摘要本文研究无热传导非正压可压缩磁流体力学方程在二维有界区域上的连续性原理.证明了如果密度和压强有上界,则具有全局强解.特别地,该准则与磁场无关,而与无热传导非正压可压缩纳维—斯托克斯方程的结果相同. | | 服务 | | | 加入引用管理器 | | E-mail Alert | | RSS | 收稿日期: 2020-04-26 | | 基金资助:国家自然科学基金资助项目(11901474,12071359)
| 作者简介: 钟新,E-mail:xzhong1014@amss.ac.cn |
[1] Brézis H., Wainger S., A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Differential Equations, 1980, 5:773-789. [2] Fan J., Li F., Nakamura G., A blow-up criterion to the 2D full compressible magnetohydrodynamic equations, Math. Methods Appl. Sci., 2015, 38:2073-2080. [3] Brézis H., Wainger S., A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Differential Equations, 1980, 5:773-789. [4] Fan J. S., Li F. C., Nakamura G., A blow-up criterion to the 2D full compressible magnetohydrodynamic equations, Math. Methods Appl. Sci., 2015, 38:2073-2080. [5] Fan J. S., Li F. C., Nakamura G., A regularity criterion for the 3D full compressible magnetohydrodynamic equations with zero heat conductivity, Discrete Contin. Dyn. Syst. Ser. B, 2018, 23:1757-1766. [6] Fan J. S., Yu W. H., Strong solution to the compressible magnetohydrodynamic equations with vacuum, Nonlinear Anal. Real World Appl., 2009, 10:392-409. [7] Feireisl E., Dynamics of Viscous Compressible Fluids, Oxford University Press, Oxford, 2004. [8] Feireisl E., Novotný A., Petzeltová H., On the existence of globally defined weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 2001, 3:358-392. [9] Friedman A., Partial Differential Equations, Dover Books on Mathematics, New York, 2008. [10] He C., Xin Z. P., On the regularity of weak solutions to the magnetohydrodynamic equations, J. Differential Equations, 2005, 213:235-254. [11] Hong G. Y., Hou X. F., Peng H. Y., et al., Global existence for a class of large solutions to three-dimensional compressible magnetohydrodynamic equations with vacuum, SIAM J. Math. Anal., 2017, 49:2409-2441. [12] Hu X. P., Wang D. H., Global solutions to the three-dimensional full compressible magnetohydrodynamic flows, Comm. Math. Phys., 2008, 283:255-284. [13] Hu X. P., Wang D. H., Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows, Arch. Ration. Mech. Anal., 2010, 197:203-238. [14] Huang X. D., Li J., Serrin-type blowup criterion for viscous, compressible, and heat conducting Navier-Stokes and magnetohydrodynamic flows, Comm. Math. Phys., 2013, 324:147-171. [15] Huang X. D., Wang Y., Global strong solution to the 2D nonhomogeneous incompressible MHD system, J. Differential Equations, 2013, 254:511-527. [16] Kawashima S., Systems of a Hyperbolic-parabolic Composite Type, with Applications to the Equations of Magnetohydrodynamic, PhD thesis, Kyoto University, 1983. [17] Li H. L., Xu X. Y., Zhang J. W., Global classical solutions to 3D compressible magnetohydrodynamic equations with large oscillations and vacuum, SIAM J. Math. Anal., 2013, 45:1356-1387. [18] Lions P. L., Mathematical Topics in Fluid Mechanics, Vol. II:Compressible Models, Oxford University Press, Oxford, 1998. [19] Liu Y., Zhong X., Global well-posedness to three-dimensional full compressible magnetohydrodynamic equations with vacuum, Z. Angew. Math. Phys., 2020, 71:Paper No. 188. [20] Lu L., Chen Y. J., Huang B., Blow-up criterion for two-dimensional viscous, compressible, and heat conducting magnetohydrodynamic flows, Nonlinear Anal., 2016, 139:55-74. [21] Lv B. Q., Shi X. D., Xu X. Y., Global existence and large time asymptotic behavior of strong solutions to the compressible magnetohydrodynamic equations with vacuum, Indiana Univ. Math. J., 2016, 65:925-975. [22] Serre D., Systems of Conservation Laws with Dissipation, December 3, 2008. [23] Sun Y. Z., Wang C., Zhang Z. F., A Beale-Kato-Majda blow-up criterion for the 3-D compressible Navier-Stokes equations, J. Math. Pures Appl., 2011, 95:36-47. [24] Wang Y., One new blowup criterion for the 2D full compressible Navier-Stokes system, Nonlinear Anal. Real World Appl., 2014, 16:214-226. [25] Xin Z. P., Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density, Comm. Pure Appl. Math., 1998, 51:229-240. [26] Xin Z. P., Yan W., On blowup of classical solutions to the compressible Navier-Stokes equations, Comm. Math. Phys., 2013, 321:529-541. [27] Zhong X., On formation of singularity of the full compressible magnetohydrodynamic equations with zero heat conduction, Indiana Univ. Math. J., 2019, 68:1379-1407. [28] Zhong X., Strong solutions to the Cauchy problem of two-dimensional non-barotropic non-resistive magnetohydrodynamic equations with zero heat conduction, J. Differential Equations, 2020, 268:4921-4944. [29] Zhong X., Singularity formation to the two-dimensional full compressible Navier-Stokes equations with zero heat conduction in a bounded domain, http://arxiv.org/abs/1810.01265.
