删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

具有零热传导和真空的非正压磁流体力学方程的L连续性

本站小编 Free考研考试/2021-12-27

具有零热传导和真空的非正压磁流体力学方程的L连续性 钟新西南大学数学与统计学院 重庆 400715 L Continuation for Non-barotropic Magnetohydrodynamic Equations with Zero Heat Conduction and Vacuum Xin ZHONGSchool of Mathematics and Statistics, Southwest University, Chongqing 400715, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(590 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文研究无热传导非正压可压缩磁流体力学方程在二维有界区域上的连续性原理.证明了如果密度和压强有上界,则具有全局强解.特别地,该准则与磁场无关,而与无热传导非正压可压缩纳维—斯托克斯方程的结果相同.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2020-04-26
MR (2010):O175.2
基金资助:国家自然科学基金资助项目(11901474,12071359)
作者简介: 钟新,E-mail:xzhong1014@amss.ac.cn
引用本文:
钟新. 具有零热传导和真空的非正压磁流体力学方程的L连续性[J]. 数学学报, 2021, 64(5): 705-720. Xin ZHONG. L Continuation for Non-barotropic Magnetohydrodynamic Equations with Zero Heat Conduction and Vacuum. Acta Mathematica Sinica, Chinese Series, 2021, 64(5): 705-720.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2021/V64/I5/705


[1] Brézis H., Wainger S., A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Differential Equations, 1980, 5:773-789.
[2] Fan J., Li F., Nakamura G., A blow-up criterion to the 2D full compressible magnetohydrodynamic equations, Math. Methods Appl. Sci., 2015, 38:2073-2080.
[3] Brézis H., Wainger S., A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Differential Equations, 1980, 5:773-789.
[4] Fan J. S., Li F. C., Nakamura G., A blow-up criterion to the 2D full compressible magnetohydrodynamic equations, Math. Methods Appl. Sci., 2015, 38:2073-2080.
[5] Fan J. S., Li F. C., Nakamura G., A regularity criterion for the 3D full compressible magnetohydrodynamic equations with zero heat conductivity, Discrete Contin. Dyn. Syst. Ser. B, 2018, 23:1757-1766.
[6] Fan J. S., Yu W. H., Strong solution to the compressible magnetohydrodynamic equations with vacuum, Nonlinear Anal. Real World Appl., 2009, 10:392-409.
[7] Feireisl E., Dynamics of Viscous Compressible Fluids, Oxford University Press, Oxford, 2004.
[8] Feireisl E., Novotný A., Petzeltová H., On the existence of globally defined weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 2001, 3:358-392.
[9] Friedman A., Partial Differential Equations, Dover Books on Mathematics, New York, 2008.
[10] He C., Xin Z. P., On the regularity of weak solutions to the magnetohydrodynamic equations, J. Differential Equations, 2005, 213:235-254.
[11] Hong G. Y., Hou X. F., Peng H. Y., et al., Global existence for a class of large solutions to three-dimensional compressible magnetohydrodynamic equations with vacuum, SIAM J. Math. Anal., 2017, 49:2409-2441.
[12] Hu X. P., Wang D. H., Global solutions to the three-dimensional full compressible magnetohydrodynamic flows, Comm. Math. Phys., 2008, 283:255-284.
[13] Hu X. P., Wang D. H., Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows, Arch. Ration. Mech. Anal., 2010, 197:203-238.
[14] Huang X. D., Li J., Serrin-type blowup criterion for viscous, compressible, and heat conducting Navier-Stokes and magnetohydrodynamic flows, Comm. Math. Phys., 2013, 324:147-171.
[15] Huang X. D., Wang Y., Global strong solution to the 2D nonhomogeneous incompressible MHD system, J. Differential Equations, 2013, 254:511-527.
[16] Kawashima S., Systems of a Hyperbolic-parabolic Composite Type, with Applications to the Equations of Magnetohydrodynamic, PhD thesis, Kyoto University, 1983.
[17] Li H. L., Xu X. Y., Zhang J. W., Global classical solutions to 3D compressible magnetohydrodynamic equations with large oscillations and vacuum, SIAM J. Math. Anal., 2013, 45:1356-1387.
[18] Lions P. L., Mathematical Topics in Fluid Mechanics, Vol. II:Compressible Models, Oxford University Press, Oxford, 1998.
[19] Liu Y., Zhong X., Global well-posedness to three-dimensional full compressible magnetohydrodynamic equations with vacuum, Z. Angew. Math. Phys., 2020, 71:Paper No. 188.
[20] Lu L., Chen Y. J., Huang B., Blow-up criterion for two-dimensional viscous, compressible, and heat conducting magnetohydrodynamic flows, Nonlinear Anal., 2016, 139:55-74.
[21] Lv B. Q., Shi X. D., Xu X. Y., Global existence and large time asymptotic behavior of strong solutions to the compressible magnetohydrodynamic equations with vacuum, Indiana Univ. Math. J., 2016, 65:925-975.
[22] Serre D., Systems of Conservation Laws with Dissipation, December 3, 2008.
[23] Sun Y. Z., Wang C., Zhang Z. F., A Beale-Kato-Majda blow-up criterion for the 3-D compressible Navier-Stokes equations, J. Math. Pures Appl., 2011, 95:36-47.
[24] Wang Y., One new blowup criterion for the 2D full compressible Navier-Stokes system, Nonlinear Anal. Real World Appl., 2014, 16:214-226.
[25] Xin Z. P., Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density, Comm. Pure Appl. Math., 1998, 51:229-240.
[26] Xin Z. P., Yan W., On blowup of classical solutions to the compressible Navier-Stokes equations, Comm. Math. Phys., 2013, 321:529-541.
[27] Zhong X., On formation of singularity of the full compressible magnetohydrodynamic equations with zero heat conduction, Indiana Univ. Math. J., 2019, 68:1379-1407.
[28] Zhong X., Strong solutions to the Cauchy problem of two-dimensional non-barotropic non-resistive magnetohydrodynamic equations with zero heat conduction, J. Differential Equations, 2020, 268:4921-4944.
[29] Zhong X., Singularity formation to the two-dimensional full compressible Navier-Stokes equations with zero heat conduction in a bounded domain, http://arxiv.org/abs/1810.01265.

