摘要本文给出了实Banach空间中,渐近非扩张映射不动点的广义隐式双中点法则的粘性方法.在适当的参数条件下,证明了该算法生成的序列的强收敛定理.本文的结果推广和改进了其他作者的主要结果. | | 服务 | | | 加入引用管理器 | | E-mail Alert | | RSS | 收稿日期: 2020-06-04 | | 基金资助:国家自然科学基金资助项目(11671365);浙江省自然科学基金资助项目(Y6100696)
| 作者简介: 王元恒,E-mail:yhwang@zjnu.cn;李参参,E-mail:484378284@qq.com |
[1] Bader G., Deuflhard P., A semi-implicit mid-point rule for stiff systems of ordinary differential equations, Numer. Math., 1983, 41:373-398. [2] Cai G., Viscosity iterative methods for new variational inequality problems and fixed point problems in Hilbert spaces, Acta Math. Sin. Chin. Ser., 2019, 62(5):765-776. [3] Cai G., Bu S. Q., Strong convergence theorems of a modified Mann iterative method for non-expansive mapping in Banach spaces (in Chinese), Acta Math. Sci. Ser. A, 2014, 34(1):1-8. [4] Cai G., Shehu Y., Iyiola O. S., Modified viscosity implicit rules for non-expansive mappings in Hilbert spaces, J. Fixed Point Theory Appl., 2017, 19(4):2831-2846. [5] Dhakal S., Sintunavarat W., The viscosity method for the implicit double midpoint rule with numerical results and its applications, Comput. Appl. Math., 2019, 38(2):1-18. [6] Iiduka H., Takahashi W., Toyoda M., Approximation of solutions of variational inequalities for monotone mappings, Pan. Math. J., 2004, 14:49-61. [7] Ke Y. F., Ma C. F., The generalized viscosity implicit rules of non-expansive mappings in Hilbert spaces, Fixed Point Theory Appl., 2015, 190:1-21. [8] Luo P., Cai G., Shehu Y., The viscosity iterative algorithms for the implicit midpoint rule of non-expansive mappings in uniformly smooth Banach spaces, J. Inequal. Appl., 2017, 154:1-12. [9] Liu C., Liu L. S., Strong convergence of modified Ishikawa iterative algorithm for non-expansive mappings with errors (in Chinese), Acta Math. Sin. Chin. Ser., 2016, 59(4):545-560. [10] Lim T. C., Xu H. K., Fixed point theorems for asymptotically non-expansive mappings, Nonlinear Anal., 1994, 22:1345-1355. [11] Pan C. J., Wang Y. H., Generalized viscosity implicit iterative process for asymptotically non-expansive mappings in Banach spaces, Mathematics, 2019, 7(5):1-13. [12] Pan C. J., Wang Y. H., Viscosity approximation methods for a general variational inequality system and fixed point problems in Banach spaces, Symmetry Basel, 2020, 12(1):1-15. [13] Somalia S., Implicit midpoint rule to the nonlinear degenerate boundary value problems, Int. J. Comput. Math., 2002, 79:327-332. [14] Song Y., Chen R., Zho H., Viscosity approximation methods for non-expansive mapping sequences in Banach spaces, Nonlinear Anal., 2007, 66:1016-1024. [15] Sunthrayuth P., Kumam P., Viscosity approximation methods base on generalized contraction mappings for a countable family of strict pseudo-contractions, a general system of variational inequalities and a generalized mixed equilibrium problem in Banach spaces, Math. Comput. Model, 2013, 58:1814-1828. [16] Wu X., Zhao L., Viscosity approximation methods for multivalued non-expansive mappings, Mediterr. J. Math., 2016, 13:2645-2657. [17] Xu H. K., Alghamdi M., Shahzad N., The viscosity technique for the implicit midpoint rule of non-expansive mappings in Hilbert spaces, Fixed Point Theory Appl., 2015, 41:1-12. [18] Yao R. H., Chen R. D., Zhou H. Y., Iterative algorithms for fixed points of non-expansive mappings, Acta Math. Sin. Chin. Ser., 2007, 50(1):139-144 [19] Yao Y. H., Shahzad N., Liou Y. C., Modified semi-implicit midpoint rule for non-expansive mappings, Fixed Point Theory Appl., 2015, 166:1-15. [20] Zhang H. C., Qu Y. H., Su Y. F., The generalized viscosity implicit midpoint rule for non-expansive Mappings in Banach Space, Mathematics, 2019, No.512, 16pp. [21] Zeng L. C., Weak convergence theorems for non-expansive mapping in uniformly convex Banach spaces (in Chinese), Acta Math. Sin. Sci. Ser. A, 2002, 22(3):336-341.
