关键词:甜菜; SRAP; SSR; 遗传图谱 Construction of Molecular Genetic Linkage Map of Sugarbeet WANG Mao-Qian1,2,3, LI Bo1, WANG Hua-Zhong1,2,3,* 1Key Laboratory of Sugar Beet Genetic Breeding/ Crop Academy of Heilongjiang University, Harbin 150080, China
2Sugar Beet Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150080, China
3Key Laboratory of North Sugar Crop Resource and Utilization, Chinese Academy of Agricultural Sciences, Harbin 150080, China
AbstractMolecular genetic map is a fundamental tool for genomic research. In this study, a molecular genetic map was constructed using an F2 population consisting of 200 individuals from a cross between sugarbeet JV34-2 (the high beet yield and low sugar content line) and sugarbeet 2B023 (the low beet yield and high sugar content line) and a total of 561 SRAP primers and 114 SSR primers. Approximately 56 out of 561 and 20 out of 114 primers, respectively, showed polymorphisms. Each of these polymorphic primers produced at least one scorable polymorphic DNA band which was visible enough for detection and scoring. The map consisted of nine linkage groups which included 141 (123 SRAP and 18 SSR) markers, and covered 1399.88 cM with an average distance of 9.92 cM. Three markers were still unlinked. All nine linkage groups consisting of 3-26 markers were 15.69-237.21 cM in length. Twenty point five six percent partially segregated markers distributed in the map, were mainly located on Chr.3 linkage groups, and the others were mapped on Chr.1, Chr.2, Chr.8, and Chr.9. This is the first gene map of sugarbeet, constructed by SRAP and SSR markers in China. It will provide the basis for gene mapping of important characters and cloning of excellent gene in sugarbeet.
4 结论本研究构建了一张包括9个连锁群, 141个标记位点的分子连锁图谱, 标记间平均间距9.07 cM。有4个标记未进入连锁群, 连锁群的标记位点数在3~26个之间, 长度为15.69~237.21 cM, 其中Chr.1最长, Chr.9最短。连锁群上有20.56%的标记出现偏分离, 主要集中在Chr.3连锁群上, 形成3个偏分离区域, 其余分散在Chr.1、Chr.2、Chr.8和Chr.9中。偏分离标记中, SRAP标记占22.22%, SSR标记占15.78%; 并有23个偏向父本, 占连锁群偏分离标记的79.31%, 6个偏向母本, 占20.69%。图谱覆盖基因组总长度为1399.88 cM, 甜菜遗传图谱的预期长度是1499.15 cM, 框架图谱覆盖率是93.38%。SRAP在甜菜F2群体中的多态性较好, 将成为甜菜图谱构建的有力工具。 The authors have declared that no competing interests exist. 作者已声明无竞争性利益关系。The authors have declared that no competing interests exist.
HalldénC, HjerdinA, RadingI M, SallT, FridlundhB, JohannisdottirG, TuvessonS, AkessonC, NilssonN O. A high density RFLP linkage map of sugar beet. , 1996, 39: 634-645[本文引用:1][JCR: 1.668]
2
BarzenE, MechelkeW, RitterE, SeitzerJ F, SalaminiF. RFLP markers for suger beet breeding: chromosomal linkage maps and location of major genes for rhizomania resistance, monogermy and hypocotil colour. , 1995, 2: 601-611[本文引用:1][JCR: 6.582]
3
UphoffH, WrickeG. A genetic map of sugar beet (Beta vulgaris L. ) based on RAPD markers. , 1995, 114: 355-357[本文引用:1][JCR: 1.175]
4
NilssonN O, HanscnM, PanagopoulosA H, TuvessonS, EhldeM, ChristrianssonM, RadingM, RisslerM, KraftT. QTL analysis of Cercospora leaf spot resistance in sugar beet. , 1999, 118: 327-334[本文引用:1][JCR: 1.175]
5
SchneiderK. Mapping QTLs for sucrose content, yield and quality in sugar beet population fingerprinted by EST-related markers. , 2002, 104: 1107-1113[本文引用:1][JCR: 3.658]
