删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

含区间参数不确定结构的损伤识别方法*

本站小编 Free考研考试/2021-12-25

对于航空航天、土木等工程结构,尤其是其重要受力部件,当出现一定损伤而未及时发现时,损伤往往会迅速发展,甚至引发严重的后果,因此对结构早期损伤进行识别与预报显得尤为重要[1-6]。对于小型、规则的结构,染色渗透、超声探测和电磁涡流等局部损伤识别方法通常能够取得较好的效果。但对于不可见、狭小封闭空间内的结构,或损伤的大致区域不明时,局部损伤识别方法难以取得较好的效果[3-4]。为此,全局识别方法得到了广泛研究与应用,其总体思路是将实际结构视为由质量矩阵、阻尼矩阵和刚度矩阵所构成的力学系统,当系统发生损伤后,上述矩阵(主要是刚度矩阵)参数就会有相应的改变,进而引起系统响应或相关静、动力学特性的变化,识别这些特性的变化,即可获得系统损伤的情况[5-6]
为表征损伤对结构参数的改变,许多静、动力指标被提了出来。固有频率是结构振动特性中的重要参数,通常能以很高的精度测得,早期出现了许多基于频率的损伤识别研究。Chondros和Dimarogonas[7]提出以扭簧模拟梁结构的损伤裂纹,由理论和试验证明了通过检测固有频率的改变量能得知损伤的存在。Cawley和Adams[8-9]基于一阶Taylor展开,在结构小损伤的前提下证明了损伤前后任意两阶固有频率变化量的比值只是结构损伤位置的函数。此后该结论得到了进一步的研究与改进[10-11]。然而基于频率的损伤识别方法有着较多不足,如小损伤的情况下,频率变化主要体现在高阶,而获得高阶固有频率较困难,此外,由于固有频率反映的系统信息较少,通常只能够发现破损的存在,但难于对其进行定位,且不同位置处的损伤可能产生相同的频率改变[3]。不同于固有频率,结构位移模态反映了系统更多的信息,因此位移模态也可作为损伤识别的指标,常用的方法有模态置信度判据(MAC)和坐标模态置信度判据(COMAC)[12-13]等,这些判据的实质是损伤前后任意两个模态向量夹角余弦值的平方,当结构无损伤时,由模态正交性知MAC矩阵是单位阵,而当结构存在损伤时,损伤后模态与损伤前模态不满足正交性,便可由MAC矩阵判断结构损伤。由于损伤位置附近自由度上的振型变化量相对较大,利用损伤前后振型相对变化量便可对损伤进行定位。相比于位移模态,模态曲率对结构损伤更加敏感,因此模态曲率也被当作损伤识别的参数。实际中直接利用位移模态参数往往存在着对局部小损伤不够敏感的问题,而模态曲率法大都是基于位移模态的差分,引入了误差。考虑到应变类参数对结构损伤一般比位移类参数更加敏感,而且通常能由应变计直接测出[14],应变模态指标逐渐在结构损伤识别中得到广泛应用。目前,随着实际工程结构越来越复杂以及学科间的相互交叉,许多新方法不断被提出与应用,如基于小波分析、控制理论和人工智能等的损伤识别方法[3, 5]
实际工程中由于环境温差、测量误差和材料分散性等因素,结构的参数会存在着不同程度的不确定性[15-18],这会对结构损伤识别有着不同的影响,甚至影响结果导向[4, 16],因此研究含不确定参数结构的损伤识别有着重要的意义。通常分析不确定性主要是基于概率思想,而该方法中需要解决的一个基础性问题就是结构参数的概率分布,为此人们提出了多种解决方法,Bayesian模型修正法的基本思想是用参数的概率分布描述结构的不确定性,根据观测数据修正模型参数的不确定性,进而确定模型的后验概率分布[16],然而由于后验概率密度函数计算的复杂性,Bayesian方法较难应用于未知参数较多的大规模计算问题。区别于Bayesian方法,随机有限元修正法认为模型不确定性、测量误差对修正参数的影响可以通过观测数据的统计平均有效降低,因此利用实测数据和模型参数摄动的随机模拟来获得相应参数的统计特征[17-18]。但测试数据往往是非常有限的,因此很多情况下仍然必须采用Monte Carlo随机模拟的方法,这会降低计算分析效率[16]
鉴于此,本文直接将结构不确定参数建模为区间数,实际应用中不需要确定参数的统计信息,而只要知道相应的上下界。以应变模态为损伤识别判据,结合一阶Taylor展开与区间分析,提出了一种考虑含区间参数的结构损伤识别方法。通过数值算例对不同损伤程度以及不同不确定量下的损伤识别进行了分析,证明了本文方法的可行性与合理性。本文方法对于含不确定参数结构的损伤识别提供了一种新的思路与方向。
1 基于应变模态的结构损伤识别 对于给定的位移模态,必然有特定的应变分布状况与之对应,这种固有应变分布状态被称为结构的应变模态。国内外****[19-20]对应变模态的表达式、正交性等进行了相关研究,下面从有限元角度对应变模态进行推导。
将实际结构离散为有限元模型,设ue为单元节点位移列向量,则单元内部任意一点的位移为
(1)

