关键词:马铃薯野生种; 耐冻; 冷驯化; FAD2; 基因表达 Molecular Cloning and Expression Analysis ofFAD2 Gene from Three Wild Potato Species with Different Levels of Freezing Tolerance LI Fei1,2, XU Jian-Fei1, LIU Jie1, DUAN Shao-Guang1, BIAN Chun-Song1, Jiwan P. PALTA3, JIN Li-Ping1,* 1 Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
2Guizhou Institute of Potato, Guiyang 550006, China
3Department of Horticulture, University of Wisconsin, Madison 53706, WI, USA
AbstractUsing reverse transcription polymerase chain reaction (RT-PCR), three full-length cDNAs of ω-6 desturases (FAD2) were obtained from three wild potato species (Solanum commersonii,S. acaule, andS. cardiophyllum) with different levels of freezing tolerance and cold acclimation capacity. These genes were designatedCmm-FAD2(GenBank accession No. KF214782),Aca-FAD2(KF214781), andCph-FAD2(KF214783), respectively.They are all 1326 bp in length, coding 441 amino acids. The alignment result indicated that eight of 18 different nucleotides result in the corresponding variation of coding proteins in the three species. At the amino acid positions of No. 11 and No. 44, amino acid residues ofS. commersoniiandS. acauleare different from that ofS. cardiophyllum. The results of secondary structure prediction showed obvious differences in alpha-helix, extend chain, and random crimp ofS. commersoniiandS. acaule as compared to those ofS. cardiophyllum.According to the alignment result of multiple protein sequences and the phylogenetic tree, the coding products ofFAD2 genes from the three wild potato species are highly homologous to those from tomato and purslane. The results of qPCR showed thatFAD2 expression was up-regulated in the three potato wild species after 12-day cold acclimation; however, the relative expression level ofFAD2 inS. commersonii andS. acaule were significantly higher than that inS. cardiophyllum.
Keyword:Wild potato species; Frost tolerance; Cold acclimation capacity; FAD2; Gene expression Show Figures Show Figures
表1 FAD2基因的qPCR引物和内参基因引物序列 Table 1 qPCR primers sequence of FAD2 and primers sequence of reference gene
引物 Primer
引物序列 Primer sequences (5°-3°)
应用长度 Amplication length (bp)
β-tubulin2-S
GATGTTGTGCCAAAGGATGT
221
β-tubulin2-R
AACTTGTGGTCAATGCGAGA
F1171
AACGAGGCTTCATGGAATTGGCGT
128
R1299
AGGAATGTGATTGGCTGGGCTTCT
表1 FAD2基因的qPCR引物和内参基因引物序列 Table 1 qPCR primers sequence of FAD2 and primers sequence of reference gene
2 结果与分析2.1 耐冻性鉴定3个马铃薯野生种在冷驯化0 d的耐冻性差异极显著, S. acaule的LT50最低, 为-5.3℃, S. cardiophyllum的LT50最高为-1.8℃ (表2)。冷驯化12 d后, S.commersonii和 S.acaule的LT50分别为-10.1℃和-8.9℃, 均与 S. cardiophyllum的LT50具极显著差异, 同时 S. commersonii和 S. acaule的冷驯化能力与 S. cardiophyllum的也具极显著差异。 表2 Table 2 表2(Table 2)
表2 3个野生马铃薯的LT50和冷驯化能力 Table 2 LT50 temperature and cold acclimation capability of three wild potato species
种名 Species
冷驯化 Cold treatment (LT50, ℃)
冷驯化能力 Cold acclimation capacity (℃)
0 d
12 d
S. commersonii
-3.4±0.20 bB
-10.1±0.31 aA
6.8±0.50 aA
S. acaule
-5.3±0.08 aA
-8.9±0.90 bA
3.5±1.15 bB
S. cardiophyllum
-1.8±0.07 cC
-2.3±0.42 cB
0.5±0.36 cC
平均值后的数据为标准误差, 数值后大小写字母分别表示在0.01和0.05水平上差异显著。 Data are mean plus standard error. The values followed by different letters are significantly different at P ≤0.01 (capital letters) and P≤0.05 (small letters).
