删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Banach空间中渐近非扩张映射的广义粘性隐式双中点法则

本站小编 Free考研考试/2021-12-27

Banach空间中渐近非扩张映射的广义粘性隐式双中点法则 王元恒, 李参参浙江师范大学数学与计算机科学学院 金华 321004 The Generalized Viscosity Implicit Double Midpoint Rule for Asymptotically Non-expansive Mappings in Banach Spaces Yuan Heng WANG, Can Can LICollege of Mathematics and Computer Science, Zhejiang Normal University, Jinhua 321004, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF (0 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文给出了实Banach空间中,渐近非扩张映射不动点的广义隐式双中点法则的粘性方法.在适当的参数条件下,证明了该算法生成的序列的强收敛定理.本文的结果推广和改进了其他作者的主要结果.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2020-06-04
MR (2010):O177.91
基金资助:国家自然科学基金资助项目(11671365);浙江省自然科学基金资助项目(Y6100696)
作者简介: 王元恒,E-mail:yhwang@zjnu.cn;李参参,E-mail:484378284@qq.com
引用本文:
王元恒, 李参参. Banach空间中渐近非扩张映射的广义粘性隐式双中点法则[J]. 数学学报, 2021, 64(4): 601-612. Yuan Heng WANG, Can Can LI. The Generalized Viscosity Implicit Double Midpoint Rule for Asymptotically Non-expansive Mappings in Banach Spaces. Acta Mathematica Sinica, Chinese Series, 2021, 64(4): 601-612.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2021/V64/I4/601


[1] Bader G., Deuflhard P., A semi-implicit mid-point rule for stiff systems of ordinary differential equations, Numer. Math., 1983, 41:373-398.
[2] Cai G., Viscosity iterative methods for new variational inequality problems and fixed point problems in Hilbert spaces, Acta Math. Sin. Chin. Ser., 2019, 62(5):765-776.
[3] Cai G., Bu S. Q., Strong convergence theorems of a modified Mann iterative method for non-expansive mapping in Banach spaces (in Chinese), Acta Math. Sci. Ser. A, 2014, 34(1):1-8.
[4] Cai G., Shehu Y., Iyiola O. S., Modified viscosity implicit rules for non-expansive mappings in Hilbert spaces, J. Fixed Point Theory Appl., 2017, 19(4):2831-2846.
[5] Dhakal S., Sintunavarat W., The viscosity method for the implicit double midpoint rule with numerical results and its applications, Comput. Appl. Math., 2019, 38(2):1-18.
[6] Iiduka H., Takahashi W., Toyoda M., Approximation of solutions of variational inequalities for monotone mappings, Pan. Math. J., 2004, 14:49-61.
[7] Ke Y. F., Ma C. F., The generalized viscosity implicit rules of non-expansive mappings in Hilbert spaces, Fixed Point Theory Appl., 2015, 190:1-21.
[8] Luo P., Cai G., Shehu Y., The viscosity iterative algorithms for the implicit midpoint rule of non-expansive mappings in uniformly smooth Banach spaces, J. Inequal. Appl., 2017, 154:1-12.
[9] Liu C., Liu L. S., Strong convergence of modified Ishikawa iterative algorithm for non-expansive mappings with errors (in Chinese), Acta Math. Sin. Chin. Ser., 2016, 59(4):545-560.
[10] Lim T. C., Xu H. K., Fixed point theorems for asymptotically non-expansive mappings, Nonlinear Anal., 1994, 22:1345-1355.
[11] Pan C. J., Wang Y. H., Generalized viscosity implicit iterative process for asymptotically non-expansive mappings in Banach spaces, Mathematics, 2019, 7(5):1-13.
[12] Pan C. J., Wang Y. H., Viscosity approximation methods for a general variational inequality system and fixed point problems in Banach spaces, Symmetry Basel, 2020, 12(1):1-15.
[13] Somalia S., Implicit midpoint rule to the nonlinear degenerate boundary value problems, Int. J. Comput. Math., 2002, 79:327-332.
[14] Song Y., Chen R., Zho H., Viscosity approximation methods for non-expansive mapping sequences in Banach spaces, Nonlinear Anal., 2007, 66:1016-1024.
[15] Sunthrayuth P., Kumam P., Viscosity approximation methods base on generalized contraction mappings for a countable family of strict pseudo-contractions, a general system of variational inequalities and a generalized mixed equilibrium problem in Banach spaces, Math. Comput. Model, 2013, 58:1814-1828.
[16] Wu X., Zhao L., Viscosity approximation methods for multivalued non-expansive mappings, Mediterr. J. Math., 2016, 13:2645-2657.
[17] Xu H. K., Alghamdi M., Shahzad N., The viscosity technique for the implicit midpoint rule of non-expansive mappings in Hilbert spaces, Fixed Point Theory Appl., 2015, 41:1-12.
[18] Yao R. H., Chen R. D., Zhou H. Y., Iterative algorithms for fixed points of non-expansive mappings, Acta Math. Sin. Chin. Ser., 2007, 50(1):139-144
[19] Yao Y. H., Shahzad N., Liou Y. C., Modified semi-implicit midpoint rule for non-expansive mappings, Fixed Point Theory Appl., 2015, 166:1-15.
[20] Zhang H. C., Qu Y. H., Su Y. F., The generalized viscosity implicit midpoint rule for non-expansive Mappings in Banach Space, Mathematics, 2019, No.512, 16pp.
[21] Zeng L. C., Weak convergence theorems for non-expansive mapping in uniformly convex Banach spaces (in Chinese), Acta Math. Sin. Sci. Ser. A, 2002, 22(3):336-341.