式中:N为形函数矩阵。
利用应变与位移的关系,可得单元内部任意一点的应变:
(2)

式中:A为微分算子矩阵; B为应变矩阵。根据有限元理论,节点位移满足如下微分方程:
(3)

式中:MCKf分别为结构总体的质量矩阵、阻尼矩阵、刚度矩阵和载荷列向量,对于简谐激励,可令f=Fejωt,其中F为激励力幅值向量,ω为激励力频率,j为虚数单位。则频域内稳态位移响应可表示为ue=Uejωt,代入式(3)可得
(4)

基于模态叠加原理,将式(4)的解表示为
(5)

式中:Φ=[φ1 φ2φkφm],φk为结构第k阶位移模态向量; Y=diag[Y1 Y2YkYm],Yk=(kkω2mk+jωck)-1kkmkck分别为模态刚度矩阵、质量矩阵和阻尼矩阵的第k个对角元(本文所考虑的是无阻尼结构或比例黏性阻尼结构)。则系统位移响应可表示为
(6)

将式(6)代入式(2),可得
(7)

式中:E为应变幅值向量;ψε=即为系统正应变模态振型矩阵;qε为应变模态的模态坐标。将式(7)写为分量形式:
(8)

式中:N为系统自由度数;ψrε为第r阶应变模态向量;qr为位移模态坐标的第r个分量;H称为应变频响函数矩阵,且有

(9)

其中:Hst代表在第t个自由处施加载荷时对s自由度处的频响函数值;ψirε为第r阶应变模态的第i个分量;φir为第r阶位移模态的第i个分量。
由式(9)可以看出,与位移频响矩阵不同,应变频响函数矩阵并不对称,但矩阵的任一列仍包含了应变模态的全部信息。因此在实际测量中,只需要在某一点处施加激励,测得各点处的应变频率响应,对于第r阶固有频率处的测量值,可以认为该阶振动模态占主导地位而忽略其他阶次的影响。由于结构模态特性只反映了各自由度上相应量的比值关系,因此只需采取一定的归一化方法即可获得相应的第r阶应变模态。对于损伤后的结构,测试的方法与此相同,但由于在损伤区域附近结构应变会有明显的重分布,因此对比完好结构的相应模态就能对损伤进行识别。
2 不确定结构的应变模态区间分析 2.1 区间分析理论 受到腐蚀性环境、制造与测量误差、材料的分散性等因素的影响,结构的几何、物理参数通常存在一定的不确定性。实际工程中,这些不确定参数往往缺乏足够的数据来准确定义结构参数的概率分布,因此采用只需要确定上下界的区间数来描述系统不确定参数是较为可行的一种思路。设结构参数向量可以表示为
(10)

基于区间数学思想,认为结构参数向量b属于某一区间参数向量bI,即bbI,写成分量形式
(11)

式中:区间数bkI为区间向量bI的第k阶分量;bkbk分别为其上、下界。区间参数向量bI的名义值bc和不确定半径Δb分别定义如下:
(12)

式中:bkc=(bk+bk)/2;Δbk=(bkbk)/2, k=1, 2, …, p。上述参数向量b可以分解为bI的名义值bc=[b1c, b2c, …, bpc]与偏差δ=[δ1, δ2, …, δp]的和的形式:
(13)

其分量满足
(14)

