删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

四元数Hilbert空间中近似对偶与对偶标架

本站小编 Free考研考试/2021-12-27

四元数Hilbert空间中近似对偶与对偶标架 张伟1, 李云章21. 河南财经政法大学数学与信息科学学院 郑州 450046;
2. 北京工业大学理学部数学学院 北京 100124 Approximately Dual and Dual Frames in Quaternionic Hilbert Spaces Wei ZHANG1, Yun Zhang LI21. School of Mathematics and Information Sciences, He'nan University of Economics and Law, Zhengzhou 450046, P. R. China;
2. College of Mathematics, Faculty of Science, Beijing University of Technology, Beijing 100124, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF (0 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要四元数Hilbert空间在应用物理科学特别是量子物理中占有重要地位.本文讨论四元数Hilbert空间的标架理论,引入了四元数Hilbert空间中近似对偶标架的概念,刻画了(近似)对偶标架,给出了由一个(近似)对偶标架对构造其它(近似)对偶标架对的一些充分条件,得到了(近似)对偶标架稳定性的若干结果.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2020-06-29
MR (2010):O174.2
基金资助:国家自然科学基金资助项目(11971043);河南省高等学校重点科研项目(20A110013)
通讯作者:李云章,E-mail:yzlee@bjut.edu.cnE-mail: yzlee@bjut.edu.cn
作者简介: 张伟,E-mail:zwfylhappy@126.com
引用本文:
张伟, 李云章. 四元数Hilbert空间中近似对偶与对偶标架[J]. 数学学报, 2021, 64(4): 613-626. Wei ZHANG, Yun Zhang LI. Approximately Dual and Dual Frames in Quaternionic Hilbert Spaces. Acta Mathematica Sinica, Chinese Series, 2021, 64(4): 613-626.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2021/V64/I4/613


[1] Adler S. L., Quaternionic Quantum Mechanics and Quantum Fields, Oxford University Press, New York, 1995.
[2] Aerts D., Quantum axiomatics, In:Handbook of Quantum Logic and Quantum Structures-Quantum Logic, Elsevier/North-Holland, Amsterdam, 2009:79-126.
[3] Birkhoff G., von Neumann J., The logic of quantum mechanics, Ann. Math., 1936, 37(4):823-843.
[4] Candès E. J., Harmonic analysis of neural networks, Appl. Comput. Harmon. Anal., 1999, 6:197-218.
[5] Casazza P. G., The art of frame theory, Taiwanese J. Math., 2000, 4(2):129-201.
[6] Christensen O., An introduction to frames and Riesz bases, Birkhäuser, Boston, 2003.
[7] Christensen O., Laugesen R. S., Approximately dual frame pairs in Hilbert spaces and applications to Gabor frames, Sampl. Theory Signal Image Process, 2011, 9:77-90.
[8] Colombo F., Gantner J., Kimsey David P., Spectral Theory on the S-Spectrum for Quaternionic Operators. Birkhäuser, Cham, 2018.
[9] Daubechies I., Grossmann A., Meyer Y., Painess nonorthogonal expansion, J. Math. Phys., 1986, 27:1271-1283.
[10] Duffin R. J., Schaeffer A. C., A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., 1952, 72:341-366.
[11] Ellouz H., Some properties of K-frames in quaternionic Hilbert spaces, Complex Anal. Oper. Theory, 2020, 14:8.
[12] Feichtinger H. G., Onchis D. M., Wiesmeyr C., Construction of approximate dual wavelet frames, Adv. Comput. Math., 2014, 40:273-282.
[13] Gabardo J. P., Han D. G., Frames associated with measurable spaces, Adv. Comput. Math., 2003, 18:127-147.
[14] Ghiloni R., Moretti V., Perotti A., Continuous slice functional calculus in quaternionic Hilbert spaces, Rev. Math. Phys., 2013, 25:1350006.
[15] Gilbert J. E., Han Y. S., Hogan J. A., et al., Smooth molecular decompositions of functions and singular integral operators, Mem. Amer. Math. Soc., 2002, 156(742):74 pp.
[16] Guo Q., Leng J., Li H., Construct approximate dual g-frames in Hilbert spaces, Linear Multilinear Algebra, 2019, DOI:10.1080/03081087.2019.1593924.
[17] Han D., Sun W., Reconstruction of signals from frame coefficients with erasures at unknown locations, IEEE Trans. Inf. Theory, 2014, 60:4013-4025.
[18] Javanshiri H., Some properties of approximately dual frames in Hilbert spaces, Results Math., 2016, 70(3):475-485.
[19] Khokulan M., Thirulogasanthar K., Muraleetharan B., S-spectrum and associated continuous frames on quaternionic Hilbert spaces, J. Geom. Phys., 2015, 96:107-122.
[20] Khokulan M., Thirulogasanthar K., Srisatkunarajah S., Discrete frames on finite dimensional quaternion Hilbert spaces, Axioms, 2017, 6:3, DOI:10.3390/axioms6010003.
[21] Khosravi A., Azandaryani M. M., Approximate duality of g-frames in Hilbert spaces, Acta. Math. Sci. Ser. B, Engl. Ed., 2014, 34(3):639-652.
[22] Piron C., Axiomatique quantique, Helv. Phys. Acta, 1964, 37:439-468.
[23] Sharma S. K., Virender D., Dual frames on finite dimensional quaternionic Hilbert space, Poincare J. Anal. Appl., 2016, 2:79-88.
[24] Sharma S. K., Goel S., Frames in quaternionic Hilbert spaces, J. Math. Phys. Anal. Geom., 2019, 15(3):395-411.
[25] Solér M. P., Characterization of Hilbert spaces by orthomodular spaces, Comm. Algebra, 1995, 23:219-243.
[26] Strohmer T., Approximation of dual Gabor frames, window decay, and wireless communication, Appl. Comput. Harmon. Anal., 2001, 11:243-262.
[27] Strohmer T., Heath R. W., Grassmannian frames with applications to coding and communication, Appl. Comput. Harmon. Anal., 2003, 14:257-275.
[28] Sun W. C., Stability of g-frames, J. Math. Anal. Appl., 2007, 326(2):858-868.
[29] Zhang W., Dual and approximately dual Hilbert-Schmidt frames in Hilbert spaces, Results Math., 2018, 73(1):No 4, 20 pp.