6
GrimmerM K, TrybushS, HanleyS, FrancisS A, KarpA, Ashe M J C. An anchored linkage map for sugar beet based on AFLP, SNP and RAPD markers and QTL mapping of a new source of resistance to beet necrotic yellow vein virus. , 2007, 114: 1151-1160[本文引用:1][JCR: 3.658]
7
陈昆松, 李方, 徐昌杰, 张上隆, 傅承新. . , 2004, 26(4): 529-531ChenK S, LiF, XuC J, ZhangS L, FuC X. An efficient macro-method of genomic DNA isolation from Actinidia chinensis leaves. , 2004, 26(4): 529-531 (in Chinese with English abstract)[本文引用:1][CJCR: 0.928]
8
赵娟. 辣椒分子连锁图谱的构建及抗黄瓜花叶病毒QTL定位. , 2009. pp24-25ZhaoJ. Construction of Molecular Linkage Map and QTL Analysis of Cucumber Mosaic Virus Resistance in Pepper. , 2009. pp24-25 (in Chinese with English abstract)[本文引用:1]
9
王华忠, 吴则东, 王晓武, 方智远. 利用SRAP与SSR标记分析不同类型甜菜的遗传多样性. , 2008, 34: 37-46WangH Z, WuZ D, WangX W, FangZ Y. Analysis of the genetic diversity in different types of sugar beets by SRAP and SSR markers. , 2008, 34: 37-46 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
10
赵尚敏. 甜菜抗丛根病种质资源遗传多样性分析. , 2009. pp31-34ZhaoS M. Study on the Genetic Diversity of Germplasm Resource of Rhizomania Resistance Sugar Beet. , 2009. pp31-34 (in Chinese)[本文引用:1]
11
宋宪亮, 孙学振, 张大真. 偏分离及对植物遗传作图的影响. , 2006, 14: 286-292SongX L, SunX Z, ZhangD Z. Segregation Distortion and Its Effect on Genetic Mapping in Plants. , 2006, 14: 286-292 (in Chinese with English abstract)[本文引用:1]
12
PostlethwaitJ H, JohnsonS L, MidsonC N, TalbotW S, GatesM, BallingerE W, AfricaD, AndrewsR, CarlT, EisenJ S. A genetic linkage map for the zebrafish. , 1994, 264: 699-703[本文引用:1]
13
ChakravartiA, LasherL K, ReeferJ E. A maximum likelihood for estimating genome length using genetic linkage data. , 1991, 128: 175-182[本文引用:1][JCR: 4.389]
14
唐玉海, 郭春芳, 张木清. 相关序列扩增多态性(SRAP)标记及其应用研究进展. , 2006, (增刊-1): 237-241TangY H, GuoC F, ZhangM Q. Sequence-related amplified polymorphism (SRAP) markers and applications. , 2006, (suppl-1): 237-241 (in Chinese with English abstract)[本文引用:1][CJCR: 0.49]
15
林忠旭, 张献龙, 聂以春. 新型标记SRAP在棉花F2分离群体及遗传多样性评价中的适用性分析. , 2004, 6: 622-626LinZ X, ZhangX L, NieY C. Evaluation of application of a new molecular marker SRAP on analysis of F2 segregation population and genetic diversity in cotton. , 2004, 6: 622-626 (in Chinese with English abstract)[本文引用:1]
16
李媛媛, 沈金雄, 王同华, 傅廷栋, 马朝芝. 利用SRAP、SSR和AFLP标记构建甘蓝型油菜遗传连锁图谱. , 2007, 40: 1118-1126LiY Y, ShenJ X, WangT H, FuT D, MaC Z. Construction of a linkage map using SRAP, SSR and AFLP markers in Brassica napus L. , 2007, 40: 1118-1126 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
17
马红勃, 祁建民, 李延坤, 梁景霞, 王涛, 兰涛, 陈顺辉, 陶爱芬, 林荔辉, 吴建梅. 烟草SRAP和ISSR分子遗传连锁图谱构建. , 2008, 34: 1958-1963MaH B, QiJ M, LiY S, LiangH X, WangT, LanT, ChenS H, TaoA F, LinZ H, WuJ M. Construction of a molecular genetic linkage map of tobacco based on SRAP and ISSR markers. , 2008, 34: 1958-1963 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
18
王茂芊, 吴则东, 王华忠. 利用SRAP标记分析我国甜菜三大产区骨干材料的遗传多样性. , 2011, 37: 811-819WangM Q, WuZ D, WangH Z. Genetic diversity of major sugar beet varieties from three regions of China with SRAP markers. , 2011, 37: 811-819 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
19