式中:δkδkI=[-Δbk, Δbk]为bk的不确定部分。基于有限元分析理论,式(3)中的系统矩阵可以表示为不确定参数的函数,即
(15)

则由上述矩阵所求得的系统位移模态矩阵φ与应变模态矩阵ψε也是上述参数的函数, 即
(16)

由于b在某一有界区间内变动,因此应变模态ψε也在某一有界区间内,但由于其关于不确定量的函数通常是隐式的,因此很难直接求得ψε的区间,一个可行的办法是将ψε在不确定变量中值处进行Taylor展开,进一步基于区间扩张理论确定ψε的上下界。
2.2 应变模态的区间分析方法 基于Taylor展开,结合式(16),将结构第r阶应变模态向量在结构参数中值bc=[b1c, b2c, …, bpc]处进行一阶Taylor展开:
(17)

基于区间运算与区间扩张原理,利用方程式(17),可以得到基于Taylor展开的含不确定参数结构的应变模态的上下界:
(18)

式中:ψrε(bc)可通过令b=bc并结合式(7)得到。一阶偏导rε(bc)/ebk计算的推导如下,为表达方便,下文中将K(b)、M(b)和ψrε(b)等量简记为KMψrε。由式(7)易知:
(19)

式(19)两边同时关于参数bk求导,可得
(20)

由式(2)知,应变矩阵B只与形函数矩阵和微分算子矩阵有关,当bk为结构的几何或物理参数时,eB/ebk=0。对于有限自由度系统孤立特征值的情况,结构的特征向量可以张成一个完备的正交空间,eφr/ebk可由特征向量的线性组合表示:
(21)

式中:相关系数Hlks可由方程式(22)求出:
(22)

模态向量对应的特征值。事实上,通常只需取前几阶特征向量就能取得较好的精度。将式(21)、式(22)代入式(20)即可得eψrε/ebk,利用式(18)即可得到结构系统各阶应变模态的上下界。至此便得到了含区间参数结构各阶应变模态向量的区间,即
(23)

利用本文方法分析不确定条件下结构应变模态的方法流程如图 1所示。
图 1 考虑不确定性的应变模态分析流程 Fig. 1 Flowchart of uncertain analysis of strain modal
图选项




2.3 与概率方法的比较 下面基于概率方法对不确定结构应变模态进行分析,假定结构变量的总体统计参数已知,即
(24)

式中:E(b)、var(b)和σ(b)分别为不确定参量的期望、方差与标准差。对式(17)两侧同时求期望,并注意到E(δbj)=E(bjbjc)=0,可得
(25)

同样,对式(17)两边同时取方差,由于本文中考虑的各随机变量相互独立,协方差为零,则
(26)

式中:cov(bk, bl)为bkbl的协方差,bkbl为不确定变量的第kl个分量。
由此得到了应变模态响应的期望与方差,取距离应变模态响应均值m倍标准差处所确定的区域为应变模态概率解的区间,即有
(27)

由Chebyshev不等式可知,具有有限方差的随机应变模态落在式(27)所确定范围内的概率不小于1-1/m2。此时,对应的不确定量范围下由区间方法求得的应变模态的相应区间上下界为
(28)

考虑到对于非负xi,有,对比式(27)与式(28)可知:
(29)

综合式(27)~式(29)可知,在通过概率信息确定的不确定参数区间向量的条件下,由区间方法所得的应变模态区间比概率方法得到的要宽,这通常会使结果趋于保守,因此当不确定参数的统计信息能够准确获得时,还是采用概率方法,而当不确定量统计信息难于获得时,采用区间估计方法是较为合理的。
3 数值算例 考虑损伤梁结构的应变模态,梁两端简支,结构几何尺寸及梁截面形状如图 2所示,以梁轴线方向为x轴,梁横截面所在平面为yOz平面。梁的材料为45Cr合金钢,材料的弹性模量E、密度ρ、泊松比μ等为不确定参数,且认为其统计信息未知,基于区间思想,上述参数可表示为EEI=[1-β1, 1+β1]Ec, ρρI=[1-β2, 1+β2]ρc, μμI=[1-β3, 1+β3]μc,其中Ec=2.06×1011Pa、ρc=7.90×103 kg/m3μc=0.29分别为上述各参数的名义值,β1β2β3分别为各参数的不确定量,相互独立。为验证方法,算例中将不确定参数均视为区间数,且变异系数β分别取了2%、4%和6%等不同值。在实际应用中,材料参数取值区间可通过手册、规范等给出的物理性能范围来确定,几何、尺寸的区间可通过加工制造的公差来具体选取。分别在梁的1/4跨以及跨中处给定宽度为1 mm的不同深度的缺陷来模拟结构损伤,定义裂纹深度与截面原始高度的比值为损伤程度。实际中能够较方便准确测出的通常是正应变,因此以x方向的应变分量为识别参量。
图 2 梁结构示意图 Fig. 2 Diagrammatic sketch of beam structure
图选项




