删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于跟踪微分器的高超声速飞行器减步控制*

本站小编 Free考研考试/2021-12-25

高超声速飞行器具有可靠的快速运输和全球到达能力,使其在商业和军事领域均具有重要意义,世界各国广泛开展了高超声速飞行器的研制工作[1-2]。受其飞行环境与特殊气动构型影响,高超声速飞行器模型呈现强非线性,气动参数强不确定性,推力与气动耦合等特点[3-4]。因此,控制系统设计对实现其安全可靠飞行,完成设定任务起到十分关键的作用[5-6]
由于基于线性系统理论的设计方法存在建模与实际被控对象差距较大的缺点,尤其对于高超声速飞行器这一类具有强非线性特点的被控对象,线性系统方法已不再适用。因此,近年来在高超声速飞行器控制系统设计方面国内外文献大多采用非线性控制方法。文献[7]利用非线性动态逆方法设计鲁棒控制器,并利用随机鲁棒性分析其稳定性。文献[8]将自适应方法应用于动态逆控制器设计。文献[9]将滑模方法应用于高超声速飞行器控制,并利用有限时间积分方法证明稳定性。文献[10]将反步法引入高超声速飞行器控制系统设计,文献[11]在其基础上,设计在线自适应律,提出了高超声速飞行器的自适应反步法。文献[12-13]将反步法结合自适应神经网络,进一步提高系统鲁棒性。
在以上针对高超声速飞行器的控制系统设计方案中,反步法不仅对系统不确定性具有较强鲁棒性,且对系统非线性项不需附加约束、适应性强,因此得到了更为广泛的应用。
为解决传统反步法所带来的“微分爆炸”问题,文献[14]中提出了一种动态面控制方法,该方法通过引入若干一阶低通滤波器避免了对虚拟控制指令的直接微分,并在高超声速飞行器控制中得到广泛应用[15-16]。文献[15]运用动态面方法,并考虑执行机构饱和问题,设计高超声速飞行器控制器。文献[16]提出一种带有积分项的动态面控制器。
然而动态面方法中一阶滤波器的引入同样带来一些问题。首先,高超声速飞行器高度子系统相对阶为3,在运用反步法框架下的动态面方法时,需要3个设计步骤,且需设计2个低通滤波器。这在很大程度上增加了控制器复杂度。其次,动态面方法中一阶滤波器的引入不可避免的改变了名义虚拟控制指令,因此会带来一定误差。本文利用高阶跟踪微分器能够精确估计给定信号任意阶导数的能力[17],完成反步法中第1步虚拟控制量导数及二阶导数的精确计算,同时根据俯仰角与俯仰角速率之间简单的导数关系,可以直接在第2步中得到实际控制量的指令值。相比于传统动态面方法,将设计步骤从3步减少为2步。且省略了2个一阶滤波器的设计,在简化设计复杂度的同时,消除了滤波器所带来的误差,跟踪精度高于传统动态面方法。另外,在每一步设计中,将参数不确定和外部扰动带来的系统偏差视作等效干扰。采用扩张状态观测器对每一步等效干扰进行估计,并在控制器设计过程中进行干扰补偿。通过对比仿真,说明了本文所提方法的优越性。
1 模型建立及问题描述 1.1 飞行器动力学模型 考虑文献[18]中提出的面向控制的吸气式高超声速飞行器纵向动力学模型为
(1)

式中:mIyyg分别为飞行器质量、绕机体系y轴转动惯量、重力加速度。高超声速飞行器纵向运动模型包含6个状态:高度(h)、速度(V)、弹道倾角(γ)、迎角(α)、俯仰角(θ)、俯仰角速率(q);2个控制输入:燃料当量比(Φ)、升降舵偏角(δe)。TDLM分别为高超声速飞行器发动机推力、气动阻力、升力、俯仰力矩,且具有以下形式:
(2)

其中:q=0.5ρV2为动压,ρ为大气密度;S为飞行器参考面积;c为平均气动弦长;zT为推力对俯仰力矩的耦合系数;CT, ΦCTCLCDCM为推力及气动力相关系数,其定义如下:
(3)