表2 3个野生马铃薯的LT50和冷驯化能力 Table 2 LT50 temperature and cold acclimation capability of three wild potato species
2.2 FAD2基因的序列分析 通过引物F1和R1326扩增, 从3个野生马铃薯材料中分别都得到1326 bp的片段(图1)。序列测定表明, 野生马铃薯 S. commersonii (图3)、 S. acaule和 S. cardiophyllum的 FAD2基因编码区的核苷酸序列长度均为1326 bp, 编码441个氨基酸, 分别命名为 Cmm-FAD2(GenBank登录号为KF214782)、 Aca-FAD2(KF214781)和 Cph-FAD2(KF214783)。 通过比对3个野生种 FAD2基因的核苷酸序列和蛋白序列(图2), 发现共有18处核苷酸存在差异, 其中在第33、第54、第134、第171、第210、第241、第252和第267位核苷酸的不同导致该基因对应的氨基酸残基改变, 其余10个核苷酸由于简并密码子的原因并未引起相应氨基酸残基的变化。3个野生种的 FAD2基因编码的蛋白序列高度相似, 同源性为99.55%。在该基因蛋白序列的第11和第44氨基酸 残基处(图3), 耐冻且有驯化能力的 S. commersonii和 S. acaule有相同的氨基酸, 而冷冻敏感 S. cardiophyllum的氨基酸却不同。 S. commersonii和 S. cardiophyllu在第18、第57、第70、第80、第84和第89处的氨基酸残基与 S. acaule不相同。 图1 Fig. 1
图1 野生马铃薯 FAD2基因扩增电泳图Fig. 1 RT-PCR analysis of FAD2 genes from three SolanumspeciesM: marker II (Tiagen Inc.); Lane 1 to 3 indicate PCR products of S. commersonii, S. acaule, and S. cardiophyllum, respectively.
表3 3个不同耐冻性野生马铃薯的FAD2蛋白理化特性预测 Table 3 Physical and chemical properties prediction of FAD2 proteins from three wild potato species with different levels of freezing tolerance
理化特性 Physicochemical property
S. cardiophyllum
S. acaule
S. commersonii
氨基酸残基数 Number of amino acids
441
441
441
分子量 Molecular weight (Da)
50855.1
50776.0
50810.9
分子式 Formula
C2355H3568N612O610S20
C2354H3555N607O611S20
C2352H3552N608O614S20
理论等电点 Theoretical p I
9.02
8.87
8.79
半衰期 Estimated half-life (h)
30
30
30
不稳定指数 Instability index
46.42
45.03
45.55
稳定性 Stability
不稳定 Unstable
不稳定Unstable
不稳定Unstable
脂肪系数 Aliphatic index
88.91
88.25
88.03
正电荷氨基酸残基总数 Total number of positive charge residues
49
47
47
负电荷氨基酸残基总数 Total number of negative charge residues
39
39
40
总平均疏水性 Grand average of hydropathicity
-0.116
-0.104
-0.109
α螺旋 α-helix (%)
40.36
39.68
39.00
延伸链Extend chain (%)
12.47
12.02
12.24
随机卷曲 Random coil (%)
44.67
45.12
45.12
β折叠 β-sheet (%)
2.49
3.17
3.63
表3 3个不同耐冻性野生马铃薯的FAD2蛋白理化特性预测 Table 3 Physical and chemical properties prediction of FAD2 proteins from three wild potato species with different levels of freezing tolerance
图3 3个野生马铃薯的FAD2蛋白序列比对TM: 跨膜结构域; H-box: 组氨酸基序。TM: transmembrane domains; H-box: histidine box motifs.Fig. 3 Alignment of predicted amino acid sequences of FAD2 gene in three species
