删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

指数权Bergman空间Aφp和Aφ
本站小编 Free考研考试/2021-12-27

指数权Bergman空间Aφp和Aφ间的算子 何忠华1, 王晓峰2, 刘柚岐21. 广东金融学院金融数学与统计学院 广州 510521;
2. 广州大学数学与信息科学学院 广东高等学校交叉学科实验室 广州 510006 Toeplitz Operators Between Bergman Spaces with Exponential Weights Aφp and Aφ Zhong Hua HE1, Xiao Feng WANG2, You Qi LIU21. School of Financial Mathematics and Statistics, Guangdong University of Finance, Guangzhou 510521, P. R. China;
2. School of Mathematics and Information Science and Key Laboratory of Mathematics and Interdisciplinary Sciences of the Guangdong Higher Education Institute, Guangzhou University, Guangzhou 510006, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF (0 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文主要讨论单位圆盘上指数权Bergman空间Aφp和Aφ(0 < p < ∞)之间由正Borel测度μ所诱导的Toeplitz算子Tμ,借助Berezin变换和平均函数刻画该类算子的有界性和紧性.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2020-07-07
MR (2010):O177.1
基金资助:国家自然科学基金(11971125,11971123);广东省高校重点科研平台与科研项目(2018KZDXM048)
通讯作者:王晓峰,E-mail:wxf@gzhu.edu.cnE-mail: wxf@gzhu.edu.cn
作者简介: 何忠华,E-mail:zhonghuahe2010@163.com;刘柚岐,E-mail:youqi_liu@foxmail.com
引用本文:
何忠华, 王晓峰, 刘柚岐. 指数权Bergman空间Aφp和Aφ间的算子[J]. 数学学报, 2021, 64(4): 655-668. Zhong Hua HE, Xiao Feng WANG, You Qi LIU. Toeplitz Operators Between Bergman Spaces with Exponential Weights Aφp and Aφ. Acta Mathematica Sinica, Chinese Series, 2021, 64(4): 655-668.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2021/V64/I4/655


[1] Arroussi H., Pau J., Reproducing kernel estimates, bounded projections and duality on large weighted Bergman spaces, J. Geom. Anal., 2015, 25:2284-2312.
[2] Arroussi H., Park I., Pau J., Schatten class Toeplitz operators acting on large weighted Bergman spaces, Studia Math., 2015, 229:203-221.
[3] Asserda A., Hichame A., Pointwise estimate for the Bergman kernel of the weighted Bergman spaces with exponential weights, C. R. Math. Acad. Sci. Paris, 2014, 352(1):13-16.
[4] Borichev A., Dhuez R., Kellay K., Sampling and interpolation in large Bergman and Fock spaces, J. Funct. Anal., 2007, 242:563-606.
[5] Carleson L., An interpolation problem for bounded analytic functions, Amer. J. Math., 1958, 80:921-930.
[6] Carleson L., Interpolation by bounded analytic functions and the corona problem, Ann. of Math., 1962, 76:547-559.
[7] Constantin O., Pelaez J. A., Boundedness of the Bergman projection on Lp spaces with exponential weights, Bull. Sci. Math., 2015, 139:245-268.
[8] Constantin O., Pelaez J. A., Integral operators, embedding theorems and a Littlewood-Paley formula on weighted Fock spaces, J. Geom. Anal., 2016, 26:1109-1154.
[9] Duren P. L., Theory of Hp Spaces, Academic Press, New York, 1970.
[10] Galanopoulos P., Pau J., Hankel operators on large weighted Bergman spaces, Ann. Acad. Sci. Fenn. Math., 2012, 37:635-648.
[11] Girela D., Peláez J. A., Carleson measures, multipliers and integration operators for spaces of Dirichlet type, J. Funct. Anal., 2006, 241:334-358.
[12] Hu Z. J., Lv, X. F., Toeplitz operators on Fock spaces Fp(φ), Integr. Equ. Oper. Theory, 2014, 80:33-59.
[13] Hu Z. J., Lv X. F., Positive Toeplitz operators between different doubling Fock spaces, Taiwan. J. Math., 2017, 21(2):467-487.
[14] Hu Z. J., Lv X. F., Schuster A. P., Bergman spaces with exponential weights, J. Funct. Anal., 2019, 276(5):1402-1429.
[15] Lin P., Rochberg R., Hankel operators on the weighted Bergman spaces with exponential weights, Integr. Equ. Oper. Theory, 1995, 21:460-483.
[16] Lin P., Rochberg R., Trace ideal criteria for Toeplitz and Hankel operators on the weighted Bergman spaces with exponential type weights, Pacific J. Math., 1996, 173:127-146.
[17] Lv X. F., Carleson measures and Toeplitz operators on doubling Fock spaces, Chin. Ann. Math. Ser. B, 2019, 40(3):349-362.
[18] Oleinik V. L., Embedding theorems for weighted classes of harmonic and analytic functions, J. Sov. Math., 1978, 9:228-243.
[19] Pau J., Peláez J. Á., Embedding theorems and integration operators on Bergman spaces with rapidly decreasing weights, J. Funct. Anal., 2010, 259:2727-2756.
[20] Pau J., Peláez J. Á., Volterra type operators on Bergman spaces with exponential weights, Contemp. Math., 2012, 561:239-252.
[21] Wang X. F., Cao G. F., Xia J., Toeplitz operators on Fock-Sobolev spaces with positive measure symbols, Science China Mathematics, 2014, 57:1443-1462.
[22] Wang X. F., Cao G. F., Zhu K. H., BMO and Hankel operators on Fock-type spaces, J. Geom. Anal., 2015, 25(3):1650-1665.
[23] Wang X. F., Tu Z. H., Hu Z. J., Bounded and compact Toeplitz operators with positive measure symbol on Fock-type spaces, J. Geom. Anal., 2020, 30(4):4324-4355.
[24] Zhang Y. Y., Wang X. F., Hu Z. J., Toeplitz operators on Bergman spaces with exponential weights, Preprint.
[25] Zhu K. H., Operator Theory in Function Spaces, Mathematical Surveys and Monographs, 2nd Edn, American Mathematical Society, Providence, 2007.
[26] Zhu K. H., Analysis on Fock Spaces, Springer, New York, 2012.