唐荣华, 张君诚, 吴为人. SSR分子标记的开发技术研究进展. , 2002, 15(4): 106-109TangR H, ZhangJ C, WuW R. Progress in the way to develop SSR molecular marker. , 2002, 15(4): 106-109 (in Chinese with English abstract)[本文引用:1]
20
向道权, 曹海河, 曹永国, 杨俊品, 黄烈健, 王守才, 戴景瑞. 玉米SSR遗传图谱的构建及产量性状基因定位. , 2001, 28: 778-784XiangD Q, CaoH H, CaoY G, YangJ P, HuangL J, WangS C, DaiJ R. Construction of a genetic map and location of quantitative trait loci for yield component traits in maize by SSR markers. , 2001, 28: 778-784 (in Chinese with English abstract)[本文引用:1]
21
陈庆山, 张忠臣, 刘春燕, 王伟权, 李文滨. 应用Charleston×东农594重组自交系群体构建SSR大豆遗传图谱. , 2005, 38: 1312-1316ChenQ S, ZhangZ C, LiuC Y, WangW Q, LiW B. Construction and analysis of soybean genetic map using recombinant inbred line of Charleston × Dongnong 594. , 2005, 38: 1312-1316 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
22
洪彦彬, 梁炫强, 陈小平, 刘海燕, 周桂元, 李少雄, 温世杰. 花生栽培种SSR遗传图谱的构建. , 2009, 35: 395-402HongY B, LiangX Q, ChenX P, LiuH Y, ZhouG Y, LiS X, WenS J. Construction of genetic linkage map in peanut (Arachis hypogaea L. ) cultivars. , 2009, 35: 395-402 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
23
吴则东, 王华忠, 韩英. 甜菜SSR-PCR反应体系的优化. , 2008, (1): 11-13WuZ D, WangH Z, HanY. Optimization of sugarbeet SSR-PCR reaction system. , 2008, (1): 11-13 (in Chinese with English abstract)[本文引用:1][CJCR: 0.5408]
24
史树德, 魏磊, 张子义, 邵金旺, 田自华. 甜菜EST-SSR引物的开发与应用. , 2011, (3): 1-5ShiS D, WeiL, ZhangZ Y, ShaoJ W, TianZ H. Development and Utilization of EST-SSR Marker in Sugarbeet (Beta vulgaris L. ). , 2011, (3): 1-5 (in Chinese with English abstract)[本文引用:1][CJCR: 0.5408]
25
沙红, 王燕飞, 高文伟, 曲延英, 张立明. 甜菜离子注入诱变高糖性状的QTL分析. , 2010, (3): 27-28ShaH, WangY F, GaoW W, QuY Y, ZhangL M. QTL analysis of impregnatingion into high-sugar mutant sugarbeet. , 2010, (3): 27-28 (in Chinese with English abstract)[本文引用:1][CJCR: 0.5408]
26
陆光远, 杨光圣, 傅廷栋. 甘蓝型油菜分子标记连锁图谱的构建及显性细胞核雄性不育基因的图谱定位. , 2004, 31: 1309-1315LuG Y, YangG S, FuT D. Linkage map construction and mapping of a dominant genic male sterility gene (Ms) in Brassica napus. , 2004, 31: 1309-1315 (in Chinese with English abstract)[本文引用:1]
27
吴晓雷, 贺超英, 王永军, 张志永, 东方阳, 张劲松, 陈受宜, 盖钧镒. 大豆遗传图谱的构建和分析. , 2001, 28: 1951-1961WuX L, HeC Y, WangY J, ZhangZ Y, DongF Y, ZhangJ S, ChenS Y, GaiJ Y. Construction and analysis of a genetic linkage map of soybean. , 2001, 28: 1951-1961 (in Chinese with English abstract)[本文引用:1]
28
赵姝华, 李玥莹, 邹剑秋, FolkertsmaR, HashT C. 高粱分子遗传图谱的构建. , 2005, 25(1): 11-13ZhaoS H, LiY Y, ZouJ Q, FolkertsmaR, HashT C. Construction of a molecular genetic map of sorghum. , 2005, 25(1): 11-13 (in Chinese with English abstract)[本文引用:1][CJCR: 0.5562]
29
KnoxM R, Ellis T H N. Excess heterozygosity contributes togenetic map expansion in pea recombinant inbred populations. , 2002, 162: 861-873[本文引用:1][JCR: 4.389]
30
刘海燕, 崔金腾, 高用明. 遗传群体偏分离研究进展. , 2009, 10: 613-617LiuH Y, CuiJ T, GaoY M. Progress of segregation distortion. , 2009, 10: 613-617 (in Chinese with English abstract)[本文引用:1][CJCR: 1.1628]
31
宋立君. 萝卜遗传连锁图谱构建与主要品质性状QTLs分析. , 2009. pp34-35SongL J. Construction of a genetic linkage map and QTLs analysis of main quality traits in radish (Raphanus sativus L. ). , 2009. pp34-35 (in Chinese with English abstract)[本文引用:1]