ZhangQ J, LiJ Q, ZhaoB, LiP. QTL mapping for yield component traits using (Pei’ai 64s/Nipponbare) F2 population. Acta Agron Sin, 2005, 31: 11-17 (in Chinese with English abstract)[本文引用:5][CJCR: 1.667]
6
程桂平, 冯九焕, 梁国华, 刘向东, 李金泉. 栽培稻与普通野生稻BC2F2群体产量相关性状的QTL分析. 中国水稻科学, 2006, 20: 553-556ChengG P, FengJ H, LiangG H, LiuX D, LiJ Q. Identification of QTLs for agronomic traits associated with yield in a BC2F2 population between Oryza sativa and Oryza rufipogon. Chin J Rice Sci, 2006, 20: 533-556 (in Chinese with English abstract)[本文引用:2][CJCR: 1.494]
7
申宗坦. 作物育种学实验. 北京: 中国农业出版社, 1995. pp102-107ShenZ T. Crop Breeding Experiment. Beijing: China Agriculture Press, 1995. pp102-107(in Chinese)[本文引用:1]
8
McCouchS R, ChoY G, YanoM, PaulE, BlinstrubM, MorishimaH, KinositaT. Report on QTL nomenclature. Rice Genet Newslett, 1997, 14: 11-13[本文引用:1]
9
LorieuxM, PerrierX, GoffinetB, LanaudC, De León D G. Maximum-likelihood models for mapping genetic markers showing segregation distortion: 1. Backcross populations. Theor Appl Genet, 1995, 90: 73-80[本文引用:1][JCR: 3.658]
10
LorieuxM, PerrierX, GoffinetB, LanaudC, De León D G. Maximum-likelihood models for mapping genetic markers showing segregation distortion. 2. F2 populations. Theor Appl Genet, 1995, 90: 81-89[本文引用:1][JCR: 3.658]
11
朱成松, 王付华, 王建飞, 李广军, 张红生, 章元明. 回交、DH和RIL偏分离群体遗传图谱的重新构建. 科学通报, 2007, 52: 918-922ZhuC S, WangF H, WangJ F, LiG J, ZhangH S, ZhangY M. Genetic maps reconstruct of backcross, DH, and RIL segregation distortion populations. Chin Sci Bull, 2007, 52: 918-922 (in Chinese)[本文引用:1][CJCR: 0.95]
12
WangJ K, LiH H, ZhangL Y, MengL. Users’ Manual of QTL IciMapping Version 3. 2, 2012[本文引用:1]
FreyerG, SørensenP, KühnC, WeikardR, HoescheleI. Search for pleiotropic QTL on chromosome BTA6 affecting yield traits of milk production. J Dairy Sci, 2003, 86: 999-1008[本文引用:1][JCR: 2.566]
15
SunF, LiuP, YeJ, LoL C, CaoS Y, LiL, YueG H, WangC M. An approach for jatropha improvement using pleiotropic QTLs regulating plant growth and seed yield. Biotech Biof, 2012, 5: 1-10[本文引用:1][JCR: 5.552]
16
YanW H, WangP, ChenH X, ZhouH J, LiQ P, WangC R, DingZ H, ZhangY S, YuS B, XingY Z. A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol Plant, 2011, 4: 319-330[本文引用:1][JCR: 6.126][CJCR: 0.9487]
17
CaiH, MorishimaH. QTL clusters reflect character associations in wild and cultivated rice. Theor Appl Genet, 2002, 104: 1217-1228[本文引用:1][JCR: 3.658]
18
邢永忠, 徐才国, 华金平, 谈移芳. 水稻穗部性状的QTL与环境互作分析. 遗传学报, 2001, 28: 439-446XingY Z, XuC G, HuaJ P, TanY H. Analysis of QTL× environment interaction for rice panicle characteristics. Acta Genet Sin, 2001, 28: 439-446 (in Chinese with English abstract)[本文引用:1]
19
李绍波, 杨国华, 章志宏, 李绍清, 李阳生, 朱英国. 直播条件下水稻6个穗部性状的QTL分析. 武汉植物学研究, 2009, 27: 467-472LiS B, YangG H, ZhangZ H, LiS Q, LiY S, ZhuY G. Mapping of QTL controlling 6 panicle traits of rice under direct-sowing environment. J Wuhan Bot Res, 2009, 27: 467-472 (in Chinese with English abstract)[本文引用:1]
20
沈希宏, 曹立勇, 陈深广, 占小登, 吴伟明, 程式华. 超级杂交稻协优9308重组自交系群体的穗部性状QTL分析. 中国水稻科学, 2009, 23: 354-362ShenX H, CaoL Y, ChenS G, ZhanX D, WuW M, ChengS H. Dissection of QTLs for panicle traits in recombinant inbred lines derived from super hybrid rice, Xieyou 9308. Chin J Rice Sci, 2009, 23: 354-362 (in Chinese with English abstract)[本文引用:2][CJCR: 1.494]
21
王智权, 刘喜, 江玲, 刘世家, 陈亮明, 尹长斌, 翟虎渠, 万建民. 控制水稻穗形相关性状的QTL定位. 江苏农业学报, 2011, 27: 5-12WangZ Q, LiuX, JiangL, LiuS J, ChenL M, YinC B, ZhaiH Q, WanJ M. Ditection of QTLs for related traits of panicle in rice (Oryza sativa L. ). Jiangsu J Agric Sci, 2011, 27: 5-12 (in Chinese with English abstract)[本文引用:1][CJCR: 0.895]
22
刘头明. 水稻每穗颖花数的遗传基础剖析及其主效QTLs精细定位. 华中农业大学博士学位论文. 2009LiuT M. Dissection of the Genetic Bases of the Number of Spikelets per Panicle and Fine Mapping of Its Major QTLs. PhD Dissertation of Huazhong Agricultural University, 2009 (in Chinese with English abstract)[本文引用:2]
23
MarathiB, GuleriaS, MohapatraT, ParsadR, MariappanN, KurungaraN, AtwalS S, PrabhuK V, SinghN K, SinghA K. QTL analysis of novel genomic regions associated with yield and yield related traits in new plant type based recombinant inbred lines of rice (Oryza sativa L. ). BMC Plant Biol, 2012, 12: 137[本文引用:1][JCR: 4.354]
24
黄成. 水稻几个农艺性状的QTL分析. 沈阳农业大学硕士学位论文, 2010HuangC. QTL Analysis of Several Rice Agronomic Characters. MS Thesis of Shenyang Agricultural University, 2009 (in Chinese with English abstract)[本文引用:1]
25
MeiH W, XuJ L, LiZ K, YuX Q, GuoL B, WangY P, YingC S, LuoL J. QTLs influencing panicle size detected in two reciprocal introgressive line (IL) populations in rice (Oryza sativa L. ). Theor Appl Genet, 2006, 112: 648-656[本文引用:1][JCR: 3.658]
26
JingZ B, QuY Y, PanD J, FanZ L, ChenJ Y, LiC. QTL analysis of yield-related traits using an advanced backcross population derived from common wild rice (Oryza rufipogon L. ). Mol Plant Breed, 2010, 1: 1-10[本文引用:2][CJCR: 1.23]
27
BaiX F, LuoL J, YanW H, KoviM R, XingY Z. Quantitative trait loci for rice yield-related traits using recombinant inbred lines derived from two diverse cultivars. J Genet, 2011, 90: 209-215[本文引用:1][JCR: 0.876]