图 3为结构跨中存在不同程度损伤时,结构各阶应变模态的情况。图中横坐标表示沿梁轴线方向的位置,纵坐标为对应的应变,本文中应变模态向量的具体值按质量矩阵进行归一化。
图 3 结构跨中不同损伤程度下各阶应变模态 Fig. 3 Various order strain modal under different damage levels at midspan
图选项




不难看出,由于结构的损伤,应变模态在损伤附近区域会发生突变,且损伤量增加时,应变模态突变量也随之增大。计算发现,结构在完好时和5%损伤时一阶固有频率分别为288.523 Hz与288.064 Hz,二者相差约0.15%,这表明结构小损伤主要影响结构在损伤处局部的参量,对总体特性影响不大,这也是基于固有频率等指标的方法存在缺陷的重要原因。在离损伤位置稍远处,损伤结构的应变与完好结构的相差很小,这说明在实际测试时若应变传感器距损伤位置较远,识别会相对困难,这可以通过合理设置传感器来克服,实际应用中,传感器间距为跨长的6%左右时即能较好识别梁的损伤区域[20],且随着光纤光栅传感器等新型传感器的发展与应用,这一问题将能得到更好的解决。此外,当损伤位于结构某阶应变模态中应变值较大处(高应变区)时,该阶应变模态对损伤很敏感,能够识别结构较小的损伤;但当损伤位于应变值较小处尤其是模态节点附近时(见图 3(b)),应变模态对损伤很不敏感,难于识别损伤,好在实际应用中可以采用多阶模态向量的组合,因此基本都能较好地识别结构损伤。图 4反映的是梁跨中存在5%损伤的情况下,结构参数具有不同程度的不确定量时,结构的各阶应变模态的上下界(为方便作图显示,取β=β1=β2=β3)。
图 4为结构跨中5%损伤时不同不确定量下结构各阶应变模态的上下界。由图 4可以发现,结构参数存在不同程度的不确定性时,应变模态也会有不同程度的变化。与损伤程度不同所引起的应变模态的变化不同,结构参数不确定对系统应变模态的影响主要表现为总体的影响,而对损伤处局部的应变模态影响相对较小。这是由于结构在损伤附近的应变分布主要受损伤本身控制,而对结构密度、弹性模量和泊松比等总体性参数不够敏感,因此这些参数的不确定性主要会引起结构应变模态整体性的变化。另外,由图 4还可以发现模态振型中应变较大的位置,由参数不确定性所引起的应变模态的变化量也越大,对于应变较小的低应变区尤其是振型节点附近,应变值受不确定参数的影响较小。图 5反映的是梁结构在1/4跨处存在5%损伤的情况下,结构参数具有不同程度的不确定量时,结构的各阶应变模态的上下界。
图 4 结构跨中5%损伤时不同不确定量下结构各阶应变模态的上下界 Fig. 4 Upper and lower bounds of various order strain modal under different uncertainties with 5% damage at midspan
图选项




图 5 1/4跨5%损伤时不同不确定量下结构各阶应变模态的上下界 Fig. 5 Upper and lower bounds of various order strain modal under different uncertainties with 5% damage at quarter span
图选项