式中:带上标的各变量为曲线拟合系数,其取值可参考文献[18]。
1.2 控制问题描述 高超声速飞行器的控制目标为跟踪给定的高度指令(hd)与速度指令(Vd)。现有文献中,通常将飞行器纵向动力学模型划分为高度子系统与速度子系统[8, 19],并分别以升降舵偏角(δe)及燃料当量比(Φ)为控制输入。这样,将问题转化为2个单输入单输出非线性系统的跟踪控制问题。
在高度子系统设计中,以弹道倾角指令γd代替高度指令hd作为高度子系统的跟踪信号[20]。定义高度跟踪误差为zh=hhd, 对其求导可得,则弹道倾角指令γd可设计为
(4)

式中:kh>0为控制增益。
在下面的设计中,均以弹道倾角指令代替高度指令。为了将高度子系统变换为严反馈形式,对模型作以下假设:
假设1??弹道倾角方程和俯仰角速率方程中的推力项的影响均视作干扰考虑。
针对高度子系统,将状态变量定义为x=[x1, x2, x3]T=[γ, θ, q]T。基于上述假设,建立如下严反馈形式的高度子系统模型:
(5)

(6)

(7)

式中:Iyyu=δe为高度子系统的控制输入;d1d2分别为对应方程中的等效干扰项。
针对速度子系统,建立如下模型:
(8)

式中:
从式(8) 给出的整理后的速度子系统模型可以看出,该子系统相对阶为1,本文中采用动态逆方法设计控制器。从式(5)~式(7) 给出的整理后的高度子系统可以看出,该子系统相对阶为3,通常的动态面控制方法,需要分3步设计。本文提出一种基于跟踪微分器的减步控制方案,可有效减少控制器的设计步骤,并提高跟踪精度。
2 高阶跟踪微分器设计 设计如下跟踪微分器(Tracking Differentiator, TD):
(9)

式中:Ra1a2a3为待设计的正常数;φ为TD的输入信号;v1v2v3为TD的状态变量,且分别为的估计值。TD的收敛性由引理1给出。
引理1[21]??对于式(9) 中给出的线性高阶跟踪微分器,若矩阵

为正定矩阵,且输入信号φ:[0, ∞)→R满足为任意正常数。则对于任意0<aT,当R→∞时,v1v2v3在区间[a, T]内一致收敛于, TD的初值(v10, v20, v30)任意给定。
根据引理1,对于有界输入信号φ,式(9) 中所设计的TD在保证矩阵A正定前提下,满足:
(10)

3 控制器设计 3.1 高度子系统干扰抑制减步控制方案 在1.2节中,已经通过变换将高度子系统表达为相对阶为3的严反馈形式,跟踪信号为弹道倾角。本节采用基于高阶跟踪微分器的减步方案,设计控制器。
步骤1??为了实现对弹道倾角指令的跟踪,定义该步的动态面为S1=x1γd,由式(5) 可得
(11)

x2为该步的虚拟控制输入,设计名义虚拟控制指令x2d
(12)

式中:k1>0为待设计增益常数;z1=S1e, =-T1e+g1δ1δ1为跟踪微分器对名义虚拟控制指令的估计误差,即第2步中实际采用的虚拟控制指令信号与名义值x2d的差,将在下文中给出。在实际问题中,干扰信号d1为不可测量,引入扩张状态观测器(Extended State Observer, ESO)获得对未知干扰的估计值。ESO设计如下:
(13)

式中:Z11Z12为ESO状态;=Z12β11β12为ESO增益。函数fal1定义为
(14)

将步骤1中的名义虚拟控制指令x2d通过式(9) 中设计的跟踪微分器,即
(15)

在后续设计中,采用v1作为实际虚拟控制指令,因此δ1=v1x2d。跟踪微分器的收敛性由引理1保证,因此δ1能在很短时间内趋近于0。
步骤2??本步的设计目标为实现对实际虚拟控制指令v1的跟踪。定义该步的动态面为S2=x2v1,由式(6) 可得
(16)

x3为该步的虚拟控制输入,设计名义虚拟控制指令x3d
(17)