[1]黄穗, 王伟. Fock空间上对偶Toeplitz算子的交换性[J]. 数学学报, 2021, 64(4): 579-586.
[2]李永宁, 丁宣浩. Hankel算子的乘积与有限秩算子[J]. 数学学报, 2021, 64(3): 493-500.
[3]何忠华, 夏锦, 王晓峰. 圆环的加正规权Bergman空间上正符号Toeplitz算子[J]. 数学学报, 2021, 64(3): 353-374.
[4]王晓峰, 夏锦, 陈建军. 广义Fock空间上的Hankel算子[J]. 数学学报, 2019, 62(4): 561-572.
[5]王晓峰, 夏锦, 陈建军. 广义Segal-Bargmann空间上无界Toeplitz算子的交换[J]. 数学学报, 2019, 62(3): 409-426.
[6]秦杰, 刘柚岐, 黄穗. Dirichlet空间上Bergman型Toeplitz算子的代数性质[J]. 数学学报, 2019, 62(3): 449-456.
[7]桑元琦, 丁宣浩. 重调和Hardy空间Toeplitz算子的交换性[J]. 数学学报, 2018, 61(4): 577-584.
[8]秦杰, 黄穗. Dirichlet空间上的Bergman型Toeplitz算子[J]. 数学学报, 2018, 61(4): 619-624.
[9]陈建军, 王晓峰, 夏锦. 有界对称区域上Dirichlet空间中的紧Toeplitz算子[J]. Acta Mathematica Sinica, English Series, 2015, 58(6): 923-934.
[10]张阚, 丰雪, 董建国, 关驰, 于妍. 单位球加权Bergman空间上的乘法算子[J]. Acta Mathematica Sinica, English Series, 2015, 58(1): 125-130.
[11]王春梅, 于天秋. 一类解析Toeplitz算子的约化子空间[J]. Acta Mathematica Sinica, English Series, 2014, 57(5): 841-850.
[12]黄穗, 何艳. Dirichlet空间上的Bergman型Toeplitz算子[J]. Acta Mathematica Sinica, English Series, 2013, 56(6): 951-956.
[13]夏锦, 王晓峰, 曹广福. 调和Dirichlet空间上的Toeplitz算子[J]. Acta Mathematica Sinica, English Series, 2013, 56(3): 311-330.
[14]何莉, 曹广福, 何忠华. 单位球的加权Bergman空间上具有L1符号的Toeplitz算子[J]. Acta Mathematica Sinica, English Series, 2013, 56(2): 233-244.
[15]徐景实, 周放军. 非双倍测度空间上的Toeplitz算子[J]. Acta Mathematica Sinica, English Series, 2012, 55(6): 1001-1012.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23801
相关话题/空间 数学 交换 广州 算子