|
[1] | 王瑞东, 周文乔. 复Banach空间?p(Γ)(1 ≤ p < ∞)的Mazur-Ulam性质[J]. 数学学报, 2021, 64(4): 529-544. | [2] | 林丽琼, 张云南. Banach空间上p-fusion框架的若干等价描述[J]. 数学学报, 2021, 64(2): 301-310. | [3] | 蔡钢. Hilbert空间上新的变分不等式问题和不动点问题的粘性迭代算法[J]. 数学学报, 2019, 62(5): 765-776. | [4] | 王紫, 王玉文. Banach空间中基于Neumann引理的拟线性广义逆扰动定理[J]. 数学学报, 2018, 61(5): 751-760. | [5] | 蔡钢. 均衡问题、变分不等式问题和不动点问题的强收敛定理[J]. 数学学报, 2017, 60(4): 669-680. | [6] | 侯绳照, 罗晴, 卫淑云. 复平面上解析Banach空间的拟不变子空间[J]. 数学学报, 2017, 60(1): 97-112. | [7] | 刘洁, 赵秀兰. Banach空间中带误差修改的不动点迭代逼近[J]. 数学学报, 2016, 59(6): 767-774. | [8] | 刘春, 刘立山. 非扩张映射具有误差修改Ishikawa迭代算法的强收敛[J]. 数学学报, 2016, 59(4): 545-560. | [9] | 唐国吉, 汪星. Banach空间上变分不等式的一个超梯度方法[J]. 数学学报, 2016, 59(2): 187-198. | [10] | 黄志霞, 黄建华. 一类分裂变分不等式及其收敛算法[J]. Acta Mathematica Sinica, English Series, 2015, 58(6): 1035-1044. | [11] | 王利广, 刘博. 一类源自可加、二次、三次和四次映射的泛函方程的模糊稳定性[J]. Acta Mathematica Sinica, English Series, 2012, 55(5): 841-854. | [12] | 刘巧玲, 叶国菊. 广义函数Denjoy积分的收敛性问题[J]. Acta Mathematica Sinica, English Series, 2011, 54(4): 659-664. | [13] | 张世芳, 钟怀杰, 武俊德. 2 × 2-上三角算子矩阵谱的Fredholm扰动[J]. Acta Mathematica Sinica, English Series, 2011, 54(4): 581-590. | [14] | 张云南, 林丽琼. 猜测“存在Banach空间X使得K0(B(X))=Z2”的一个注记[J]. Acta Mathematica Sinica, English Series, 2011, 54(2): 313-320. | [15] | 张世芳, 钟怀杰, 武俊德. 上三角算子矩阵的谱[J]. Acta Mathematica Sinica, English Series, 2011, 54(1): 41-60. |
|
PDF全文下载地址:
http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23797
积分估计与正规权Dirichlet空间上的Cesro型算子唐鹏程,吕睿昕,张学军湖南师范大学数学与统计学院长沙410006AnIntegralEstimateandCesroTypeOperatorsonNormalWeightDirichletSpacesPengC ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27四元数Hilbert空间中近似对偶与对偶标架张伟1,李云章21.河南财经政法大学数学与信息科学学院郑州450046;2.北京工业大学理学部数学学院北京100124ApproximatelyDualandDualFramesinQuaternionicHilbertSpacesWeiZHANG1,Yu ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27指数权Bergman空间Ap和A间的算子何忠华1,王晓峰2,刘柚岐21.广东金融学院金融数学与统计学院广州510521;2.广州大学数学与信息科学学院广东高等学校交叉学科实验室广州510006ToeplitzOperatorsBetweenBergmanSpaces ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27圆环的加正规权Bergman空间上正符号Toeplitz算子何忠华1,夏锦2,王晓峰21.广东金融学院金融数学与统计学院广州510521;2.广州大学数学与信息科学学院广州510006PositiveToeplitzOperatorsonBergmanSpaceofAnnularInducedbyR ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Frchet空间上集值微分方程初值问题解的高阶收敛性王培光,邢珍钰,吴曦冉河北大学数学与信息科学学院保定071002Higher-OrderConvergenceofSolutionsofInitialValueProblemforSetDifferentialEquationsin ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Banach空间中正则非退化异宿环的Lipschitz扰动陈员龙,骆世广广东金融学院金融数学与统计学院广州510521TheLipschitzPerturbationsofRegularNondegenrateHeteroclinicCyclesinBanachSpacesYuanLongCHEN, ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27半序MengerPM-空间中广义弱压缩映射的最佳逼近点定理吴照奇1,朱传喜1,袁成桂21.南昌大学理学院数学系南昌330031;2.英国斯旺西大学数学系斯旺西SA28PPBestProximityPointTheoremsforGeneralizedWeakContractiveMappingsin ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27完备度量空间中的混沌判定吴小英,陈员龙,王芬广东金融学院金融数学与统计学院广州510521ChaoticCriteriainCompleteMetricSpacesXiaoYingWU,YuanLong,CHENFenWANGSchoolofFinancialMathematicsandStatis ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27空间几何常数与集值非扩张映射的不动点左占飞重庆三峡学院数学与统计学院重庆404100SomeGeometricConstantsandFixedPointsforMultivaluedNonexpansiveMappingsZhanFeiZUODepartmentofMathematicsandSt ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Banach空间上p-fusion框架的若干等价描述林丽琼1,张云南21.福州大学数学与计算机科学学院福州350108;2.福建师范大学数学与信息学院福州350108SomeEquivalentDescriptionsofp-fusionFramesonBanachSpacesLiQiongLIN1 ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|