|
[1] | 张明玉. 有界域上具有部分耗散和磁扩散的二维磁流体方程的全局适定性[J]. 数学学报, 2021, 64(1): 107-122. | [2] | 叶耀军, 陶祥兴. 一类非线性高阶Kirchhoff型方程的初边值问题[J]. 数学学报, 2019, 62(6): 923-938. | [3] | 杨婉蓉. 3D轴对称Boussinesq方程强解的存在唯一性[J]. Acta Mathematica Sinica, English Series, 2013, 56(5): 637-650. | [4] | 张万民. Oseen方程弱解和强解的存在性[J]. Acta Mathematica Sinica, English Series, 2013, 56(2): 245-256. | [5] | 罗显康, 杨晗. PLn∩PLp空间中MHD方程组强解的存在唯一性及衰减性质[J]. Acta Mathematica Sinica, English Series, 2011, 54(1): 31-40. | [6] | 原保全. Boussinesq方程组在Besov空间中局部解的存在性和延拓准则[J]. Acta Mathematica Sinica, English Series, 2010, 53(3): 455-468. | [7] | 李现今, 酒全森. 三维Boussinesq 方程组大解的全局L2[J]. Acta Mathematica Sinica, English Series, 2010, 53(1): 171-186. | [8] | 王焰金谭忠. 粘性系数依赖于密度的Korteweg型不可压流体的强解问题[J]. Acta Mathematica Sinica, English Series, 2008, 51(6): 1131-114. | [9] | 陶双平;陆善镇;. 半直线上修正Kawahara方程的初边值问题[J]. Acta Mathematica Sinica, English Series, 2007, 50(2): 241-254. | [10] | 崔国忠;江成顺;任华国. 具有吸收-反射边界的Boltzmann-Poisson输运模型的整体弱解[J]. Acta Mathematica Sinica, English Series, 2003, 46(5): 857-864. | [11] | 刘锡平;贾梅. 一类二阶非自治迭代微分方程的初值问题[J]. Acta Mathematica Sinica, English Series, 2002, 45(4): 711-718. | [12] | 刘辉昭;王光烈. 速度依赖于高斯曲率倒数的非参数曲面发展[J]. Acta Mathematica Sinica, English Series, 2002, 45(1): 43-58. | [13] | 戴求亿. 拟线性抛物方程的熄灭(quenching[J]. Acta Mathematica Sinica, English Series, 1998, 41(1): 87-96. | [14] | 戴求亿. 拟线性抛物方程的熄灭(quenching)现象[J]. Acta Mathematica Sinica, English Series, 1998, 41(1): -. | [15] | 顾永耕. 抛物型方程的解熄灭(extinction)的充要条件[J]. Acta Mathematica Sinica, English Series, 1994, 37(1): -. |
|
PDF全文下载地址:
http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23815
穿孔度量空间Gromov双曲性的几何特征周青山1,李浏兰2,李希宁31.佛山科学技术学院数学与大数据学院佛山528000;2.衡阳师范学院数学与统计学院衡阳421001;3.中山大学数学学院(珠海)珠海519082GeometricCharacterizationsofGromovHyperboli ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Heisenberg群上的分数次Hardy算子在混合范空间上的最佳界王泽群1,魏明权2,张兴松3,燕敦验41.东北财经大学数据科学与人工智能学院大连116025;2.信阳师范学院数学与统计学院信阳464000;3.中国人民大学附属中学朝阳学校北京100028;4.中国科学院大学数学科学学院北京100 ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27复Banach空间?p()(1p<)的Mazur-Ulam性质王瑞东,周文乔天津理工大学理学院天津300384TheMazurUlamPropertyforComplexBanachSpace?p()(1p<)Ru ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27双线性Fourier乘子在变指标Besov空间的有界性刘茵南阳师范学院数学与统计学院南阳473061TheBoundednessofBilinearFourierMultiplierOperatorsonVariableExponentBesovSpacesYinLIUSchoolofMathema ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Fock空间上对偶Toeplitz算子的交换性黄穗,王伟重庆师范大学数学科学学院重庆401331CommutingDualToeplitzOperatorsontheOrthogonalComplementoftheFockSpaceSuiHUANG,WeiWANGSchoolofMathemati ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Banach空间中渐近非扩张映射的广义粘性隐式双中点法则王元恒,李参参浙江师范大学数学与计算机科学学院金华321004TheGeneralizedViscosityImplicitDoubleMidpointRuleforAsymptoticallyNon-expansiveMappingsinBa ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27积分估计与正规权Dirichlet空间上的Cesro型算子唐鹏程,吕睿昕,张学军湖南师范大学数学与统计学院长沙410006AnIntegralEstimateandCesroTypeOperatorsonNormalWeightDirichletSpacesPengC ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27四元数Hilbert空间中近似对偶与对偶标架张伟1,李云章21.河南财经政法大学数学与信息科学学院郑州450046;2.北京工业大学理学部数学学院北京100124ApproximatelyDualandDualFramesinQuaternionicHilbertSpacesWeiZHANG1,Yu ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27指数权Bergman空间Ap和A间的算子何忠华1,王晓峰2,刘柚岐21.广东金融学院金融数学与统计学院广州510521;2.广州大学数学与信息科学学院广东高等学校交叉学科实验室广州510006ToeplitzOperatorsBetweenBergmanSpaces ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27圆环的加正规权Bergman空间上正符号Toeplitz算子何忠华1,夏锦2,王晓峰21.广东金融学院金融数学与统计学院广州510521;2.广州大学数学与信息科学学院广州510006PositiveToeplitzOperatorsonBergmanSpaceofAnnularInducedbyR ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|