2.3 进化关系分析利用Clustal 1.8.1软件对36个物种间 FAD2基因的氨基酸序列比较显示, 番茄FAD2蛋白序列(XP_004242585.1)与克隆得到的 S. commersonii、 S. cardiophyllum和 S. acaule的FAD2蛋白序列同源性最高, 分别为96.6%、96.8%和97.5%。利用MEGA 5.05软件, 选择邻位相连法(NJ), 设定重复抽样次数为1000, 对36个物种的FAD2蛋白序列构建NJ系统进化树(图4)表明, 克隆的3个马铃薯野生种的 FAD2基因和番茄(XP_004242585.1)的亲缘关系最近, 马铃薯野生种的 FAD2基因进化较为独立, 除番茄外与之相近的物种有马齿苋(ACB14275.1)。 图4 Fig. 4
图4 不同物种间FAD2氨基酸序列NJ树分析Fig. 4 Neighbor-joining tree of FAD2 amino acid sequences in different species
2.4 基因表达分析通过qPCR对3个野生种的 FAD2基因定量分析表明, 12 d的冷驯化处理使得 FAD2基因在3个野生种中都上调表达, 但 S. commersonii和 S. acaule的 FAD2基因表达水平分别是冷驯化前的1.87倍和1.74倍, 均高于 S. cardiophyllum的 FAD2基因的0.94倍(图5)。方差分析结果表明, S. cardiophyllum分别与 S. commersonii和 S. acaule之间 FAD2基因的上调表达水平差异显著, 而 S. commersonii和 S. acaule之间 FAD2基因表达水平差异不显著。说明 FAD2基因在耐冻和冷冻敏感的马铃薯野生种间表达水平差异显著。 图5 Fig. 5
图5 冷驯化后3个马铃薯野生种的 FAD2基因表达量误差线代表的是标准误差。Error bars represent standard error.Fig. 5 Expression quantity of FAD2genes from three wild potato species after cold acclimation
3 讨论本研究表明, 3个耐冻性不同的马铃薯野生种的 FAD2基因与番茄的 FAD2基因亲缘关系最近, 其次是马齿苋, 且未比对到马铃薯 FAD2基因信息, 表明上述基因是首次在马铃薯中被克隆。对于很多作物而言通过寒冷进行 FAD基因表达的转录调控已经是众所周知, 但关于番茄的 FAD2基因未见报道。Teixeira等[ 8]研究认为马齿苋在寒冷(5℃)和叶片受伤条件下 FAD2-2基因的相对表达量都增加, 在寒冷胁迫条件下观察到该基因没有发生累计效应, 但在寒冷胁迫和受伤2种处理条件下, 该基因的相对表达量也呈增加趋势; 马齿苋的 FAD2-2基因可能一方面负责种子中储藏脂肪的脱氢作用, 另一方面涉及在根、叶和茎中膜脂肪的脱氢作用。Anastasia等[ 25]认为棉花的 FAD2-3和 FAD2-4基因的表达都受低温调控, FAD2-4的表达显著高于 FAD2-3。橄榄果实的 FAD2-1和 FAD2-2[ 26, 27]、白芸豆叶片的 FAD2[ 28]在转录水平均受低温调控。这些研究结果都说明 FAD2基因在膜对寒冷胁迫的适应过程中有直接作用。 Yang等[ 29]从佛手柑中克隆了 FAD2基因, 与28℃的对照相比, 在6℃条件下2个基因型中 FAD2基因表达差异显著, 耐寒的Aihu比寒冷敏感的Qingpi的 FAD2基因表达增加更早且更多, Aihu植株叶片中的亚麻酸含量显著增加, 表明 FAD2基因的表达和基因型间的耐寒性呈正相关。与之相似的是, 本研究中的2个耐冻且能冷驯化的野生马铃薯与冷冻敏感的野生马铃薯之间 FAD2基因的上调表达差异显著。可能是 FAD2基因上调表达增加不饱和脂肪酸的含量从而提高膜脂质的流动性, 最终使得耐冻性得到提高。在耐冻性鉴定结果中已证实, 通过12 d的冷驯化, S. commersonii和 S. acaule的LT50分别提高了6.8℃和3.5℃, 而冷冻敏感的 S. cardiophyllum仅仅提高了0.5℃。 关于 FAD2基因的功能, Shi等[ 30]研究认为, 转 OsFAD2基因的水稻植株抗寒性比野生型植株的抗寒性有所提高, 在10℃条件下, 野生型植株不久就萎蔫且生长停滞, 但转基因株系仅叶尖有轻微的卷曲症状。周洲[ 31]将毛白杨 PtFAD2转入银腺杨中, 转基因株系F2-100、F2-35与野生型植株相比, 亚油酸(C18:2)含量提高5.7%和7.1%; 亚麻酸(C18:3)含量提高3.2%和2.1%。在-4℃处理3 h后, F2-100和F2-35的扦插苗的存率分别为60.0%±5.7%和56.6%±3.3%, 而野生型存活率仅为37.6%±3.3%。酵母中表达绿藻 fad2基因, 低温条件下转录物浓度上调, 提高了酵母的抗冷能力, 它可能参与低温适应并与其耐冻性有关[ 32]。外源表达向日葵的 FAD2基因增加了酵母脂质的不饱和指数和膜脂流动性, 其耐盐性和耐冻性得到提高[ 33]。综上所述, 这些研究结果都充分证明 FAD2基因在不饱和脂肪酸合成途径中 的关键作用, 对于提高植物的耐冻性有重要意义。关于马铃薯 FAD2基因的功能, 我们还需要做进一步的研究。本研究对马铃薯的耐冻育种以及阐述野生马铃薯耐冻的分子机制都有重要的意义。 4 结论从3个耐冻性差异较大的马铃薯野生种 S. commersonii、 S. cardiophyllum和 S. acaule中克隆出 FAD2基因, 该基因在耐冻和冷冻敏感的马铃薯野生种中存在氨基酸残基差异。