删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

复合材料仿骨缝齿接结构建模与力学特性分析*

本站小编 Free考研考试/2021-12-25

复合材料结构在使用过程中,需在复合材料-复合材料结构或复合材料-金属结构间使用连接结构。传统机械连接结构通常采用刚度与强度较大的钛合金连接件,其自身热、力学性能与复合材料本身有着较大差异,由于开孔与连接件性能匹配问题,承载时会在连接区域产生应力集中现象[1];且在连接件安装过程中,对复合材料结构的钻孔加工会产生结构初始损伤,进一步恶化结构的承载能力,最终导致灾难性后果。
在生物界,同样存在着类似复合材料结构的连接问题。以骨制结构为例,其由钙质与胶原纤维按照特定排布规律构成,同样具备高比刚度、比强度等优异力学性能。当2块骨质结构相连接时,并未采用工业复合材料结构的“硬”连接方法,而是通过生物结构中的骨缝齿接界面[2-4]这样特殊的几何齿接构型进行连接,从而获得了良好的连接与承载特性。
该类连接结构在生物力学层面所表现出的优异性能,引起了包括力学界在内的研究人员广泛关注。研究表明,对于骨缝连接机制,其齿接构件的几何、材料性能,齿间界面的承载、破坏特性以及层级数量等参数都会影响连接结构自身的力学性能[5-10]。Jasinoski等[11]从工程应用方面研究了胶层界面属性及齿顶角度对齿接结构应力分布的影响;Boyce和Li[12-14]等则对自然齿接结构胶层界面几何外形与基本力学性能的相互作用机理进行了一系列研究。然而对于结构参数与其力学性能间的联系及其在复合材料连接上的应用鲜有文献报道。
仿生齿接结构模型的参数化表述是研究该类连接结构失效机制的基础,由于结构层级、几何结构参数的复杂性,传统手工建模手段已不再适应。本文以几种典型骨缝齿接构型为研究对象,基于分形几何理论,构建骨缝齿接构型参数化表述方法;通过Python语言对ABAQUS进行二次开发,完成骨缝齿接结构的数值模型建立,并对复合材料齿接结构在拉伸条件下的力学特性进行了研究。
1 骨缝齿接结构参数化建模 1.1 几何外形参数描述 典型三角骨缝齿接结构如图 1(a)所示,齿顶角度与齿高等参数决定了其几何构型;对于单级多齿结构,如图 1(b)~图 1(d)所示,齿接基线(直线、正弦曲线)也会影响几何构型;图 1(e)为多层级齿接结构。由此可见,对于齿接结构的几何外形可以由齿顶角θ、齿高h、齿数n、间隔d、层级D和基线类型6个关键参数确定,而当齿接基线为正弦曲线时,关键参数还应包括幅值和周期,由泰勒级数可知,以上典型齿接结构可以扩展表达不同基线条件下的齿接结构类型,因此对自然齿接结构的表述具有普适性。
图 1 典型骨缝齿接结构示意图 Fig. 1 Schematic diagram of typical suture joint structure
图选项




1.2 基于分形原理与MATLAB的齿接结构几何构型表述 为了对齿接结构特别是层级齿接结构的几何构型进行参数化表述,本文采用了基于Koch曲线的分形原理,并结合MATLAB编制了控制模型参数的图形用户界面(Graphical User Interface,GUI)。
由齿接结构参数分析可知,对于齿顶角θ、齿高h、齿数n、间隔d和基线类型参数,可以基于MATLAB编制程序进行表达,而如何表述齿接结构的层级特性则是该类模型构建的难点。
由Koch曲线分形原理可知:设一个边长为1的等边三角形,取每边中间的三分之一,连接一个形状完全相似的但边长为其三分之一的三角形,结果是一个六角形。现在取六角形的每个边做同样的变换,即在中间三分之一位置连接更小的三角形,以此重复,直至无穷。外界的变得原来越细微曲折,形状接近理想化的雪花。本文借鉴该原理并加以改动,改为齿顶角为θ的等腰三角形,且只取两腰进行变换:取每边中间的三分之一,连接一个形状相似的但边长为其三分之一的无底边的三角形,以此重复,直至达到所需齿接层级。所以齿接层级即是该分形过程的分形维度。
因此,齿接结构几何构型表述的关键是确定控制点的坐标,当基线类型为直线时,可以通过解析方法求解控制点坐标,而当基线类型为正弦曲线时,则需要求解超越方程。齿顶角、齿高确定后,等腰三角形底边长度便确定,该底边左端点坐标已知,右端点坐标既满足底边长度一定,又满足在正弦曲线上,这是一个超越方程组,可由MATLAB进行方程求解。
几何构型表述程序流程如图 2所示。基线类型为直线且D=1时,调用子程序line_function1;基线类型为直线且D≥2时,调用子程序line_function2;基线类型为正弦曲线且D=1时,调用子程序sin_function1;基线类型为正弦曲线且D≥2时,调用子程序sin_function2。
图 2 几何构型表述程序流程图 Fig. 2 Program flowchart of geometric shape generation
图选项