[1]王瑞东, 周文乔. 复Banach空间?p(Γ)(1 ≤ p < ∞)的Mazur-Ulam性质[J]. 数学学报, 2021, 64(4): 529-544.
[2]林丽琼, 张云南. Banach空间上p-fusion框架的若干等价描述[J]. 数学学报, 2021, 64(2): 301-310.
[3]蔡钢. Hilbert空间上新的变分不等式问题和不动点问题的粘性迭代算法[J]. 数学学报, 2019, 62(5): 765-776.
[4]王紫, 王玉文. Banach空间中基于Neumann引理的拟线性广义逆扰动定理[J]. 数学学报, 2018, 61(5): 751-760.
[5]蔡钢. 均衡问题、变分不等式问题和不动点问题的强收敛定理[J]. 数学学报, 2017, 60(4): 669-680.
[6]侯绳照, 罗晴, 卫淑云. 复平面上解析Banach空间的拟不变子空间[J]. 数学学报, 2017, 60(1): 97-112.
[7]刘洁, 赵秀兰. Banach空间中带误差修改的不动点迭代逼近[J]. 数学学报, 2016, 59(6): 767-774.
[8]刘春, 刘立山. 非扩张映射具有误差修改Ishikawa迭代算法的强收敛[J]. 数学学报, 2016, 59(4): 545-560.
[9]唐国吉, 汪星. Banach空间上变分不等式的一个超梯度方法[J]. 数学学报, 2016, 59(2): 187-198.
[10]黄志霞, 黄建华. 一类分裂变分不等式及其收敛算法[J]. Acta Mathematica Sinica, English Series, 2015, 58(6): 1035-1044.
[11]王利广, 刘博. 一类源自可加、二次、三次和四次映射的泛函方程的模糊稳定性[J]. Acta Mathematica Sinica, English Series, 2012, 55(5): 841-854.
[12]刘巧玲, 叶国菊. 广义函数Denjoy积分的收敛性问题[J]. Acta Mathematica Sinica, English Series, 2011, 54(4): 659-664.
[13]张世芳, 钟怀杰, 武俊德. 2 × 2-上三角算子矩阵谱的Fredholm扰动[J]. Acta Mathematica Sinica, English Series, 2011, 54(4): 581-590.
[14]张云南, 林丽琼. 猜测“存在Banach空间X使得K0(B(X))=Z2”的一个注记[J]. Acta Mathematica Sinica, English Series, 2011, 54(2): 313-320.
[15]张世芳, 钟怀杰, 武俊德. 上三角算子矩阵的谱[J]. Acta Mathematica Sinica, English Series, 2011, 54(1): 41-60.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23797
相关话题/空间 数学 浙江师范大学 计算机 科学学院