在1/4跨损伤工况下,结构应变模态同样在损伤处发生了突变,同时结构参数不确定量对应变模态的影响与跨中损伤时类似。
在工程应用中,损伤指标不可避免地会受到噪声的影响,本文采用如下的方法计算含噪声应变模态振型[17], 即=ψirε(1+randn×ρN),其中:ψirε分别为考虑噪声前后的应变模态;randn为均值为0、标准差为1的高斯白噪声;ρN代表噪声水平。将考虑噪声后的应变模态与完好结构的应变模态对比,计算出各点处的应变模态变化率,若变化率最大处出现在实际损伤处,则认为识别成功,重复这一过程104次,将识别成功的次数除以总次数并定义为识别率。图 6给出了结构跨中不同程度损伤时,参数不确定量为2%的情况下,不同噪声水平下的损伤识别率。可以看出,结构损伤程度越大,相应识别的抗噪能力就越强,15%损伤时在2%~3%的噪声水平下仍有较好的识别率。整体来说不确定条件下识别率受噪声影响较大,如何提高识别的抗噪性能仍是后续需要解决的问题。综上对于不同损伤工况的分析表明,基于一阶Taylor展开的方法计算应变模态的范围,在结构参数的不确定量较小的情况下,能够较好地识别上述不确定梁结构的损伤情况。但当结构参数的不确定量较大而损伤程度又相对较小时,尤其对于较复杂的结构而言,不确定性、噪声等对损伤识别有较大影响,甚至可能改变结果导向,这也是后续研究中需要考虑的问题。
图 6 不同噪声水平下的损伤识别正确率 Fig. 6 Correct damage identification rate under different noise levels
图选项




4 结论 1)应变模态对结构局部损伤较敏感,对于梁结构来说,只要传感器布置合理,该指标能很好地识别结构较小的损伤。
2)若损伤位于某阶模态的低应变区,该阶模态对损伤不太敏感,实际应用时可采用综合多阶应变模态的方法对损伤进行识别以克服这一问题。
3)不确定参数主要影响结构特性的总体数值,就本文算例来看,当参数的不确定量小于损伤程度或与损伤程度相当时,不确定性对结构损伤识别结果影响不大;当噪声水平低于2%~3%时,本文方法有着较好的识别率,但噪声对识别指标有着较明显的影响,这也是后续研究中需重点考虑的问题。