[1]张明玉. 有界域上具有部分耗散和磁扩散的二维磁流体方程的全局适定性[J]. 数学学报, 2021, 64(1): 107-122.
[2]叶耀军, 陶祥兴. 一类非线性高阶Kirchhoff型方程的初边值问题[J]. 数学学报, 2019, 62(6): 923-938.
[3]杨婉蓉. 3D轴对称Boussinesq方程强解的存在唯一性[J]. Acta Mathematica Sinica, English Series, 2013, 56(5): 637-650.
[4]张万民. Oseen方程弱解和强解的存在性[J]. Acta Mathematica Sinica, English Series, 2013, 56(2): 245-256.
[5]罗显康, 杨晗. PLnPLp空间中MHD方程组强解的存在唯一性及衰减性质[J]. Acta Mathematica Sinica, English Series, 2011, 54(1): 31-40.
[6]原保全. Boussinesq方程组在Besov空间中局部解的存在性和延拓准则[J]. Acta Mathematica Sinica, English Series, 2010, 53(3): 455-468.
[7]李现今, 酒全森. 三维Boussinesq 方程组大解的全局L2[J]. Acta Mathematica Sinica, English Series, 2010, 53(1): 171-186.
[8]王焰金谭忠. 粘性系数依赖于密度的Korteweg型不可压流体的强解问题[J]. Acta Mathematica Sinica, English Series, 2008, 51(6): 1131-114.
[9]陶双平;陆善镇;. 半直线上修正Kawahara方程的初边值问题[J]. Acta Mathematica Sinica, English Series, 2007, 50(2): 241-254.
[10]崔国忠;江成顺;任华国. 具有吸收-反射边界的Boltzmann-Poisson输运模型的整体弱解[J]. Acta Mathematica Sinica, English Series, 2003, 46(5): 857-864.
[11]刘锡平;贾梅. 一类二阶非自治迭代微分方程的初值问题[J]. Acta Mathematica Sinica, English Series, 2002, 45(4): 711-718.
[12]刘辉昭;王光烈. 速度依赖于高斯曲率倒数的非参数曲面发展[J]. Acta Mathematica Sinica, English Series, 2002, 45(1): 43-58.
[13]戴求亿. 拟线性抛物方程的熄灭(quenching[J]. Acta Mathematica Sinica, English Series, 1998, 41(1): 87-96.
[14]戴求亿. 拟线性抛物方程的熄灭(quenching)现象[J]. Acta Mathematica Sinica, English Series, 1998, 41(1): -.
[15]顾永耕. 抛物型方程的解熄灭(extinction)的充要条件[J]. Acta Mathematica Sinica, English Series, 1994, 37(1): -.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23815
相关话题/数学 流体力学 空间 西南大学 重庆