删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Fock空间上对偶Toeplitz算子的交换性

本站小编 Free考研考试/2021-12-27

Fock空间上对偶Toeplitz算子的交换性 黄穗, 王伟重庆师范大学数学科学学院 重庆 401331 Commuting Dual Toeplitz Operators on the Orthogonal Complement of the Fock Space Sui HUANG, Wei WANGSchool of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF (0 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文研究了Fock空间的正交补空间上由有界可测函数诱导的对偶Toeplitz算子的交换性,刻画出两个对偶Toeplitz算子交换的充分必要条件,并且给出了关于对偶Toeplitz算子上的Brown-Halmos定理.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2020-05-13
MR (2010):O177.2
基金资助:国家自然科学基金资助项目(11871127);重庆市科委科研项目(CSTC2019JCYJ-MSXM0295);重庆师范大学数学科学学院重点实验室开放课题(CSSXKFKTM202002)
作者简介: 黄穗,E-mail:huangsui2@163.com;王伟,E-mail:wangziquanqiu@163.com
引用本文:
黄穗, 王伟. Fock空间上对偶Toeplitz算子的交换性[J]. 数学学报, 2021, 64(4): 579-586. Sui HUANG, Wei WANG. Commuting Dual Toeplitz Operators on the Orthogonal Complement of the Fock Space. Acta Mathematica Sinica, Chinese Series, 2021, 64(4): 579-586.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2021/V64/I4/579


[1] Ahern P., ?u?kovi? ?., A theorem of Brown-Halmos type for Bergman space Toeplitz operators, J. Funct. Anal., 2001, 187:200-210.
[2] Axler S., ?u?kovi? ?., Commuting Toeplitz operators with harmonic symbols, Integr. Equat. Oper. Th., 1991, 14:1-12.
[3] Brown A., Halmos P., Algebraic properties of Toeplitz operators, J. Reine Angew. Math., 1964, 213:89-102.
[4] Chen Y., Yu T., Essentially commuting dual Toeplitz operators on the unit ball, Adv. Math. China, 2009, 38(4):453-464.
[5] Cheng G. Z., Yu T., Dual Toeplitz algebra on the polydisk, J. Math. Res. Exposition, 2008, 28(2):366-370.
[6] Coburn L. A., Isralowitz J., Toeplitz operators with BMO symbols on the Segal-Bargmann space, Trans. Amer. Math. Soc., 2011, 363:3015-3011.
[7] ?u?ukoi? ?., Rao N. V., Mellin transform, monomial symbols and commuting Toeplitz operators, J. Func. Anal., 1998, 154:195-214.
[8] Guediri H., Dual Toeplitz operators on the sphere, Acta Math. Sin., Engl. Series, 2013, 29(9):1791-1808.
[9] Isralowitz J., Zhu K. H., Toeplitz operators on the Fock space, Integral Equations and Operator Theory, 2010, 66:599-611.
[10] Stroethoff K., Hankel and Toeplitz operators on the Fock space, The Michigan Mathematical Journal, 1992, 1:3-16.
[11] Stroethoff K., Zheng D., Algebric and spectral properties of dual Toeplitz operators, Trans. Amer. Math. Soc., 2002, 354(6):2495-2520.
[12] Yu T., Operators on the orthogonal complement of the Dirichlet space, J. Math. Anal. Appl., 2009, 357(1):300-306.
[13] Yu T., Wu S. Y., Commuting dual Toeplitz operators on the orthogonal complement of the Dirichlet space, Acta Math. Sin., Engl. Series, 2008, 24(11):1843-1852.
[14] Zhu K. H., Analysis on Fock Space, Springer, New York, 2012.

[1]安润玲, 高永兰. C*-代数上强保k-skew交换性的映射[J]. 数学学报, 2021, 64(4): 545-550.
[2]王晓峰, 夏锦, 陈建军. 广义Fock空间上的Hankel算子[J]. 数学学报, 2019, 62(4): 561-572.
[3]王晓峰, 夏锦, 陈建军. 广义Segal-Bargmann空间上无界Toeplitz算子的交换[J]. 数学学报, 2019, 62(3): 409-426.
[4]秦杰, 刘柚岐, 黄穗. Dirichlet空间上Bergman型Toeplitz算子的代数性质[J]. 数学学报, 2019, 62(3): 449-456.
[5]秦杰, 黄穗. Dirichlet空间上的Bergman型Toeplitz算子[J]. 数学学报, 2018, 61(4): 619-624.
[6]曹广福, 王晓峰, 何莉. 解析Sobolev型空间上的算子与算子代数[J]. 数学学报, 2017, 60(1): 69-80.
[7]焦美艳. Von Neumann代数套子代数上保因子交换性的线性映射[J]. Acta Mathematica Sinica, English Series, 2014, 57(2): 409-416.
[8]张波, 石岩月, 卢玉峰. 块对偶Toeplitz算子的乘积[J]. Acta Mathematica Sinica, English Series, 2011, 54(6): 901-912.
[9]于涛;程国正;. 多圆盘上的本质交换对偶Toeplitz算子[J]. Acta Mathematica Sinica, English Series, 2007, 50(5): 1007-101.
[10]傅昶林;杨新松. 任意环的两个交换性定理[J]. Acta Mathematica Sinica, English Series, 2002, 45(4): 635-638.
[11]吴世锦. 四元数体上若干线性代数问题的显式[J]. Acta Mathematica Sinica, English Series, 2001, 44(5): 837-842.
[12]朱聘瑜;高燕玲. 关于同余交换纯正群并的构造与分类[J]. Acta Mathematica Sinica, English Series, 1995, 38(6): -.
[13]傅昶林;郭元春. 半质环的交换性条件[J]. Acta Mathematica Sinica, English Series, 1995, 38(2): -.
[14]刘晓东. 环上微商的本原类与环的交换性[J]. Acta Mathematica Sinica, English Series, 1990, 33(4): 528-536.
[15]胡庆平. 关于泛代数的积的几点注记[J]. Acta Mathematica Sinica, English Series, 1987, 30(6): 780-787.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23795
相关话题/交换 空间 数学 代数 重庆师范大学