删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

形变bms3代数上的左对称代数结构

本站小编 Free考研考试/2021-12-27

形变bms3代数上的左对称代数结构 余意, 孙建才上海大学理学院数学系 上海 200444 Left-symmetric Algebra Structures on the Deformed bms3 Algebra Yi YU Jian, Cai SUNDepartment of Mathematics, Shanghai University, Shanghai 200444, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(405 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文主要通过对具有一定自然阶化条件的形变bms3代数上的相容左对称代数结构的分类讨论,刻画了形变bms3代数的相容左对称代数结构.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2020-03-02
MR (2010):O177.2
基金资助:国家自然科学基金资助项目(11671247,11931009)
作者简介: 余意,E-mail:793819382@qq.com;孙建才,E-mail:jcsun@shu.edu.cn
引用本文:
余意, 孙建才. 形变bms3代数上的左对称代数结构[J]. 数学学报, 2021, 64(6): 947-958. Yi YU Jian, Cai SUN. Left-symmetric Algebra Structures on the Deformed bms3 Algebra. Acta Mathematica Sinica, Chinese Series, 2021, 64(6): 947-958.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2021/V64/I6/947


[1] Andrada A., Salamon S., Complex product structure on Lie algebras, Forum Math., 2005, 17:261-295.
[2] Bai C. M., A further study on non-abelian phase spaces:Left-symmetric algebraic approach and related geometry, Rev. Math. Phys., 2006, 18:545-564.
[3] Bordemann M., Generalized Lax pairs, the modified classical Yang-Baxter equation, and affine geometry of Lie groups, Comm. Math. Phys., 1990, 135:201-216.
[4] Burde D., Simple left-symmetric algebras with solvable Lie algebra, Manuscripta Math., 1998, 95:397-411.
[5] Burde D., Left-symmetric algebras, or pre-Lie algebras in geometry and physics, Cent. Eur. J. Math., 2006, 4:323-357.
[6] Caroca R., Concha P., Rodíguez E., et al., Generalizing the bms3 and 2D-conformal algebras by expanding the Virasoro algebra, European Phys. J. C, 2018, 78, Article No. 262.
[7] Cayley A., On the theory of the analytic forms called trees, In:Collected Mathematical Papers of Arthur Cayley, Cambridge University Press, Cambridge, 1890, 3:242-246.
[8] Chapoton F., Classification of some simple graded pre-Lie algebras of growth one, Commun. Algebra, 2004, 32:243-251.
[9] Chen H. J., Li J. B., Left-symmetric algebra structures on the W-algebra W (2, 2), Lin. Alg. Appl., 2012, 437:1821-1834.
[10] Chen H. J., Li J. B., Left-symmetric algebra structures on the twisted Heisenberg-Virasoro algebra, Sci. China Math., 2014, 57:469-476.
[11] Dardié J., Médina A., Algèbres de Lie kählériennes et double extension, J. Algebra, 1996, 185:774-795.
[12] Dardié J., Médina A., Double extension symplectique d'un groupe de Lie symplectique, Adv. Math., 1996, 117:208-227.
[13] Diatta A., Médina, Classcal Yang-Baxter equation and left invariant affine geometry on Lie groups, Manuscripta Math., 2004, 114:477-486.
[14] Etingof P., Soloviev A., Quantization of geometric classical r-matrices, Math. Res. Lett., 1999, 6:223-228.
[15] Gerstenhaber M., The cohomology structure of an associative ring, Ann. Math., 1963, 78:267-288.
[16] Golubchik I. Z., Sokolov V. V., Generalized operator Yang-Baxter equations, integrable ODEs and nonassociative algebras, J. Nonlinear Math. Phys., 2000, 7:184-197.
[17] Kim H., Complete left-invariant affine structures on nilpotent Lie groups, J. Diff. Geom., 1986, 24:373-394.
[18] Kong X. L., Bai C. M., Left-symmetric superalgebra structures on the super-Virasoro algebras, Pacific J. Math., 2008, 235:43-55.
[19] Kong X. L., Chen H. J., Bai C. M., Classification of graded left-symmetric algebra structures on the Witt and Virasoro algebras, Intern. J. Math., 2011, 22:201-222.
[20] Koszul J., Domaines bornés homogènes et orbites de groups de transformations affines, Bull. Soc. Math. France, 1961, 89:515-533.
[21] Kupershmidt B. A., On the nature of the Virasoro algebra, J. Nonlinear Math. Phys., 1999, 6:222-245.
[22] Kupershmidt B. A., Non-abelian phase spaces, J. Phys., 1994, 27:2801-2809.
[23] Liu X. W., Guo X. Q., Bian D. P., A note on the left-symmetric algebraic structures of the Witt algebra, Linear Multilinear Algebra, 2017, 65:1793-1804.
[24] Liu X. W., Bian D. P., Guo X. Q., Left-symmetric superalgebra structures on the N=2 superconformal algebras, Commun. Algebra, 2018, 46:929-941.
[25] Tang X. M., Bai C., A class of non-graded left-symmetric algebraic structures on the Witt algebra, Math. Nachr., 2012, 285:922-935.
[26] Vinberg E. B., Convex homogeneous cones, Transl. of Moscow Math. Soc., 1963, 12:340-403.

