删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

积分估计与正规权Dirichlet空间上的Cesàro型算子

本站小编 Free考研考试/2021-12-27

积分估计与正规权Dirichlet空间上的Cesàro型算子 唐鹏程, 吕睿昕, 张学军湖南师范大学数学与统计学院 长沙 410006 An Integral Estimate and Cesàro Type Operators on Normal Weight Dirichlet Spaces Peng Cheng TANG, Rui Xin LV, Xue Jun ZHANGCollege of Mathematics and Statistics, Hunan Normal University, Changsha 410006, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF (0 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要μ是[0,1)上的一个正规函数,本文给出了正规权测度下单位球内单变点球体积分的部分情况下的双向估计,在特殊情况下给出了所有指标情形的双向估计.作为一个应用,本文还给出了一些情况下正规权Dirichlet空间上Cesàro型算子有界或紧的充要条件.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2020-05-02
MR (2010):O174.56
基金资助:国家自然科学基金资助项目(11942109);湖南省研究生科研创新项目(CX2018B286)
通讯作者:张学军,E-mail:xuejunttt@263.netE-mail: xuejunttt@263.net
作者简介: 唐鹏程,E-mail:1228928716@qq.com;吕睿昕,E-mail:1019238929@qq.com
引用本文:
唐鹏程, 吕睿昕, 张学军. 积分估计与正规权Dirichlet空间上的Cesàro型算子[J]. 数学学报, 2021, 64(4): 627-636. Peng Cheng TANG, Rui Xin LV, Xue Jun ZHANG. An Integral Estimate and Cesàro Type Operators on Normal Weight Dirichlet Spaces. Acta Mathematica Sinica, Chinese Series, 2021, 64(4): 627-636.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2021/V64/I4/627


[1] Aleman A., Siskakis A. G., An integral operator on Hp, Complex Variables, 1995, 28:149-158.
[2] Aleman A., Siskakis A. G., Integration operators on Bergman spaces, Indiana Univ. Math. J., 1997, 46:337-356.
[3] Hu Z. J., Extended Cesàro operators on mixed norm space, Proc. Amer. Math. Soc., 2003, 131(7):2171-2179.
[4] Hu Z. J., Extended Cesàro operators on the Bloch space in the unit ball of Cn, Acta Math. Sci. Ser. B (Engl. Ed.), 2003, 23B(4):561-566.
[5] Li S. L., Zhang X. J., Xu S., The Bergman type operators on the F (p, q, s) type spaces in Cn, Chin. J. of Contemp. Math., 2017, 38(4):303-316.
[6] Miao J., The Cesàro operator is bounded on Hp for 0< p < 1, Proc. Amer. Math. Soc., 1992, 116:1077-1079.
[7] Ortega J., Fabrega J., Point-wise multipliers and Corona type decomposition in BMOA, Ann. Inst. Fourier Grenoble, 1996, 46:111-137.
[8] Ortega J., Fabrega J., Corona type decomposition in some Besov spaces, Math. Scand., 1996, 78:93-111.
[9] Rudin W., Function Theory in the Unit Ball of Cn, Springer-Verlag, New York, 1980.
[10] Shi J. H., Ren G. B., Boundedness of the Cesàro operator on mixed norm spaces, Proc. Amer. Math. Soc., 1998, 126:3553-3560.
[22] Siskakis A. G., Composition semigroups and the Cesàro operator on Hp, J. London Math. Soc., 1987, 36(2):153-164.
[12] Tang X. M., Extended Cesàro operators between Bloch-type spaces in the unit ball of Cn, Math. Anal. Appl., 2007, 326(2):1199-1211.
[13] Xiao J., Cesàro operators on Hardy, BMOA and Bloch spaces, Arch Math., 1997, 68:398-406.
[14] Xiao J., Tan H., p-Bergman spaces, α-Bloch spaces, little α-Bloch spaces and Cesàro means (in Chinese), Chin. Ann. of Math., 1998, 19A:187-196.
[15] Zhang X. J., Weighted Cesàro operators on Dirichlet type spaces and Bloch type spaces of Cn (in Chinese), Chin. Ann. of Math., 2005, 26A(1):139-150.
[16] Zhang X. J., Guo Y. T., Shang Q. L., et al., The Gleason's problem on F (p, q, s) type spaces in the unit ball of Cn, Complex Anal. Oper. Theory, 2018, 12(5):1251-1265.
[17] Zhang X. J., Li S. L., Shang Q. L., et al., An integral estimate and the equivalent norms on F (p, q, s, k) spaces in the unit ball, Acta Math. Sci., 2018, 38B(6):1861-1880.
[18] Zhang X. J., Lv R. X., Tang P. C., Several equivalent characterizations of general Hardy type spaces on the unit ball in Cn, Chin. J. of Conte. Math., 2019, 40(2):101-114.
[19] Zhang X. J., Xi L. H., Fan H. X., et al., Atomic decomposition of μ-Bergman space in Cn, Acta Math. Sci. Ser. B (Engl. Ed.), 2014, 34B(3):779-789.
[20] Zhao R. H., Distances from Bloch functions to some Möbius invariant spaces, Annl. Acad. Sci. Fen. Math., 2008, 33:303-313.
[21] Zhao Y. H., Zhang X. J., Integral-type operators on Zygmund type spaces on the unit ball, Adv. Math. China, 2016, 45(5):755-766.
[22] Zhu K. H., Spaces of Holomorphic Functions in the Unit Ball, Springer-Verlag (GTM 226), New York, 2005.