式中:k2>0为待设计增益常数。对x3d直接求导可得
(18)

从式(18) 可以看出,借助微分器的作用,x3d的导数可以精确获得,而不需要重新设计一个微分器或滤波器去获得该步名义虚拟控制律的导数,这给控制设计带来了较大便利。
在得到之后,定义俯仰角速率的跟踪误差为S3=x3x3d,则由式(7) 可得S3的导数为
(19)

与步骤1中类似,采用ESO获得对未知干扰的估计值。ESO设计如下:
(20)

式中:Z21Z22为ESO状态;为ESO增益。函数fal2定义如下:
(21)

由上述ESO获得等效干扰估计值后,实际控制输入即升降舵偏角的指令设计如下:
(22)

式中:k3>0为控制器增益。
显然本节中所给出的减步控制方案从设计步骤上对传统动态面方法进行了简化。进一步分析,传统动态面方法通常在每个设计步骤最后,将各名义虚拟控制指令通过一阶惯性环节,获得实际虚拟控制指令及其一阶导数。此方法虽然解决了反步法中的“微分爆炸”问题,然而一阶惯性环节的加入使得实际虚拟控制指令与名义虚拟控制指令间存在一定误差,因此动态面方法在一定程度上牺牲了收敛速度与控制精度。本文中的减步控制方案采用跟踪微分器跟踪名义控制指令,并获得其精确导数值,因此在收敛速度与跟踪精度上优于动态面方法。
3.2 速度子系统动态逆控制器设计方案 速度子系统控制器采用动态逆设计方法。定义速度跟踪误差为zV=VVd。考虑式(8),则速度跟踪误差的导数为
(23)

设计速度子系统控制律如下:
(24)

式中:kV>0为控制器增益。
4 稳定性证明 4.1 高度子系统稳定性证明 在3.1节中,采用干扰抑制减步方案设计了高度子系统控制器,本小节对该方法进行稳定性证明。
定义Lyapunov函数为
(25)

对其求导可得
(26)

实际的系统状态x2x3可以表示为
(27)

(28)

依据式(27) 和式(28) 计算得到z1S2S3的导数分别为
(29)

(30)

(31)

将式(29)~式(31) 代入式(26),得到沿着系统轨迹的Lyapunov函数的导数如下:
(32)

利用Young不等式,可以得到以下不等式关系:
式中:b11>0和b12>0均为可设计的常数。将上述不等式关系代入式(32) 可以得到
(33)

选择则式(33) 中Lyapunov函数的导数可以表达为
(34)

式中:ω0=
通过合理选择2个扩张状态观测器的参数,可以实现对γ回路及q回路等效干扰的快速精确估计,从而使的ε0在很短时间内收敛到原点附近的很小邻域内。控制增益ki(i=1, 2, 3) 的设计保证了ω0>0,ω0越大,对于干扰的抑制效果越好,跟踪精度越高。由以上关于ω0ε0的分析结果可知,z1S2S3一致毕竟有界稳定。又由引理1,在参数选择合理的情况下,高阶跟踪微分器所带来的第1步虚拟控制指令的改变δ1有限时间收敛到0,因此S1也是一致毕竟有界稳定的。从上面分析可以看出,闭环系统所有信号稳定,且通过选择参数,能快速收敛到原点的领域内。
4.2 速度子系统稳定性证明 在3.2节中,采用动态逆方法设计了速度子系统控制器,本小节对该方法进行稳定性证明。
定义如下Lyapunov函数:
(35)

对其求导可得
(36)

将式(23) 及式(24) 代入式(36),可得
(37)