参考文献
[1] DOEBLING S W, FARRAR C R, PRIME M B. A summary review of vibration-based damage identification methods[J].Shock and Vibration Digest, 1998, 30(2): 91–105.DOI:10.1177/058310249803000201
[2] LIU Y, NAYAK S. Structural health monitoring:State of the art and perspectives[J].Journal of the Minerals, Metals and Materials Society, 2012, 64(7): 789–792.DOI:10.1007/s11837-012-0370-9
[3] 郑栋梁, 李中付, 华宏星. 结构早期损伤识别技术的现状和发展趋势[J].振动与冲击, 2002, 21(2): 1–6.ZHENG D L, LI Z F, HUA H X. A summary review of structural initial damage identification methods[J].Journal of Vibration and Shock, 2002, 21(2): 1–6.(in Chinese)
[4] SALAWU O S. Detection of structural damage through changes in frequency:A review[J].Engineering Structures, 1997, 19(9): 718–723.DOI:10.1016/S0141-0296(96)00149-6
[5] OU J, LI H. Structural health monitoring in mainland China:Review and future trends[J].Structural Health Monitoring, 2010, 9(3): 219–231.DOI:10.1177/1475921710365269
[6] 李德葆, 陆秋海. 实验模态分析及其应用[M].北京: 科学出版社, 2001: 29-36.LI D B, LU Q H. Experimental modal analysis and its application[M].Beijing: Science Press, 2001: 29-36.(in Chinese)
[7] CHONDROS T G, DIMAROGONAS A D. Identification of cracks in welded joints of complex structures[J].Journal of Sound and Vibration, 1980, 69(4): 531–538.DOI:10.1016/0022-460X(80)90623-9
[8] CAWLEY P, ADAMS R D. The location of defects in structures from measurements of natural frequencies[J].The Journal of Strain Analysis for Engineering Design, 1979, 14(2): 49–57.DOI:10.1243/03093247V142049
[9] ADAMS R D, CAWLEY P, PYE C J, et al. A vibration technique for non-destructively assessing the integrity of structures[J].Journal of Mechanical Engineering Science, 1978, 20(2): 93–100.DOI:10.1243/JMES_JOUR_1978_020_016_02
[10] ZHU H P, HE B, CHEN X Q. Detection of structural damage through changes in frequency[J].Wuhan University Journal of Natural Sciences, 2005, 10(6): 1069–1073.DOI:10.1007/BF02832469
[11] 杜思义, 殷学纲, 陈淮. 基于频率二阶摄动的结构损伤识别方法[J].应用力学学报, 2007, 23(4): 613–617.DU S Y, YIN X G, CHEN H. Structural damage identification based on second-order perturbation of frequency[J].Chinese Journal of Applied Mechanics, 2007, 23(4): 613–617.(in Chinese)
[12] YI T H, LI H N, GU M. Optimal sensor placement for structural health monitoring based on multiple optimization strategies[J].Structural Design of Tall and Special Buildings, 2011, 20(7): 881–900.DOI:10.1002/tal.712
[13] ALLEMANG R J. The modal assurance criterion-twenty years of use and abuse[J].Sound and Vibration, 2003, 37(8): 14–23.
[14] 董聪, 丁辉. 结构损伤识别和定位的基本原理与方法[J].中国铁道科学, 1999, 20(3): 89–94.DONG C, DING H. The basic principle and method for recognition and location of structural damage[J].China Railway Science, 1999, 20(3): 89–94.(in Chinese)
[15] QIU Z P, CHEN S H, ELISHAKOFF I. Natural frequencies of structures with uncertain but nonrandom parameters[J].Journal of Optimization Theory and Applications, 1995, 86(3): 669–683.DOI:10.1007/BF02192164
[16] 宗周红, 牛杰, 王浩. 基于模型确认的结构概率损伤识别方法研究进展[J].土木工程学报, 2012, 45(8): 121–130.ZONG Z H, NIU J, WANG H. A review of structural damage identification methods based on finite element model validation[J].China Civil Engineering Journal, 2012, 45(8): 121–130.(in Chinese)
[17] 林秀萍.基于概率统计方法的结构损伤识别研究[D].重庆:重庆大学, 2009:15-20.LIN X P.The studies on structural damage detection based on probability statistics method[D].Chongqing:Chongqing University, 2009:15-20(in Chinese).http://cdmd.cnki.com.cn/article/cdmd-10611-2009149189.htm
[18] PALMA R, RUS G, GALLEGO R. Probabilistic inverse problem and system uncertainties for damage detection in piezoelectrics[J].Mechanics of Materials, 2009, 41(9): 1000–1016.DOI:10.1016/j.mechmat.2009.05.001
[19] 村井秀児, 伊藤博幸, 内海栄一. ダイナミックデザインアナリシスの研究(パート2)[J].コマツ技報, 1979, 25(2): 73–82.MURAI S, ITO H, UTSUMI E. Study of dynamic design analysis (Part 2)[J].Komatsu Technical Report, 1979, 25(2): 73–82.(in Chinese)
[20] 顾培英.基于应变模态技术的结构损伤诊断直接指标法研究[D].南京:河海大学, 2006:28-33.GU P Y.Study on structural damage diagnosis method based on direct indicators of strain mode technology[D].Nanjing:Hohai University, 2006:28-33(in Chinese).http://cdmd.cnki.com.cn/article/cdmd-10294-2007017229.htm