为了方便后续输入参数,创建MATLAB的GUI。首先选择基线类型(直线或正弦曲线),基线类型为直线且D=1时,控制参数为齿数、齿顶角和齿高;直线且D≥2时,控制参数为层级、齿数、齿顶角、齿高和间隔;基线为正弦曲线且D=1时,控制参数为齿数、齿顶角、齿高和幅值和周期;为正弦曲线且D≥2时,控制参数为层级、齿数、齿顶角、间隔、幅值和周期。
GUI生成的几种不同分形结果如图 3所示,其中图 3(a)展示了基线类型为直线、层级为4、齿数为4的齿接结构示意图。
图 3 GUI界面生成分形结果 Fig. 3 Fractal outline generated through GUI
图选项




通过GUI输入齿接结构几何外形的关键参数,就可以输出平面外形图,并将齿接结构的几何关键点导出到inp文件,为ABAQUS参数化建模提供数据,并为后续分析不同参数对齿接结构力学性能的影响奠定基础。
1.3 基于Python语言的齿接结构参数化建模 Python是一种面向对象的脚本语言,它功能强大,既可以独立运行,也可以用作脚本语言,特别适用快速的应用程序开发[15]。本文对ABAQUS前处理进行二次开发,综合运用了MATLAB和Python语言控制ABAQUS的建模与装配过程。利用GUI,让用户方便地输入有关参数,得到各种所需的齿接结构并输出几何关键点坐标,然后通过Python语言编写前处理程序自动读取这些数据点坐标进行建模和装配,有效地解决了建模时的繁琐、易错等问题,提高了建模效率与精度。图 4所示为基于ABAQUS有限元分析软件构建的几种齿接结构有限元模型(FEM)。
图 4 GUI生成的骨缝齿接结构有限元模型 Fig. 4 FEM of suture joint structure generated by GUI
图选项




2 复合材料齿接结构力学行为 2.1 齿接结构几何外形 为了比较研究,共设计7个齿接结构,长、宽、厚均相同(长96mm,宽40mm,厚度5mm),关键参数如表 1所示。
表 1 骨缝齿接结构关键参数 Table 1 Key parameters of suture joint structure
齿数齿顶角/(°)基线类型层级
930直线1
945直线1
960直线1
1545直线1
1545正弦曲线1
545直线2
545直线3


表选项






2.2 有限元模型 为了研究齿接结构的拉伸响应过程,选取短纤维增强光固化环氧树脂基复合材料作为齿接结构材料,该材料各向同性且线弹性较好,便于分析拉伸过程中结构自身几何特性对其连接、承载机制的影响,其材料参数见表 2。齿接结构结合处通过环氧树脂胶黏剂胶接,此处采用零厚度内聚力(cohesive)单元模拟齿接界面,其材料参数见表 3[16]
表 2 骨缝齿接结构材料参数 Table 2 Material parameters of suture joint structure
材料参数弹性模量/MPa泊松比
数值116 0000.3


表选项






表 3 内聚力材料参数[16] Table 3 Material parameters of cohesive element[16]
MPa
材料参数KnnKssKtt
数值491 000264 500264 500
注:Knn-法向刚度;Kss-1方向刚度;Ktt-2方向刚度。


表选项






齿接结构界面由于复杂的几何形貌导致其应力分布和失效机理复杂化。为了准确表达这种连接结构的渐进损伤行为,使用混合模式(mixed-mode)内聚力单元来描述界面力学行为。式(1)为初始损伤控制方程,式(2)为损伤扩展控制方程。
(1)

(2)

式中:〈εn〉为法向平均应变;εn0为弹性变形段法向峰值应变;εs为1方向应变;εs0为弹性变形段1方向峰值应变;εt为2方向应变;εt0为弹性变形段2方向峰值应变;Gn为法向能量释放率;Gnc为法向能量释放率临界值;Gs为1方向能量释放率;Gsc为1方向能量释放率临界值;Gt为2方向能量释放率;Gtc为2方向能量释放率临界值。
对于双剪拉伸-分离准则,内聚力界面失效应力见表 4;各方向的临界失效位移假设为0.2 mm。
表 4 内聚力界面失效应力 Table 4 Failure stress for cohesive interface
名义应力法向1方向2方向
数值/MPa553030