因此,速度子系统一致渐进稳定。
5 仿真验证 为了验证所提控制方案,本节对该方案开展数值仿真验证。仿真模型采用式(1) 及式(2) 给出的全量非线性模型。控制目标是实现对给定速度和高度信号的跟踪,其中高度指令信号为通过2个二阶指令滤波器的两次阶跃信号,2个指令滤波器的自然频率和阻尼比分别为ωfh=0.3,ξfh=0.95。速度指令为通过2个二阶指令滤波器的一次阶跃信号,2个指令滤波器的自然频率和阻尼比分别为ωfV=0.1,ξfV=0.95。飞行器初始状态为V0=2 347.6 m/s,h0=25 908 m, γ0=0°。在此状态进行配平计算可得α0=0.92°, θ0=0.92°, q0=0 (°)/s, δe=3.36°, Φ=0.08。
选择控制器增益为k1=0.8, k2=2.5, k3=2.8,kV=1.1;选择跟踪微分器增益为a1=0.5, a2=0.2, a3=0.3, R=0.05;选择扩张状态观测器参数为β11=β12=30, β2122=10, λ1=λ2=0.8, ε1=ε2=0.001。仿真中考虑系统参数不确定性为等效干扰,假设实际气动参数CLα, CT3, CT2, CT1, CT0, CTΦα3, CTΦα2, CTΦα, CTΦ各自与其名义值之间相差25%,实际气动参数CMα, CMα2, CMδe各自与其名义值之间相差30%,并加入0.5°的风干扰附加迎角。仿真结果如图 1~图 5所示。
图 1 减步控制方案弹道倾角跟踪曲线 Fig. 1 Flight path angle tracking curves with reduced step control scheme
图选项




图 2 减步控制方案虚拟控制指令曲线 Fig. 2 Virtual control signal curves with reduced step control scheme
图选项




图 3 减步控制方案俯仰角与俯仰角速率跟踪曲线 Fig. 3 Pitch angle and pitch angle rate tracking curves with reduced step control scheme
图选项




图 4 等效干扰观测曲线 Fig. 4 Observed curves of equivalent disturbances
图选项




图 5 速度跟踪曲线 Fig. 5 Velocity tracking curves
图选项




图 1给出了弹道倾角跟踪曲线,可以看出本文提出的减步控制方案实现了闭环系统对弹道倾角指令的精确跟踪。对弹道倾角跟踪精度影响较大的因素主要包括2个:一是将步骤1名义指令通过微分器计算导数所带来的步骤2名义指令信号的改变;二是不确定及干扰带来的影响。从图 1结合图 2图 4可以看出,由于跟踪微分器对名义指令信号及其导数的精确估计,以及扩张状态观测器对干扰信号的精确估计,这两方面影响都得到了很好的抑制,从而实现了对弹道倾角指令的精确跟踪。图 2给出了步骤1虚拟控制指令名义值和实际值(即x2dv1)的对比曲线。可以看出,微分器状态v1在很短时间内就精确收敛到x2d上,从而验证了跟踪微分器的效果。图 3给出了俯仰角与俯仰角速率跟踪曲线,仿真结果说明这2个变量均实现了对指令信号的精确跟踪。图 4给出了等效干扰d1d2的估计曲线,通过扩张状态观测器,实现了对等效干扰的精确估计。图 5为速度跟踪曲线,可以看出速度回路对参考信号具有很快的响应能力,实现了对速度参考指令的精确跟踪。
通过上述数值仿真,验证了本文所提减步控制方案完成了预设的控制目标,实现了对给定指令信号的精确跟踪。为了对比本文所提方法与基于一阶滤波器的传统动态面控制方法的性能,下面开展对比仿真验证。在对比仿真验证中,步骤1与步骤2的名义虚拟控制指令分别为x2dx3d,实际虚拟控制指令可由以下一阶滤波器获得:
(38)

式中:T2T3分别为滤波器时间常数,仿真中选取T2=T3=8。对比仿真中考虑的动力学模型不确定性与上一步仿真中相同。在传统动态面控制方案中,同样采用扩张状态观测器实现对不确定、干扰以及忽略项所组成的等效干扰的估计并在每一步控制器设计中消除等效干扰的影响。另外传统动态面仿真中每一步所采用的控制增益与减步控制仿真方案中相同。
图 6~图 8给出了减步控制方案与传统动态面控制方案的对比仿真结果。
图 6 弹道倾角跟踪对比 Fig. 6 Comparison of flight path angle tracking
图选项