耐冻且有冷驯化能力的 S. commersonii和 S. acaule的FAD2蛋白与冷冻敏感的 S. cardiophyllum FAD2蛋白的α-螺旋、延伸链和随机卷曲存在明显差异。 FAD2基因在耐冻的野生种 S. commersonii和 S. acaule中的上调表达显著高于冷冻敏感的 S. cardiophyllum, 可能是 FAD2基因上调表达增加了不饱和脂肪酸的含量从而提高膜脂质的流动性, 最终使 S. commersonii和 S. acaule耐冻性得到进一步的提高。 The authors have declared that no competing interests exist. 作者已声明无竞争性利益关系。
LiP H. . New York: Academic Press, 1978. pp49-71[本文引用:1]
[3]
李飞. 野生马铃薯植株耐冻性鉴定及耐冻机理研究. LiF. Assessment and Mechanism Study for Freezing Tolerance in Solanum acaule Seedling. , 2008 (in Chinese with English abstract)[本文引用:2]
[4]
SteponkusP L. Role of plasma membrane in freezing injury and cold acclimation. , 1984, 35: 543-584[本文引用:1]
[5]
RikenA, DillJ W, BergmanD K. Correlation between the circadian rhythm of resistance to extreme temperatures and changes in fatty acid composition in cotton seedlings. , 1993, 101: 31-36[本文引用:1][JCR: 6.535]
[6]
SteponkusP L, UemuraM, WebbM S. . London: JAI Press, 1993. pp211-312[本文引用:1]
[7]
UpchurchRG. Fatty acid unsaturation, mobilization, and regulation the response of plants to stress. , 2008, 30: 967-977[本文引用:1][JCR: 1.683]
[8]
TeixeiraM C, CoelhoN, OlssonM E, BrodeliusP E, CarvalhoI S, BrodeliusM. Molecular cloning and expression analysis of three omega-6 desaturase genes from purslane (Portulaca oleracea L. ). , 2009, 31: 1089-1101[本文引用:3][JCR: 1.683]
[9]
KargiotidouA, DeliD, GalanopoulouD, TsaftarisA, FarmakiT. Low temperature and light regulate delta 12 fatty acid desaturases (FAD2) at a transcriptional level in cotton (Gossypium hirsutum). , 2008, 59: 2043-2056[本文引用:2][JCR: 5.364]
[10]
NiuB, GuoL, ZhaoM, LuoT, ZhangR, ZhangF, HouP, ZhangY, XuY, WangS, ChenF. Molecular cloning, characterization, and expression of an omega-3 fatty acid desaturase gene from Sapium sebiferum. , 2008, 106: 375-380[本文引用:1][JCR: 1.793]
[11]
MurataN, SatoN, TakahashiN, HamazakiY. Composition and positional distributions of fatty acids in phospholipids from leaves of chilling-sensitive and chilling-resistant plants. , 1982, 23: 1071-1079[本文引用:1][JCR: 4.702]
[12]
LemieuxB, MiquelM, SomervilleC, BrowseJ. Mutants of Arabidopsis with alterations in seed lipid fatty acid compositon. , 1990, 80: 234-240[本文引用:1][JCR: 3.297]
[13]
VegaS E, Del RioA H, BambergJ B, PaltaJ P. Evidence for the up-regulation of stearoyl-ACP (Δ9) desaturase gene expression during cold accliamtion. , 2004, 81: 125-135[本文引用:1][JCR: 1.234]