表选项






本节的有限元模型用ABAQUS/Standard求解。复合材料齿接结构单元类型采用三维实体八节点减缩积分单元C3D8R、结合处采用三维八节点内聚力单元COH3D8。同时,内聚力单元与实体单元之间使用面面接触来模拟理想黏结及胶层失效。
2.3 结果分析及讨论
2.3.1 齿顶角的影响 不同齿顶角齿接结构的载荷-位移曲线如图 5(a)所示。各结构载荷-位移曲线在初始阶段重合,随着界面损伤的产生,曲线开始分离,载荷达到峰值后部件承载能力下降。其中,30°齿顶角的最大载荷较其他结构高出近30%。这是由于较小的齿顶角会使得界面接触面积增大;而当考虑界面等效应力(载荷/接触面积)与结构位移的关系时(如图 5(b)所示),可见小齿顶角结构的等效应力较其他较大角度的等效应力小。这解释了为什么自然界中的齿接结构通常有较小的齿顶角。
图 5 齿顶角不同的骨缝齿接结构载荷-位移曲线、等效应力-位移曲线 Fig. 5 Curves of load-displacement and equivalent stress-displacement for suture joint structure with different tooth angles
图选项





2.3.2 基线类型的影响 不同基线类型齿接结构的载荷-位移曲线、等效应力-位移曲线如图 6所示。基线类型采用正弦曲线的齿接结构,其最大载荷比直线结构的高出近60%,最大等效应力却只高出不到20%。这是因为基线类型是正弦曲线时,齿接结构具有互锁能力,同时接触面积也更大。
图 6 不同基线类型骨缝齿接结构载荷-位移曲线、等效应力-位移曲线 Fig. 6 Curves of load-displacement and equivalent stress-displacement for suture joint structure with different baseline types
图选项




此外,不同基线类型齿接结构内聚力单元损伤(SDEG)过程如图 7所示。当结构界面基线类型为直线时,界面各处损伤同步产生与扩展;而采用正弦曲线基线时,界面各处破坏程度出现差别,从而避免了界面瞬时破坏所带来的结构承载能力突降,也使得结构具有了更好的损伤容限特性,这也解释了自然界齿接结构基线以曲线为主的原因。
图 7 不同基线类型骨缝齿接结构内聚力单元损伤过程 Fig. 7 Damage evolution of cohesive element for suture joint structure with different baseline types
图选项





2.3.3 层级的影响 不同层级齿接结构的应力(SMises)分布如图 8(a)所示,可以看出,结构最大应力与平均应力的比值均小于2,但1级结构出现了沿着自由端的应力集中,这将导致齿接结构可能出现初始损伤。另一方面,高层级齿接结构内聚力单元界面处的应力集中表明结构初始破坏主要由界面几何属性决定。
图 8 不同层级骨缝齿接结构应力分布、载荷-位移曲线 Fig. 8 Stress distribution and load-displacement curves for suture joint structure with different hierarchies
图选项




不同层级齿接结构的载荷-位移曲线如图 8(b)所示,发现1级齿接结构的最大载荷较其他2种结构都低。这是因为1级齿接结构缺少自锁能力,载荷全部由内聚力单元界面承受,但由于界面强度相对较低,因此结构整体承载能力较低。
高层级的齿接结构由于具有界面自锁能力,载荷通过挤压、剪切转移到其他部位,延迟了界面损伤,提升了结构的完整性,使得其最大承载能力有显著提升。
3 结论 本文构建了齿接结构参数化数值分析模型,并采用该模型研究了复合材料齿接结构在拉伸载荷作用下的力学特性,数值模型研究结果表明:
1)低层级齿接结构的承载能力随着齿顶角度减小而增大,且齿间界面初始损伤首先发生在自由边位置。
2)当齿基线类型为正弦曲线时,结构由于自锁特性,使得承载能力明显提高。
3)对于高层级齿接结构,其结构强度及损伤容限由于界面自锁能力的提高而显著提升。
本文研究结果初步揭示了自然进化过程中齿接结构的演化规律所对应的力学性能提高过程,并为进一步研究复合材料仿生齿接结构的复杂力学行为与结构优化提供了研究基础。