图 7 弹道倾角、俯仰角与俯仰角速率跟踪误差对比 Fig. 7 Comparison of flight path angle, pitch angle and pitch angle rate tracking error
图选项




图 8 升降舵偏角对比 Fig. 8 Comparison of elevator deflection
图选项




图 6给出了弹道倾角跟踪的对比曲线,图 7为弹道倾角、俯仰角与俯仰角速率跟踪误差对比曲线。图 8给出了2种方案下升降舵偏角的对比曲线。从对比仿真结果可以看出,由于减步控制方案中跟踪微分器对名义指令信号及其导数的精确估计,使得该方案的收敛速度和跟踪精度均高于传统动态面控制方案。另外从图 8中可以看出,采用减步控制方案所需的升降舵偏角略大于传统动态面控制,但均处于最大舵偏允许范围之内。
6 结论 1) 通过在传统动态面方法中加入高阶跟踪微分器,避免每一步都需要计算上一步名义虚拟控制变量导数的问题,将设计步骤从3步减小为2步,有效降低了控制系统复杂度。
2) 所提控制方案避免引入传统动态面控制中的低通滤波器。从而避免了实际虚拟控制量与名义虚拟控制量改变所带来的误差,提高了跟踪精度。
3) 将气动参数不确定性,外部扰动以及忽略项视作等效干扰,利用扩张状态观测器对其进行精确估计,并在控制中进行补偿。有效提高了控制器对不确定与干扰抑制能力。
4) 利用Lyapunov理论给出了闭环系统一致毕竟有界稳定的证明,并通过数值仿真说明了所提方案的优越性。