[14]
YinD M, DengS Z, ZhanK H, CuiD Q. High-oleic peanut oils produced by HpRNA-mediated gene silencing of oleate desaturase. , 2007, 25: 154-163[本文引用:1][JCR: 2.453]
[15]
GeorgiosB, AnastassiosM, NikosN, PolydefkisH. Spatial and temporal expressions of two distinct oleate desaturase from olive (Olea europaea L. ). , 2005, 168: 547-555[本文引用:1][JCR: 2.945]
[16]
RolletschekH, BorisjukL, Sanchez-GarcraA, GotorC, RomeroL C, Martinez-RivasJ M, ManchaM. Temperature dependent endogenous oxygen concentration regulates microsomal oleate desaturase in developing sunflower seeds. , 2007, 58: 3171-3181[本文引用:1][JCR: 5.364]
[17]
LiL Y, WangX L, GaiJ Y, YuD Y. Molecular cloning and characterization of a novel microsomal oleate desaturase gene from soybean. , 2007, 164: 1516-1526[本文引用:1][JCR: 2.791]
[18]
MietkiewskaE, BrostJ M, GiblinE M, FrancisT, WangS, ReedD, TruksaM, TaylorD C. A Tropaeolum majus FAD2 cDNA complements the fad2 mutation in transgenic Arabidopsis plants. , 2006, 171: 187-193[本文引用:1][JCR: 2.945]
[19]
崔红. 冬小麦东农冬麦1号抗寒生理特性及抗寒基因的克隆. CuiH. Analysis in Cold-resistant Physiological Characteristics and Cloning Genes of Winter Wheat Dongnongdongmai 1. , 2010 (in Chinese with English abstract)[本文引用:1]
[20]
VanBerkel J, SalaminiF, GebhardtC. Transcripts accumulating during cold storage of potato (Solanum tuberosum) tubers are sequence related to stress-responsive genes. , 1994, 104: 445-452[本文引用:1][JCR: 6.535]
[21]
RoratT, GrygorowiczW J, BcrbczyP, IrzykowskiW. Isolation and expression of cold specific genes in potato (Solanum sogarand inum). , 1998, 133: 57-67[本文引用:1][JCR: 2.945]
[22]
StoneJ M, PaltaJ P, BambergJ B, WeissL S, HarbageJ F. Inheritance of freezing resistance in tuber-bearing Solanum species: Evidence for independent genetic control of nonacclimated freezing tolerance and cold acclimation capacity. , 1993, 90: 7869-7873[本文引用:1][JCR: 4.007]
[23]
VegaS E, Del RioA H, JungG, BambergJ B, PaltaJ P. Marker-assisted genetic analysis of non-acclimated freezing tolerance and cold acclimation capacity in a backcross Solanum population. , 2003, 80: 359-3691[本文引用:1][JCR: 1.234]
[24]