[1]李云章, 王雅慧. 半直线伸缩调制框架集[J]. 数学学报, 2020, 63(1): 45-60.
[2]吴聪, 曾晓晨, 王晋茹. 带超级光滑噪声密度函数的小波自适应点态估计[J]. 数学学报, 2019, 62(5): 687-702.
[3]邓炳茂, 曾翠萍, 刘丹, 方明亮. 涉及导数与差分分担值的唯一性问题[J]. 数学学报, 2019, 62(5): 709-720.
[4]杨沿奇, 陶双平. θ型C-Z算子在加权变指数Morrey空间上的有界性[J]. 数学学报, 2019, 62(3): 503-514.
[5]程旺, 马涛. 奇异积分算子q-变差的定量最优加权估计[J]. 数学学报, 2019, 62(2): 279-286.
[6]陶双平, 逯光辉. Morrey空间上Marcinkiewicz积分与R[J]. 数学学报, 2019, 62(2): 269-278.
[7]张岩, 李云章. 单个生成元Walsh p-进制平移不变空间伸缩的交与并[J]. 数学学报, 2019, 62(1): 1-12.
[8]戴滨林. 单位球Bn上离散非初等小伸缩商拟共形群[J]. 数学学报, 2018, 61(3): 497-502.
[9]李建林. 自仿测度的非谱准则[J]. 数学学报, 2017, 60(3): 361-368.
[10]刘茵, 胡国恩, 赵纪满. 双线性Fourier乘子在Triebel-Lizorkin和Besov空间的有界性[J]. 数学学报, 2017, 60(3): 369-382.
[11]黄强, 卜瑞. 模空间的正则性指标及其应用[J]. Acta Mathematica Sinica, English Series, 2015, 58(4): 571-576.
[12]王玮, 施咸亮. 仿射Bessel序列的判别[J]. Acta Mathematica Sinica, English Series, 2015, 58(4): 673-678.
[13]檀健, 刘宗光. 齐次分数次积分算子在变指标函数空间上的有界性[J]. Acta Mathematica Sinica, English Series, 2015, 58(2): 309-320.
[14]赵国平, 郭炜超. 幺模乘子在α模空间中的渐进估计[J]. Acta Mathematica Sinica, English Series, 2015, 58(1): 141-152.
[15]束立生, 王敏, 瞿萌. 变指数Herz空间上的Hardy型算子的交换子[J]. Acta Mathematica Sinica, English Series, 2015, 58(1): 29-40.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23798
相关话题/空间 数学 指标 北京 河南财经政法大学