参考文献
[1] RODRIGUEZ A A, DICKESON J J, CIFDALOZ O, et al. Modeling and control of scramjet-powered hypersonic vehicles:Challenges, trends, & tradeoffs:AIAA-2008-6793[R].Reston:AIAA, 2008.
[2] LAMORTE N, FRIEDMANN P P, DALLE D J, et al. Uncertainty propagation in integrated airframe-propulsion system analysis for hypersonic vehicle[J].Journal of Propulsion and Power, 2015, 31(1): 54–68.DOI:10.2514/1.B35122
[3] DICKESON J J, RODRIGUEZ A A, SRIDHARAN S, et al.Control-relevant modeling, analysis, and design for scramjet-powered hypersonic vehicle:AIAA-2009-7287[R].Reston:AIAA, 2009.
[4] KARLGARD C D, MARTIN J G, TARTABINI P V, et al.Hyper-X Mach 10 trajectory reconstruction:AIAA-2005-5920[R].Reston:AIAA, 2005.
[5] MORELLI E A. Flight test experiment design for characterizing stability and control of hypersonic vehicles[J].Journal of Guidance, Control, and Dynamics, 2009, 32(3): 949–959.DOI:10.2514/1.37092
[6] 孙长银, 穆朝絮, 余瑶. 近空间高超声速飞行器控制的几个科学问题研究[J].自动化学报, 2013, 39(11): 1901–1913.
SUN C Y, MU Z X, YU Y. Some control problem for near space hypersonic vehicles[J].Acta Automatica Sinica, 2013, 39(11): 1901–1913.(in Chinese)
[7] WANG Q, STENGEL R F. Robust nonlinear control of a hypersonic aircraft[J].Journal of Guidance, Control, and Dynamics, 2000, 23(4): 577–585.DOI:10.2514/2.4580
[8] FIORENTINI L, SERRANI A, BOLENDER M A, et al. Nonlinear robust adaptive control of flexible air-breathing hypersonic vehicles[J].Journal of Guidance, Control, and Dynamics, 2009, 32(2): 401–416.
[9] SUN H B, LI S H, SUN C Y. Finite time integral sliding model control of hypersonic vehicles[J].Nonlinear Dynamics, 2013, 73(1/2): 229–244.
[10] 刘燕斌, 陆宇平. 基于反步法的高超音速飞机纵向逆飞行控制[J].控制与决策, 2007, 22(3): 313–317.
LIU Y B, LU Y P. Longitudinal inversion flight control based on backstepping for hypersonic vehicle[J].Control and Decision, 2007, 22(3): 313–317.(in Chinese)
[11] 黄喜元, 王青, 董朝阳. 基于Backstepping的高超声速飞行器鲁棒自适应控制[J].系统工程与电子技术, 2011, 33(6): 1321–1326.
HUANG X Y, WANG Q, DONG C Y. Robust adaptive control of hypersonic vehicles via Backstepping method[J].Systems Engineering and Electronics, 2011, 33(6): 1321–1326.(in Chinese)
[12] XU B, GAO D X, WANG S X. Adaptive neural control based on HGO for hypersonic flight vehicles[J].Science China Information Sciences, 2011, 54(3): 511–520.DOI:10.1007/s11432-011-4189-8
[13] XU B, FAN Y H, ZHANG S M. Minimal-learning-parameter technique based adaptive neural control of hypersonic flight dynamics without back-stepping[J].Neurocomputing, 2015, 164(C): 201–209.
[14] SWAROOP D, HEDRICK J K, YIP P P, et al. Dynamic surface control for a class of nonlinear systems[J].IEEE Transactions on Automatic Control, 2000, 45(10): 1893–1899.DOI:10.1109/TAC.2000.880994
[15] XU B, HUANG X Y, WANG D W, et al. Dynamic surface control of constrained hypersonic flight models with parameter estimation and actuator compensation[J].Asian Journal of Control, 2014, 16(1): 162–174.DOI:10.1002/asjc.2014.16.issue-1
[16] WASEEM A B, LIN Y, KENDRICK A S. Adaptive integral dynamic surface control of a hypersonic flight vehicle[J].International Journal of Systems Science, 2015, 46(10): 1717–1728.DOI:10.1080/00207721.2013.828798
[17] 韩京清, 王伟. 非线性跟踪微分器[J].系统科学与数学, 1994, 14(2): 177–183.
HAN J Q, WANG W. Nonlinear tracking-differentiator[J].Journal of Systems Science and Mathematical Science, 1994, 14(2): 177–183.(in Chinese)
[18] PARKER J T, SERRANI A, YURKOVICH S, et al. Control-oriented modeling of an air-breathing hypersonic vehicle[J].Journal of Guidance, Control, and Dynamics, 2007, 30(3): 856–869.DOI:10.2514/1.27830
[19] XU B, SHI Z K. An overview on flight dynamic and control approaches for hypersonic vehicles[J].Science China Information Sciences, 2015, 58(7): 1–19.
[20] FIORENTINI L, SERRANI A. Adaptive restricted trajectory tracking for a non-minimum phase hypersonic vehicle model[J].Automatic, 2012, 48(7): 1248–1261.DOI:10.1016/j.automatica.2012.04.006
[21] GUO B Z, ZHAO Z L. On convergence of tracking differentiator[J].International Journal of Control, 2001, 84(4): 693–701.


