删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

有界分块算子矩阵的数值半径估计

本站小编 Free考研考试/2021-12-27

有界分块算子矩阵的数值半径估计 邬慧婷1, 吴德玉1, 阿拉坦仓21. 内蒙古大学数学科学学院 呼和浩特 010021;
2. 呼和浩特民族学院 呼和浩特 010050 Numerical Range Estimation of Block Operator Matrices Hui Ting WU1, De Yu WU1, Alatancang21. School of Mathematical Sciences, Inner Mongolia University, Hohhot 010021, P. R. China;
2. Hohhot Minzu College, Hohhot 010050, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(417 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文主要研究了无穷维复Hilbert空间中有界分块算子矩阵的数值半径问题.首先研究了斜对角分块算子矩阵数值半径不等式的推广形式,并利用数值半径的酉相似不变性和广义混合Schwarz不等式给出了两个有界线性算子和的数值半径的不等式;其次给出了2×2有界分块算子矩阵的数值半径不等式;最后将结论应用到有界无穷维Hamilton算子,描述出其数值半径的不等式.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-10-17
MR (2010):O175.3
基金资助:国家自然科学基金资助项目(11561048,11761029);内蒙古自然科学基金资助项目(2019MS01019)
通讯作者:吴德玉,E-mail:wudeyu2585@163.com
作者简介: 邬慧婷,E-mail:wuhuiting0606@163.com;阿拉坦仓,E-mail:alatanca@imu.edu.cn
引用本文:
邬慧婷, 吴德玉, 阿拉坦仓. 有界分块算子矩阵的数值半径估计[J]. 数学学报, 2021, 64(3): 375-384. Hui Ting WU, De Yu WU, Alatancang. Numerical Range Estimation of Block Operator Matrices. Acta Mathematica Sinica, Chinese Series, 2021, 64(3): 375-384.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2021/V64/I3/375


[1] Abu-Omar A., Kittaneh F., Numerical radius inequalities for n×n operator matrices, Linear Algebra and Its Appl., 2015, 468(1):18-26.
[2] Ando T., Aluthge transforms and the convex hull of the eigenvalues of a matrix, Linear and Multilinear Algebra, 2002, 52(3):281-292.
[3] Azizov T. Y., Dijksma A., Gridneva I., On the boundedness of Hamiltonian operators, P. Am. Math. Soc., 2003, 131(2):563-576.
[4] Bani-Domi W., Kittaneh F., Norm equalities and inequalities for operator matrices, Linear Algebra Appl., 2008, 429(1):57-67.
[5] Bani-Domi W., Kittaneh F., Numerical radius inequalities for operator matrices, Linear and Multilinear Algebra, 2009, 57(4):421-427.
[6] Goldberg M., Tandmor E., On the numerical radius and its applications, Linear Algebra and Its Appl., 1982, 42:263-284.
[7] Hirzallah O., Kittench F., Shebrawi K., Numerical radius inequalities for commutators of Hilbert space operators, Numer. Func. Anal. Opt., 2011, 32(7):739-749.
[8] Hirzallah O., Kittaneh F., Shebrawi K., Numerical radius inequalities for certain 2×2 operator matrices, Integr. Equ. Oper. Theory, 2011, 71(1):129-147.
[9] Kittaneh F., Notes on some inequalities for Hilbert space operators, Publ. Res. Ins. Math. Sci., 1988, 24(1):283-293.
[10] Kittaneh F., Norm inequalities for certain operator sums, Journal of Funct. Anal., 1997, 143(2):337-348.
[11] Kittaneh F., A numerical radius inequalities and an estimate for numerical radius of the Frobenius companion matrix, Studia Math., 2003, 158(1):11-17.
[12] Kittaneh F., Norm inequalities for sums and differences of positive operators, Linear Algebra Appl., 2004, 383(1):85-91.
[13] Kittaneh F., Numerical radius inequalities for Hilbert space operators, Studia Math., 2005, 168(1):73-80.
[14] Li C. K., Tam T. Y., Tsing N. K., The generalized spectral radius, numerical radius and spectral norm, Linear and Multilinear Algebra, 1984, 16(1):215-237.
[15] Pearcy C., An elementary proof of the power inequality for the numerical radius, Michigan Math. J., 1966, 13(3):289-291.
[16] Sun J., Wang Z., Spectral Analysis of Linear Operators (in Chinese), Science Press, Beijing, 2005.
[17] Wu D. Y., Chen A., Spectral Theory of Block Operator Matrices and Applications (in Chinese), Science Press, Beijing, 2013.
[18] Wu D. Y., Chen A., Huang J. J., et al., Numerical Range of Linear Operators on Hilbert Space and Its Applications (in Chinese), Science Press, Beijing, 2018.
[19] Yamazaki T., On upper and lower bounds of the numerical radius and an equality condition, Studia Math., 2007, 178(1):83-89.

[1]苏日古嘎, 吴德玉, 阿拉坦仓. 分块算子矩阵闭值域研究[J]. 数学学报, 2018, 61(3): 447-456.
[2]王月清, 左宁, 杜鸿科. 正压缩算子Jordan积的最大最小谱点[J]. 数学学报, 2016, 59(3): 421-432.
[3]黄旭剑, 谭冬妮. 向量值空间中的几何酉元[J]. Acta Mathematica Sinica, English Series, 2015, 58(6): 1001-1008.
[4]贺衎, 侯晋川, Dolinar GREGOR, Kuzma BONJA. 自伴算子空间上保因子乘积数值域的映射[J]. Acta Mathematica Sinica, English Series, 2011, 54(6): 925-932.
[5]黄俊杰, 阿拉坦仓, 王华. 上三角算子矩阵谱的自伴扰动[J]. Acta Mathematica Sinica, English Series, 2010, 53(6): 1193-1200.
[6]方莉;李启慧;杜鸿科. 算子n次方根的惟一性[J]. Acta Mathematica Sinica, English Series, 2005, 48(6): -.
[7]雷天刚;张福振. 关于带有完全对称函数的广义数值域[J]. Acta Mathematica Sinica, English Series, 1996, 39(5): -.
[8]逄明贤. 关于复方阵数值域的包含域[J]. Acta Mathematica Sinica, English Series, 1994, 37(3): 381-386.
[9]孙善利. 关于凸型算子[J]. Acta Mathematica Sinica, English Series, 1993, 36(4): 433-440.
[10]李绍宽. 关于初等算子的几个问题(Ⅱ)[J]. Acta Mathematica Sinica, English Series, 1991, 34(3): 365-371.
[11]范明. 关于非正常算子组的联合数值域[J]. Acta Mathematica Sinica, English Series, 1988, 31(4): 448-455.
[12]胡世華. 值命題演算的有窮值的具有函數完全性的子系統[J]. Acta Mathematica Sinica, English Series, 1955, 5(2): 173-191.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23756
相关话题/数学 空间 算子 内蒙古大学 科学学院