删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

多线性奇异积分交换子的有界性

本站小编 Free考研考试/2021-12-27

多线性奇异积分交换子的有界性 瞿萌, 方小珍, 王敏安徽师范大学数学与统计学院 芜湖 241003 Boundedness of the Commutators of Multilinear Singular Integrals Meng QU, Xiao Zhen FANG, Min WANGSchool of Mathematics and Statistics, Anhui Normal University, Wuhu 241003, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF (0 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要在多线性Calderón-Zygmund算子T的最小非退化假设条件下,本文给出了一类交换子TbjLp1×…×LpmLq有界性的刻画.这一结果将Hytönen关于线性交换子的部分结果推广到多线性情形.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2018-11-22
MR (2010):O174.2
基金资助:国家自然科学基金资助项目(11871096)
作者简介: 瞿萌,E-mail:qumeng@mail.ahnu.edu.cn;方小珍,E-mail:fxz9511@126.com;王敏,E-mail:ymz1121@163.com
引用本文:
瞿萌, 方小珍, 王敏. 多线性奇异积分交换子的有界性[J]. 数学学报, 2021, 64(4): 677-686. Meng QU, Xiao Zhen FANG, Min WANG. Boundedness of the Commutators of Multilinear Singular Integrals. Acta Mathematica Sinica, Chinese Series, 2021, 64(4): 677-686.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2021/V64/I4/677


[1] Chaffee L., Characterization of BMO through commutators of bilinear singular integral operators, Proc. Amer. Math. Soc., 1999, 127(1):79-87.
[2] Chaffee L., Cruz-Uribe D., Necessary conditions for the boundedness of linear and bilinear commutators on Banach function spaces, Math. Inequal. Appl., 2017, 21(1):1-16.
[3] Christ M., Journé J., Polynomial growth estimates for multilinear singular integral operators, Acta Math., 1987, 159(1):51-80.
[4] Fabes E., Jerison D., Kenig C., Multilinear Littlewood-Paley estimates with applications to partial differential equations, Proc. Natl. Acad. Sci., 1982, 79(18):5746-5750.
[5] Fabes E., Jerison D., Kenig C., Multilinear square functions and partial differential equations, Amer. J. Math., 1985, 107(6):1325-1368.
[6] Grafakos L., Torres R., Multilinear Calderón-Zygmund theory, Adv. Math., 2002, 165:124-164.
[7] Guo W. C., Lian J. L., Wu H. X., The unified theory for the necessity of bounded commutators and applications, J. Geom. Anal., 2020, 30(4):3995-4035.
[8] Huang Z., Huang A. W., Xu J. S., Multilinear commutators of multilinear singular integrals with Lipschitz functions (in Chinese), J. Mathematics, 2011, 31(4):738-748.
[9] Hytönen T. P., The Lp-to-Lq boundedness of commutators with applications to the Jacobian operator, arXiv:1804.11167.
[10] Lerner A., Ombrosi S., Pérez C., et al., New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory, Adv. Math., 2009, 220(1):1222-1264.
[11] Li L., Ma B. L., Zhou J., Multilinear Calderón-Zygmund operators on Morrey space with non-doubling measures, Publ. Math. Debrecen, 2011, 78(2):283-296.
[12] Li Z. Y., Xue Q. Y., Endpoint estimates for the commutators of multilinear Calderón-Zygmund operators with Dini type kernels, J. Inequal. Appl., 2016, No. 252, 22 pp.
[13] Lin Y., Zhang N., Sharp maximal and weighted estimates for multilinear iterated commutators of multilinear integrals with generalized kernels, J. Inequal. Appl., 2017, No. 276, 15 pp.
[14] Liu F., Wu H. X., Zhang D. Q., On the multilinear singular integrals and commutators in the weighted amalgam spaces, J. Funct. Spaces, 2014, Art. ID686l7, 12 pp.
[15] Lu G., Zhang P., Multilinear Calderón-Zygmund operators with kernels of Dini's type and applications, Nonlinear Anal., 2014, 107:92-117.
[16] Maldonado D., Naibo V., Weighted norm inequalities for paraproducts and bilinear pseudodifferential operators with mild regularity, J. Fourier Anal. Appl., 2009, 15:218-261.
[17] Mo H. X., Lu S. Z., Commutators generated by multilinear Calderón-Zygmund type singular integral and Lipschitz function, Acta Math. Appl. Sin. Engl. Ser., 2014, 30(4):903-912.
[18] Pérez C., Torres R., Sharp maximal function estimates for multilinear singular integrals, Contemp. Math., 2003, 320:323-331.
[19] Si Z. Y., Xue Q. Y., A note on vector-valued maximal multilinear operators and their commutators, Math. Inequal. Appl., 2016, 19(1):249-262.
[20] Sun Y. L., Zhao P. F., The boundedness of commutator of multilinear singular integral operator of Calderón-Zygmund (in Chinese), Natural Science J. of Harbin Norm. Univ., 2009, 6:23-26.
[21] Wang P. W., Liu Z. G., Weighted norm inequalities for multilinear Calderón-Zygmund operators in generalized Morrey spaces, J. Inequal. Appl., 2017, No. 48, 10 pp.
[22] Wang W., Xu J. S., Commutators of multilinear singular integrals operators with Lipschitz function, Commun. Math. Res., 2009, 25(4):318-328.
[23] Xu J. S., Multilinear commutators of multilinear singular integrals, Acta Math. Sinica, Chinese Series, 2008, 51(5):1021-1035.
[24] Xue Q. Y., Yan J. Q., Generalized commutators of multilinear Calderón-Zygmund type operators, J. Math. Soc. Japan, 2016, 68(3):1161-1188.
[25] Zhou X. S., Huang C. X., Hu H. J., Inequality estimates for the boundedness of multilinear singular and fractional integral operators, J. Inequal. Appl., 2013, No. 303, 15 pp.

