删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Hankel算子的乘积与有限秩算子

本站小编 Free考研考试/2021-12-27

Hankel算子的乘积与有限秩算子 李永宁1,2, 丁宣浩1,21. 重庆工商大学数学与统计学院 重庆 400067;
2. 经济社会应用统计重庆市重点实验室 重庆 400067 The Product of Hankel Operators and the Finite Rank Operators Yong Ning LI1,2, Xuan Hao DING1,21. Chongqing Technology and Business University, College of Mathematics and Statistics, Chongqing 400067, P. R. China;
2. Chongqing Key Laboratory of Social Economic and Applied Statistics, Chongqing 400067, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(446 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要f,g,u ∈ ∩q>1 HqHfHgHu均为通常的单位圆盘上的Hardy空间H2H2上的Hankel算子.本文完全刻画了Hardy空间上的三个Hankel算子的乘积HfHgHu是有限秩的充要条件,并给出了两个不平凡的例子.而且,我们利用本文的主要结果刻画了模型空间上有限秩的截断Toeplitz算子.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2020-08-30
MR (2010):O177.1
基金资助:国家自然科学基金资助项目(11871122);重庆市自然科学基金(cstc2018jcyjAX0595,cstc2020jcyj-msxmX0318);重庆工商大学基金(2053010)
通讯作者:丁宣浩,E-mail:dingxuanhao@ctbu.edu.cn
作者简介: 李永宁,E-mail:yongningli@ctbu.edu.cn
引用本文:
李永宁, 丁宣浩. Hankel算子的乘积与有限秩算子[J]. 数学学报, 2021, 64(3): 493-500. Yong Ning LI, Xuan Hao DING. The Product of Hankel Operators and the Finite Rank Operators. Acta Mathematica Sinica, Chinese Series, 2021, 64(3): 493-500.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2021/V64/I3/493


[1] Axler S., Chang S. Y., Sarason D., Products of Toeplitz operators, Integr. Equ. Oper. Theory, 1978, 1:285-309.
[2] Aleman A., Vukoti? D., Zero products of Toeplitz operators, Duke Math. J., 2009, 148:373-403.
[3] Baranov A., Chalendar I., Fricain E., et al., Bounded symbols and reproducing kernel thesis for truncated Toeplitz operators, J. Funct. Anal., 2010, 259:2673-2701.
[4] Bessonov R., Truncated Toeplitz operators of finite rank, Proc. Amer. Math. Soc., 2014, 142(4):1301-1313.
[5] Brown A., Halmos P., Algebraic properties of Toeplitz operators, J. Reine Angew. Math., 1964, 213:89-102.
[6] Conway J., A Course in Functional Analysis, 2nd Edition, Springer-Verlag, New York, 1994.
[7] Ding X. H., The finite rank perturbations of the product of Hankel and Toeplitz operators, J. Math. Anal. Appl., 2008, 337(1):726-738.
[8] Ding X. H., Sang Y. Q., Two questions on products of Hankel operators (in Chinese), Sci. Sin. Math., doi:10.1360/NO12019-00017.
[9] Ding X. H., Zheng D. C., Finite rank commutator of Toeplitz operators or Hankel operators, Houston J. Math., 2008, 34(4):1099-1120.
[10] Douglas R., Banach Algebra Techniques in Operator Theory, 2nd Edition, Springer-Verlag, New York, 1998.
[11] Gu C. X., Finite rank products of four Hankel operators, Houston J. Math., 1999, 25(3):543-561.
[12] Gu C. X., Products of several Toeplitz operators, J. Funct. Anal., 2000, 171:483-527.
[13] Guo K. Y., A problem on products of Toeplitz operators, Proc. Amer. Math. Soc., 1996, 124:869-871.
[14] Peller V., Hankel Operators and Their Applications, Springer-Verlag, New York, 2003.
[15] Sarason D., Algebraic properties of truncated Toeplitz operators, Oper. Matrices, 2007, 1(4):491-526.
[16] Xia D. X., Zheng D. C., Products of Hankel operators, Integr. Equ. Oper. Theory, 1997, 29:339-363.
[17] Zhu K. H., Operator Theory in Function Spaces, 2nd Edition, Amer. Math. Soc., Providence, RI, 2007.

[1]何少勇, 朱相荣. 高维Hausdorff算子在Hp(Rn)上的有界性[J]. 数学学报, 2021, 64(2): 289-300.
[2]王晓峰, 夏锦, 陈建军. 广义Fock空间上的Hankel算子[J]. 数学学报, 2019, 62(4): 561-572.
[3]桑元琦, 丁宣浩. 重调和Hardy空间Toeplitz算子的交换性[J]. 数学学报, 2018, 61(4): 577-584.
[4]黄强, 王正. 一类粗糙核奇异积分算子的端点估计[J]. 数学学报, 2018, 61(2): 309-316.
[5]刘晓曼, 刘永民, 于燕燕. Riemann-Stieltjes算子的本性范数[J]. 数学学报, 2016, 59(6): 847-858.
[6]夏锦, 王晓峰, 曹广福. 调和Dirichlet空间上的Toeplitz算子[J]. Acta Mathematica Sinica, English Series, 2013, 56(3): 311-330.
[7]陶祥兴, 张松艳. 非齐次粗糙核参数型Marcinkiewicz算子的Hp有界性[J]. Acta Mathematica Sinica, English Series, 2011, 54(1): 97-110.
[8]张霖, 江寅生, 唐林. 带有LMO系数椭圆方程组的加权h1的内估计[J]. Acta Mathematica Sinica, English Series, 2010, 53(5): 911-924.
[9]何月香;王月山;. 一类Marcinkiewicz积分交换子的Hardy型估计[J]. Acta Mathematica Sinica, English Series, 2009, (05): 51-60.
[10]王茂发;刘培德;. Hardy空间与Bergman空间之间的向量值复合算子[J]. Acta Mathematica Sinica, English Series, 2009, (04): 79-88.
[11]孔祥波;江寅生;. 交换子的加权BMO估计[J]. Acta Mathematica Sinica, English Series, 2009, (03): 15-26.
[12]谌稳固;韩永生;苗长兴;. Calderón-Zygmund算子在H_b~p空间上的有界性[J]. Acta Mathematica Sinica, English Series, 2008, 51(3): 487-492.
[13]蓝森华;张璞;. 各向异性Hardy空间的分子特征及其应用[J]. Acta Mathematica Sinica, English Series, 2008, 51(2): 381-390.
[14]罗罗;史济怀;. 单位球上不同Hardy空间之间的复合算子[J]. Acta Mathematica Sinica, English Series, 2008, 51(1): 45-50.
[15]于涛;程国正;. 多圆盘上的本质交换对偶Toeplitz算子[J]. Acta Mathematica Sinica, English Series, 2007, 50(5): 1007-101.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23767
相关话题/空间 数学 交换 重庆工商大学 重庆