[1]刘丽娜, 唐黎明. 一类Filiform李代数Qn的自同构群[J]. 数学学报, 2021, 64(6): 959-966.
[2]陈海波, 赖丹丹, 刘东. 李代数W(2,2)上的Hom-李代数结构[J]. 数学学报, 2020, 63(4): 403-408.
[3]白瑞蒲, 侯帅, 亢闯闯. 对合导子构造的3-李双代数与3-Pre-李代数[J]. 数学学报, 2020, 63(2): 123-136.
[4]关宝玲, 陈良云. 限制pre-李代数[J]. 数学学报, 2017, 60(2): 185-200.
[5]白瑞蒲, 陈双双, 程荣. 3-李代数的辛结构[J]. 数学学报, 2016, 59(5): 711-720.
[6]范广哲, 周辰红, 岳晓青. 一类广义Heisenberg-Virasoro代数的导子[J]. 数学学报, 2016, 59(3): 289-294.
[7]赖璇, 陈正新. 有限维单李代数的2-局部导子[J]. Acta Mathematica Sinica, English Series, 2015, 58(5): 847-852.
[8]周佳, 牛艳君, 陈良云. Hom-李代数的广义导子[J]. Acta Mathematica Sinica, English Series, 2015, 58(4): 551-558.
[9]向红, 曾波, 曹佑安. 一类扩张仿射李代数上的非交换Poisson代数[J]. Acta Mathematica Sinica, English Series, 2015, 58(3): 479-490.
[10]王松. 仿射Nappi-Witten代数Ĥ4的顶点算子代数的自同构群[J]. Acta Mathematica Sinica, English Series, 2014, 57(2): 331-338.
[11]王伟, 许莹. 一类Schrödinger-Virasoro型李代数的量子化[J]. Acta Mathematica Sinica, English Series, 2012, 55(4): 707-714.
[12]宋光艾, 李忠杰, 王美艳. 广义 Weyl 型李代数 W× gln(F)上的 2-上同调群[J]. Acta Mathematica Sinica, English Series, 2011, 54(5): 753-766.
[13]佟洁, 靳全勤. 广义仿射李代数上的非交换Poisson代数结构[J]. Acta Mathematica Sinica, English Series, 2011, 54(4): 561-570.
[14]佟洁;靳全勤;. 李代数上的非交换Poisson代数结构[J]. Acta Mathematica Sinica, English Series, 2009, (01): 19-34.
[15]郑兆娟;谭绍滨;. 一类量子环面李代数的自同构群[J]. Acta Mathematica Sinica, English Series, 2007, 50(3): 591-600.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23874
相关话题/代数 结构 数学 交换 自然