参考文献
[1] 赵美英.复合材料机械连接失效分析及强度影响因素研究[D].西安:西北工业大学, 2006:4-6.ZHAO M Y.Failure analysis of composite mechanically fastened joints and study of effects on failure strength[D].Xi'an:Northwestern Polytechnical University, 2006:4-6(in Chinese).http://cdmd.cnki.com.cn/Article/CDMD-10699-2007035477.htm
[2] SAUNDERS W B, WORK D M. Shell morphology and suture complexity in upper carboniferous ammonoids[J].Paleobiology, 1996, 22(2): 189–218.DOI:10.1017/S0094837300016171
[3] SONG J H, REICHERT S, KALLAI L, et al. Quantitative microstructural studies of the armor of the marine threespine stickleback (gasterosteus aculeatus)[J].Journal of Structural Biology, 2010, 171(3): 318–331.DOI:10.1016/j.jsb.2010.04.009
[4] JASLOW C R, BIEWENER A A. Strain patterns in the horncores, cranial bones and sutures of goats (capra hircus) during impact loading[J].Journal of Zoology, 1995, 235(2): 193–210.
[5] LI Y, ORTIZ C, BOYCE M C. Stiffness and strength of suture joints in nature[J].Physical Review E Statistical Nonlinear & Soft Matter Physics, 2011, 84(6Pt1): 2184–2188.
[6] HARTWIG C W. Fractal analysis of sagittal suture morphology[J].Journal of Morphology, 1991, 210(3): 289–298.DOI:10.1002/(ISSN)1097-4687
[7] JASLOW C R. Mechanical properties of cranial sutures[J].Journal of Biomechanics, 1990, 23(4): 313–321.DOI:10.1016/0021-9290(90)90059-C
[8] MEHRAN M, NEIL C, PAUL O, et al. Assessment of the role of sutures in a lizard skull:A computer modelling study[J].Proceedings Biological Sciences, 2009, 276(1654): 39–46.DOI:10.1098/rspb.2008.0863
[9] DE BLASIO VITTORIO F. The role of suture complexity in diminishing strain and stress in ammonoid phragmocones[J].Lethaia, 2007, 41(1): 15–24.
[10] GAO H J. Application of fracture mechanics concepts to hierarchical biomechanics of bone and bone-like materials[J].International Journal of Fracture, 2006, 138(1-4): 101–137.DOI:10.1007/s10704-006-7156-4
[11] JASINOSKI S C, REDDY B D, LOUW K K, et al. Mechanics of cranial sutures using the finite element method[J].Journal of Biomechanics, 2010, 43(16): 3104–3111.DOI:10.1016/j.jbiomech.2010.08.007
[12] ORTIZ C, BOYCE M C. Materials science-Bioinspired structural materials[J].Science, 2008, 319(5866): 1053–1054.DOI:10.1126/science.1154295
[13] LI Y, ORTIZ C, BOYCE M C. Bioinspired, mechanical, deterministic fractal model for hierarchical suture joints[J].Physical Review E Statistical Nonlinear & Soft Matter Physics, 2012, 85(3): 922–938.
[14] LI Y, ORTIZ C, BOYCE M C. A generalized mechanical model for suture interfaces of arbitrary geometry[J].Journal of Mechanics Physics of Solids, 2013, 61(4): 1144–1167.DOI:10.1016/j.jmps.2012.10.004
[15] 曹金凤. Python语言在Abaqus中的应用[M].北京: 机械工业出版社, 2011: 2-3.CAO J F. The application of Python language in Abaqus[M].Beijing: China Machine Press, 2011: 2-3.(in Chinese)
[16] BENZEGGAGH M L, KENANE M. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus[J].Composites Science & Technology, 1996, 56(4): 439–449.