[1]安润玲, 高永兰. C*-代数上强保k-skew交换性的映射[J]. 数学学报, 2021, 64(4): 545-550.
[2]王盛荣, 徐景实. 加权变指标Herz-Morrey空间上的双线性Hardy算子的交换子[J]. 数学学报, 2021, 64(1): 123-138.
[3]李亚涛. Sobolev空间中非电阻MHD方程局部适定性[J]. 数学学报, 2020, 63(4): 335-348.
[4]郭庆栋, 周疆. 一些算子的交换子在广义Morrey空间上的紧性[J]. 数学学报, 2020, 63(4): 367-380.
[5]陶双平, 逯光辉. Morrey空间上Marcinkiewicz积分与R[J]. 数学学报, 2019, 62(2): 269-278.
[6]王定怀, 刘宗光, 周疆, 滕志东. 变指标中心BMO空间[J]. 数学学报, 2018, 61(4): 641-650.
[7]王定怀, 周疆. 一类新型BMO空间[J]. 数学学报, 2017, 60(5): 833-846.
[8]张蕾, 石少广, 郑庆玉. 含参数加权极大Lebesgue空间中次线性算子的有界性质[J]. 数学学报, 2017, 60(3): 521-530.
[9]王玮, 侯晋川. 自伴标准算子代数上强保持k-斜交换性映射的刻画[J]. 数学学报, 2017, 60(1): 39-52.
[10]毛素珍, 孙丽静, 伍火熊. 双线性Fourier乘子交换子的有界性与紧性[J]. 数学学报, 2016, 59(3): 317-334.
[11]梅婷, 丁勇, 马柏林. 多线性算子族的α-Carleson测度[J]. Acta Mathematica Sinica, English Series, 2015, 58(4): 593-600.
[12]李立莉. 单群2G2(32n+1)的拟刻画[J]. Acta Mathematica Sinica, English Series, 2015, 58(3): 359-364.
[13]束立生, 王敏, 瞿萌. 变指数Herz空间上的Hardy型算子的交换子[J]. Acta Mathematica Sinica, English Series, 2015, 58(1): 29-40.
[14]陈艳萍, 韩寒. Hardy-Littlewood极大算子的交换子的尖锐加权模不等式[J]. Acta Mathematica Sinica, English Series, 2014, 57(3): 445-452.
[15]陶双平, 任转喜. n维Hausdorff交换子的加权估计[J]. Acta Mathematica Sinica, English Series, 2014, 57(2): 351-364.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23803
相关话题/交换 数学 空间 代数 指标