相关话题/控制 设计 干扰 方案 信号

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 基于多普勒频率差的拖曳式诱饵干扰检测*
    拖曳式诱饵干扰是一种针对采用单脉冲测角技术雷达的有效干扰方法,被保护飞机通过拖曳线将动力和调制信号传送到诱饵。诱饵与目标均处于雷达探测主波束内,形成双点源非相干干扰[1],实现对单脉冲雷达的角度欺骗干扰。诱饵通过拖曳线与飞机相连,能够逼真模拟目标的飞行及散射特征,且与目标同处于雷达分辨单元内,使得雷 ...
    本站小编 Free考研考试 2021-12-25
  • 非仿射参数依赖LPV模型的变体飞行器H控制*
    变体飞行器是一种可以大尺度改变自身气动外形的飞行器,这种能够改变外部结构的能力使其可以替代多种不同型号的飞机,因此能够实现全范围大包线下的最优气动外形飞行,而不只局限于单一的飞行作战任务。这种既能解决前期合理优化配置的气动外形,又能与后期多任务执行相悖的新概念飞行器成为了当今世界各国竞相研究的对象[ ...
    本站小编 Free考研考试 2021-12-25
  • 一种腿臂融合四足机器人设计与分析*
    长期以来,多足步行机器人是国内外机器人领域研究的热点之一。相对于轮式机器人和履带式机器人,多足步行机器人由于其非连续支撑的特点,具有极强的地形适应性和运动灵活性[1]。相对于双足机器人,四足机器人具有更好的承载能力和稳定性,且比六足机器人结构简单,易于控制[2]。从工程角度,综合研发成本、制作难易度 ...
    本站小编 Free考研考试 2021-12-25
  • 电磁航天器编队位置跟踪自适应协同控制*
    卫星编队利用成员卫星间的协同工作可以实现传统单颗卫星难以完成的任务[1]。由于基于冲量原理的推力器在进行卫星编队轨道控制时具有存在光学污染和寿命有限等诸多问题[2],利用卫星之间的电磁力实现相对轨道的控制受到了众多****的关注[2-12]。电磁航天器编队通过改变各成员卫星电磁线圈的电流可以改变电磁 ...
    本站小编 Free考研考试 2021-12-25
  • 调频多普勒引信抗调幅干扰性能分析*
    战场复杂电磁环境对无线电引信的抗干扰能力提出了更高的要求,要求无线电引信必须能够对抗压制式与欺骗式干扰。研究调频引信的抗干扰性能对这类体制引信的发展都具有重要的意义。目前国内外文献中,有很多关于无线电引信及其抗干扰性能的研究[1-10]。文献[11]利用模糊函数来研究调频连续波引信的抗干扰性能,文献 ...
    本站小编 Free考研考试 2021-12-25
  • 一种多阶段交互式线索驱动的设计模式识别方法*
    Gamma总结了经典的软件设计框架,归纳为结构型、创建型及行为型3类共23个设计模式,并被广大IT从业人员所推崇。而设计模式检测有利于软件的维护与再工程,是当前程序理解领域研究的热点[1]。当前,众多****在设计模式恢复的技术、方法等方面做出了贡献[2-4]。Fontana等[5-6]将设计模式参 ...
    本站小编 Free考研考试 2021-12-25
  • 基于随机森林的航天器电信号多分类识别方法*
    航天器进入轨道飞行阶段以后,完全工作在高真空、冷黑和太阳辐照强烈的环境中,航天器一次发射以后,在目前的技术水平上,不可能进行在轨维修,因此需要对可能出现的故障进行诊断和预测[1]。由于航天器电子负载系统内部元器件非线性化的高度耦合,且是一种开放性时变系统,使得其有着不确定且较为复杂的整体构造,导致经 ...
    本站小编 Free考研考试 2021-12-25
  • 基于压缩感知的单脉冲雷达欺骗干扰机研究*
    在现代战场环境中,雷达电子对抗是一种非常重要的手段,能否掌握雷达战争的主动权关系到一场战役甚至一场战争的胜利。单脉冲雷达是一种精确测角雷达,具有数据速率高、抗干扰能力强的优点,广泛应用于各种雷达系统和主动雷达制导导弹中,因此单脉冲雷达电子对抗技术,特别是对单脉冲雷达进行角度干扰是电子对抗领域的一个重 ...
    本站小编 Free考研考试 2021-12-25
  • 无直流分量干扰的自适应锁频环同步优化方法*
    并网同步是新能源发电系统通过换流器允许接入电网的基本条件之一。同步即保证换流器输出电压与电网电压频率相同、相角相同和幅值相同。锁相环(Phase-LockedLoop,PLL)被广泛应用于并网同步方案中[1-2]。理想的PLL应该在电网电压扰动的情况下仍然能够准确和快速地跟踪到电网基波相位信号。三相 ...
    本站小编 Free考研考试 2021-12-25
  • 基于虚拟域预测控制的轨迹跟踪方法*
    随着计算机计算性能的提高,标称制导律成为国内外****研究的热点,其已被广泛应用到高超声速飞行器(HypersonicVehicle,HV)的再入制导[1-3]、航空器的航迹制导[4-8]、弹道导弹的制导[9-11]、外星球的登陆[12-16]等领域中。标称制导律的研究主要分为2个部分[17]:一是 ...
    本站小编 Free考研考试 2021-12-25