删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

一类Filiform李代数Qn的自同构群

本站小编 Free考研考试/2021-12-27

一类Filiform李代数Qn的自同构群 刘丽娜, 唐黎明哈尔滨师范大学数学科学学院 哈尔滨 150025 Automorphism Groups of a Series of Filiform Lie Algebras Qn Li Na LIU, Li Ming TANGSchool of Mathematical, Harbin Normal University, Harbin 150025, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(323 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文利用filiform李代数Qn的极小忠实表示,获得了Qn的自同构群的子群,包括内自同构群,中心自同构群,对合自同构群,外自同构群.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2020-06-16
MR (2010):O152.5
基金资助:国家自然科学基金项目(12001141,11971134);黑龙江省自然科学基金项目(JQ2020A002)
通讯作者:唐黎明,E-mail:limingtang@hrbnu.edu.cnE-mail: limingtang@hrbnu.edu.cn
作者简介: 刘丽娜,E-mail:1959769927@qq.com
引用本文:
刘丽娜, 唐黎明. 一类Filiform李代数Qn的自同构群[J]. 数学学报, 2021, 64(6): 959-966. Li Na LIU, Li Ming TANG. Automorphism Groups of a Series of Filiform Lie Algebras Qn. Acta Mathematica Sinica, Chinese Series, 2021, 64(6): 959-966.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2021/V64/I6/959


[1] Bahturin Y., Goze M., Remm E., Group gradings on filiform Lie algebra, Comm. Algebra, 2016, 44(1):40-62.
[2] Cao Y. A., Automorphisms of the Lie Algebra of Strictly Upper Triangular Matrices over Certain Commutative Rings, Linear Algebra Appl., 2001, 329:175-187.
[3] Cao Y. A., Tan Z. W., Automorphisms of the Lie algebra of strictly upper triangular matrices over a commutative ring, Linear Algebra Appl., 2003, 360:105-122.
[4] Humphreys J. E., Introduction to Lie Algebras and Representation Theory, Springer, New York, 1972.
[5] Karimjanov I. A., Ladra M., Minimal representations of filiform Lie algebras and their application for construction of Leibniz algebras, J. Geom. Phys., 2019, 144:235-244.
[6] Liu L., Tang L. M., The automorphism groups of Heisenberg Lie (super) algebras (in Chinese), J. Math., 2018, 38(3):502-510.
[7] Nikolayevsky Y., Tsartsaflis I., Cohomology of N-graded Lie algebras of maximal class over Z2, J. Lie Theory, 2017, 27:529-544.
[8] Ou S. K., Fan L. J., Wang D. Y., Multiplicative semigroup automorphisms of strictly triangular matrices over a commutative ring (in Chinese), Adv. Math., 2011, 40(5):621-630.
[9] Ren B., Automorphism group of solvable complete Lie algebras with quasi filiform radical, J. Univ. Sci. Technol. Suzhou (Natur. Sci.), 2006, 23(3):16-20.
[10] Tsartsaflis I., On the Betti numbers of filiform Lie algebras over fields of characteristic two, Rev. Un. Mat. Argentina, 2017, 58:95-106.
[11] Wang H. T., Huang C. H., Lie triple derivations and bosonic and fernionic representations for filiform Lie algebra Ln, J. Math. Sci., 2015, 31:43-55.
[12] Wu M. Z., The solvable Lie algebras with filiform Rn nilradicals, Chinese Quart. J. Math., 2011, 26(1):100-107.

[1]余意, 孙建才. 形变bms3代数上的左对称代数结构[J]. 数学学报, 2021, 64(6): 947-958.
[2]陈海波, 赖丹丹, 刘东. 李代数W(2,2)上的Hom-李代数结构[J]. 数学学报, 2020, 63(4): 403-408.
[3]白瑞蒲, 侯帅, 亢闯闯. 对合导子构造的3-李双代数与3-Pre-李代数[J]. 数学学报, 2020, 63(2): 123-136.
[4]陈彦恒, 贾松芳. Suzuki-Ree群的自同构群的阶分量刻画[J]. 数学学报, 2019, 62(4): 641-646.
[5]关宝玲, 陈良云. 限制pre-李代数[J]. 数学学报, 2017, 60(2): 185-200.
[6]白瑞蒲, 陈双双, 程荣. 3-李代数的辛结构[J]. 数学学报, 2016, 59(5): 711-720.
[7]范广哲, 周辰红, 岳晓青. 一类广义Heisenberg-Virasoro代数的导子[J]. 数学学报, 2016, 59(3): 289-294.
[8]赖璇, 陈正新. 有限维单李代数的2-局部导子[J]. Acta Mathematica Sinica, English Series, 2015, 58(5): 847-852.
[9]周佳, 牛艳君, 陈良云. Hom-李代数的广义导子[J]. Acta Mathematica Sinica, English Series, 2015, 58(4): 551-558.
[10]向红, 曾波, 曹佑安. 一类扩张仿射李代数上的非交换Poisson代数[J]. Acta Mathematica Sinica, English Series, 2015, 58(3): 479-490.
[11]张秀强, 刘文德. 非单WS型李超代数的滤过和分类[J]. Acta Mathematica Sinica, English Series, 2015, 58(2): 301-308.
[12]王松. 仿射Nappi-Witten代数Ĥ4的顶点算子代数的自同构群[J]. Acta Mathematica Sinica, English Series, 2014, 57(2): 331-338.
[13]肖芳芳, 曹洪平, 陈贵云. Suzuki-Ree群的自同构群的一个新刻画[J]. Acta Mathematica Sinica, English Series, 2013, 56(4): 545-552.
[14]王伟, 许莹. 一类Schrödinger-Virasoro型李代数的量子化[J]. Acta Mathematica Sinica, English Series, 2012, 55(4): 707-714.
[15]宋光艾, 李忠杰, 王美艳. 广义 Weyl 型李代数 W× gln(F)上的 2-上同调群[J]. Acta Mathematica Sinica, English Series, 2011, 54(5): 753-766.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23875
相关话题/代数 数学 结构 自同构 交换