[1]黎深莲, 张学军. 多复变中正规权Zygmund空间上的几个性质[J]. 数学学报, 2019, 62(5): 795-808.
[2]刘志学, 张庆彩. 涉及移动目标的亚纯映射唯一性定理[J]. 数学学报, 2019, 62(5): 783-794.
[3]王朝君, 崔艳艳, 刘浩. Bn上推广的Roper-Suffridge算子的性质[J]. 数学学报, 2016, 59(6): 729-744.
[4]王安, 李志强. 底空间为对称域乘积的Hartogs域的度量等价[J]. Acta Mathematica Sinica, English Series, 2013, 56(6): 871-888.
[5]赵艳辉, 张学军. 单位球上F(p,q,s)空间到βμ空间的加权复合算子[J]. Acta Mathematica Sinica, English Series, 2012, 55(3): 437-448.
[6]方中山, 周泽华. 多圆柱上Bloch型空间之间的等距复合算子[J]. Acta Mathematica Sinica, English Series, 2012, (2): 273-280.
[7]王建飞, 刘太顺. 第一类典型域上的Bloch常数[J]. Acta Mathematica Sinica, English Series, 2012, 55(1): 27-40.
[8]张学军, 肖建斌, 胡朝辉, 刘亚玲, 熊东红, 吴燕. CnF(p,q,s)空间的等价刻画及应用[J]. Acta Mathematica Sinica, English Series, 2011, 54(6): 1029-1042.
[9]张莎莎, 涂振汉. 多复变全纯函数族正规准则[J]. Acta Mathematica Sinica, English Series, 2010, 53(6): 1045-1050.
[10]江治杰. Bergman型空间到Bers型空间之加权复合算子[J]. Acta Mathematica Sinica, English Series, 2010, 53(1): 67-74.
[11]冯志明;. 第一类Cartan-Hartogs域的带权Bergman核函数[J]. Acta Mathematica Sinica, English Series, 2009, (04): 99-108.
[12]肖建斌, 张学军, 尚清丽, 郭雨婷. 单位球上F(p,q,s)空间的分解和刻画[J]. 数学学报, 2018, 61(6): 1037-1048.
[13]叶善力, 林彩淑. Zygmund空间上的微分复合算子[J]. 数学学报, 2016, 59(1): 11-20.
[14]何勇, 张晓玲. 双扭曲积Hermitian流形[J]. 数学学报, 2018, 61(5): 835-842.
[15]徐庆华, 张宇芳, 刘太顺. 多复变Fekete-Szegö问题[J]. 数学学报, 2016, 59(3): 303-308.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23799
相关话题/空间 数学 创新 湖南师范大学 统计学院