李飞, 徐建飞, 刘杰, 段绍光, 雷尊国, PaltaJ P, 金黎平. 冷驯化前后野生马铃薯S. acaule内参基因的筛选. LiF, XuJ F, LiuJ, DuanS G, LeiZ G, PaltaJ P, JinL P. Selection of reference genes from wild potato Solanum acaule before and after cold acclimation. , 2012, 25: 1592-1595 (in Chinese with English abstract)[本文引用:1]
[25]
KargiotidouA, DeliD, GalanopoulouD, TsaftarisA, FarmakiT. Low temperature and light regulate delta 12 fatty acid desaturases (FAD2) at a transcriptional level in cotton (Gossypium hirsutum). , 2008, 59: 2043-2056[本文引用:1][JCR: 5.364]
[26]
Hernand ezM L, PadillaM N, SicardoM D, ManchaM, Martinez-RivasJ M. Effect of different environmental stresses on the expression of oleate desaturase genes and fatty acid composition in olive fruit. , 2011, 72: 178-187[本文引用:1][JCR: 3.351]
[27]
MatteucciM, DangeliS, ErricoS, LamannaR, PerrottaG, AltamuraM M. Cold affects the transcription of fatty acid desaturases and oil quality in the fruit of Olea europaea L. genotypes with different cold hardiness. , 2011, 62: 3403-3420[本文引用:1][JCR: 5.364]
[28]
ZhangY M, WangC C, HuH H, YangL. Cloning and expression of three fatty acid desaturase genes from cold-sensitive lima bean (Phaseolus lunatus L. ). , 2011, 33: 395-401[本文引用:1][JCR: 1.683]
[29]
YangL, YeJ, GuoW D, WangC C, HuH T. Differences in cold tolerance and expression of two fatty acid desaturase genes in the leaves between fingered citron and its dwarf mutant. , 2012, 26: 1193-1201[本文引用:1][JCR: 1.685]
[30]
ShiJ L, CaoY P, FanX R, LiM, WangY F, MingF. A rice microsomal delta-12 fatty acid desaturase can enhance resistance to cold stress in yeast and Oryza sativa. , 2012, 29: 743-757[本文引用:1][JCR: 2.852]
[31]
周洲. 转脂肪酸去饱和酶基因PtFAD2和PtFAD3银腺杨84K的抗寒性研究. ZhouZ. The Cold Tolerance of Transgenic Populus alba × Populus gland ulossa 84K with Fatty Acid Desaturase Genes PtFAD2 and PtFAD3. , 2007 (in Chinese with English abstract)[本文引用:1]
[32]
HonjohK, MachidaT, HagisakoT, SugaK, YonekuraM, ShimizuH, OhashiN, MiyamotoT, HatanoS, LioM. Molecular Cloning and characterization of a cDNA for low-temperature indueible cytosolic glueose 6-PhosPhate dehydrogenase gene from Chlorella vulgaris and expression of the gene in Saceharomyces cerevisiae. , 2007, 172: 649-658[本文引用:1][JCR: 2.945]
[33]
Rodriguez-VargasS, Sanchez-GarciaA, Martinez-RivasJ M, PrietoJ A, Rand ez-GilF. Fluidization of membrane lipids enhances the tolerance of Saccharomyces cerevisiae to freezing and salt stress. , 2007, 73: 110-116[本文引用:1][JCR: 3.829]