相关话题/结构 控制 材料 过程 力学

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 四轮驱动汽车牵引力控制系统控制策略*
    四轮驱动汽车可以根据车辆的行驶工况及路面附着条件的不同全时将发动机的输出转矩传递至前后轴,提高汽车的纵向稳定性,有利于抵抗横向滑转[1]。由于传统汽车在不同工况下行驶时,车辆驱动力矩突然增大或路面附着系数减小时,车轮发生滑转,导致车辆纵向操纵性能及转向变差,同时降低横向稳定性,影响车辆正常行驶[2] ...
    本站小编 Free考研考试 2021-12-25
  • 开放空腔壳体入水流场结构及流体动力特征研究*
    运动体由空气域穿越自由液面进入水域完成入水运动,入水过程运动体将改变静态流场结构,产生湍动涡、空泡流等现象,同时在流体动力作用下,改变入水弹道,甚至引发结构变形,流场运动与结构体运动两者相互耦合,是一个非常复杂的过程,一直以来,入水问题都是国内外****重点关注的问题之一。对于开放空腔壳体入水而言, ...
    本站小编 Free考研考试 2021-12-25
  • 基于LADRC的无人机高精度定高控制*
    “天钩”回收方式是一种新型的无人机(UAV)零长回收方式,具有对回收场地要求低、回收方式简单且安全可靠等优点,非常适合小型固定翼无人机。当无人机“天钩”回收时,首先下降至回收高度,跟踪期望的回收航线保持定高直线飞行,撞向“天钩”回收机构的回收索,回收索沿着具有后掠角的机翼向翼尖滑动,最终滑入安装在翼 ...
    本站小编 Free考研考试 2021-12-25
  • CICQ结构中逼近work-conserving的分组调度算法*
    互联网技术的发展使得以InternetProtocol(IP)为核心的分组交换网络对传输速度和效率的需求随之加大。而交换机的吞吐率与时延性能作为Besteffort服务的重要指标,直接影响着整个网络的效率和速度。为高性能交换机设计良好的交换结构和调度算法,以提高吞吐率与时延性能,成为一个重要的问题。 ...
    本站小编 Free考研考试 2021-12-25
  • 磁悬浮敏感陀螺动力学建模与关键误差源分析*
    主动磁悬浮轴承(ActiveMagneticBearings,AMBs)具有非接触、高转速、长寿命、低功耗和无需润滑等优点[1-3]。作为理想的高精度姿态控制执行机构,AMBs已经成功地在一系列航天任务中得到了广泛应用。AMBs在空间任务中的应用主要作为磁悬浮控制力矩陀螺、磁悬浮飞轮使用[4-5]。 ...
    本站小编 Free考研考试 2021-12-25
  • 电脉冲除冰系统的结构力学性能分析*
    在结冰条件下,飞机机翼前缘和进气道口易发生结冰现象,这将导致升力下降、飞行阻力增大,进而引起飞机的操纵性和稳定性品质恶化,严重时甚至引起飞机失事[1-2]。因此,飞机结冰防护系统是现代飞机中必不可少的功能性组件。电脉冲除冰(EIDI)作为一种电动-机械式除冰系统,主要原理是通过机翼内部线圈产生的电脉 ...
    本站小编 Free考研考试 2021-12-25
  • 新型缓冲腿结构设计及性能分析*
    仿生跳跃机器人具有很强的越障能力,因此在星际探测和生命救援等领域具有广泛的应用前景。由于蝗虫具有较强的弹跳能力,多家科研单位都对仿蝗虫跳跃机器人的结构形式及跳跃性能进行了研究[1-4]。蝗虫的跳跃过程为间歇性跳跃,因此每次跳跃结束后需具有良好的缓冲性能。机器人在着陆时腿部结构不可避免地会受到地面的冲 ...
    本站小编 Free考研考试 2021-12-25
  • 事件触发控制在倒立摆系统中的仿真与实验*
    近年来,网络化控制系统得到了越来越多的应用。在网络化控制系统中,状态信息及控制信号通过共享(无线)网络进行传输,这使得网络化控制系统具有安装灵活和便于维护等优点[1]。但共享网络能够提供的通信带宽是有限的,受限带宽会使网络化控制系统出现延迟和丢包等不良现象。另外,信息的发送装置通常由电池供电,频繁的 ...
    本站小编 Free考研考试 2021-12-25
  • 基于编队控制的自适应HELLO更新算法*
    在航空自组织网络中,随着定位装置和定位算法发展的成熟,基于地理位置信息的主动式路由协议(OptimizedLinkStateRoutingprotocol,OLSR)由于能主动进行周期性链路探测和路由维护而在动态网络环境下展现出较大的优势[1]。其中一个关键就是个体之间位置信息的更新和拓扑的维护主要 ...
    本站小编 Free考研考试 2021-12-25
  • 脱粘尺寸对复合材料单加筋板压缩性能的影响*
    近年来,随着复合材料制造技术的发展,复合材料加筋结构被广泛应用于飞机结构中。轴压载荷下复合材料薄蒙皮加筋结构在局部屈曲后仍然具有较强承载能力,这种后屈曲承载能力为飞机结构的减重设计提供了很大的发展空间[1]。目前国内外****已对轴压载荷下的复合材料加筋结构后屈曲特性进行了研究。试验方面,大量研究主 ...
    本站小编 Free考研考试 2021-12-25