相关话题/结构 系统 概率 指标 计算

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 重型直升机-吊挂耦合系统闭环飞行品质分析*
    直升机带外吊挂运输飞行是直升机相比于其他种类飞行器的一项特有功能。吊挂物不受货物外形限制,直升机还可以在一般运输工具难以到达的地方迅速、高效地完成起降、装卸货物等任务,大大拓宽了运输范围。与直升机非吊挂飞行状态相比,直升机吊挂飞行增加了新的载荷和惯性力,以及因此产生的对直升机质心的力矩。建立合理的非 ...
    本站小编 Free考研考试 2021-12-25
  • 用广义扩展有限元计算界面裂纹应力强度因子*
    双材料被广泛应用于如航空、航天和交通运输等领域,双材料界面处往往会出现裂纹等缺陷,这些缺陷会导致材料强度的降低,而且损伤通常开始于界面或界面附近区域,因此对双材料界面裂纹的研究至关重要。研究人员已使用如有限元法、边界元法[1]、扩展有限元法(ExtendedFiniteElementMethod,X ...
    本站小编 Free考研考试 2021-12-25
  • 考虑认知不确定的雷达功率放大系统可靠性评估*
    在实际工程中,某些系统除“正常工作”和“完全失效”2种状态外,可以在多个性能水平下运行,这样的系统称为多态系统(Multi-StateSystem,MSS)[1],与二态系统模型相比,多态系统模型能够准确地描述部件的多态性,更加灵活地表征部件性能变化对系统性能和可靠性的影响[2]。20世纪70年代多 ...
    本站小编 Free考研考试 2021-12-25
  • 机群结构耐久性分析的裂纹萌生方法*
    耐久性评估和试验评估机群的可靠性寿命,是飞机结构设计定型阶段的重要任务[1-3]。在结构耐久性分析的各种方法中,裂纹萌生方法(CrackInitiationApproach,CIA)[4]可用于结构的初步和详细耐久性分析,在工程实际中得到了应用[5]。该方法考虑了结构特性的分散和不同应力区应力水平的 ...
    本站小编 Free考研考试 2021-12-25
  • 基于多目标的高速列车隔热结构拓扑优化*
    车体的隔热结构不仅是采暖、空调等设备选型和车体优化设计的重要依据,而且,其特性是评价高速列车车体质量的一个重要性能参数和综合经济性指标[1-2]。一方面,若隔热效果欠佳,不仅会消耗更多的加热(或制冷)设备的能量,增加运行成本,也会影响列车的舒适性。另一方面,隔热结构也承受载荷,不仅要符合刚度、强度指 ...
    本站小编 Free考研考试 2021-12-25
  • 多轴疲劳寿命分析方法在飞机结构上的应用*
    飞机结构在飞机服役过程中大部分承力构件都承受复杂载荷的作用。由于复杂载荷的作用,这些承力构件(例如起落架梁、起落架半轴、机翼壁板和发动机悬挂梁等)的受力状态多是典型的多轴应力状态,包括比例多轴和非比例多轴[1-2],其中比例多轴载荷状态是多轴中的一种特殊情况,也是比较常见的一种。采用传统的单轴应力状 ...
    本站小编 Free考研考试 2021-12-25
  • 空气系统双腔模型的压力动态特性分析
    空气系统贯穿于整个航空发动机,承担着热端部件的冷却、密封、平衡轴向力、间隙主动控制和除冰等作用,直接关系到发动机能否安全、可靠地运行。尤其是当发动机发生突发失效等突发情况,空气系统腔室的容积效应和管道可压缩流体的惯性力诱发的耦合振荡在短时间内可能导致某些复杂的、继发性的危险瞬态载荷。另外,空气系统短 ...
    本站小编 Free考研考试 2021-12-25
  • 基于自适应反步的DGMSCMG框架伺服系统控制方法
    控制力矩陀螺(ControlMomentGyroscope,CMG)是大型航天器长期运行必不可少的姿态控制执行机构[1]。与单框架CMG相比,由于双框架CMG可以同时提供2个自由度的输出力矩而具有综合性能优势。较机械轴承支承的CMG,双框架磁悬浮控制力矩陀螺(DoubleGimbalMagnetic ...
    本站小编 Free考研考试 2021-12-25
  • 空间绳系拖拽系统摆动特性与平稳控制
    随着空间技术的深入发展,航天器不断被送入太空,同时废弃航天器停留在轨道上形成了越来越多的空间垃圾,导致在役航天器与空间垃圾碰撞的可能性正逐年增加。2009年2月11日,俄罗斯废弃卫星(简称废星)“宇宙2251”和美国“铱星33”在太空相撞并产生几千块碎片[1],成为人类历史上首次卫星相撞事故,这表明 ...
    本站小编 Free考研考试 2021-12-25
  • MIMO仿射型极值搜索系统的输出反馈滑模控制
    极值搜索系统是一类广泛存在于工业生产和军事应用领域的实际系统,涵盖了非线性分布式参数控制系统[1,2]、极限环运动控制系统[3,4]、生化反应控制系统[5,6]和可变环境中极值功率输出控制系统[7,8]等诸多方面。不同类型极值搜索控制方法[9,10,11,12,13,14]的出现解决了一些状态量可测 ...
    本站小编 Free考研考试 2021-12-25