摘要利用Fourier变换、逆变换和Littlewood—Paley分解等方法,本文研究了双线性Fourier乘子在变指标Besov空间的有界性. | | 服务 | | | 加入引用管理器 | | E-mail Alert | | RSS | 收稿日期: 2020-05-23 | | 基金资助:河南省自然科学基金资助项目(202300410300);南阳师范学院博士基金项目(2019ZX034)
| 作者简介: 刘茵,E-mail:201531130007@mail.bnu.edu.cn |
[1] Acerbi E., Mingione G., Gradient estimates for the p(x)-Laplacean system, J. Reine Angew. Math., 2005, 584:117-148. [2] Almeida A., António C., Variable Exponent Besov-Morrey Spaces, J. Fourier Anal. Appl., 2020, 26:1-42. [3] Almeida A., Hästö P., Besov spaces with variable smoothness and integrability, J. Funct. Anal., 2010, 258:1628-1655. [4] Baroni P., Colombo M., Mingione G., Harnack inequalities for double phase functionals, Nonlinear Anal., 2015, 121:206-222. [5] Bernicot F., Germain P., Bilinear oscillatory integrals and boundedness for new bilinear multipliers, Adv. Math., 2010, 225:1739-1785. [6] Besov O. V., Equivalent normings of spaces of functions of variable smoothness, P. Steklov I. Math., 2003, 4:80-88. [7] Besov O. V., Interpolation, embedding, and extension of spaces of functions of variable smoothness, P. Steklov I. Math., 2005, 1:47-58. [8] Birnbaum Z., Orlicz W., Über die Verallgemeinerung des Begriffes der zueinander konjugierten Potenzen, Stud. Math., 1931, 3:1-67. [9] Chen J. C., Fan D. S., Zhao F. Y., Littlewood-Paley functions and Sobolev spaces, Nonlinear Anal., 2019, 184:273-297. [10] Chen L., Lu G. Z., Luo X., Boundedness of multi-parameter Fourier multiplier operators on Triebel-Lizorkin and Besov-Lipschitz spaces, Nonlinear Anal., 2016, 134:55-69. [11] Coifman R. R., Meyer Y., On commutators of singular integrals and bilinear singular integrals, Trans. Amer. Math. Soc., 1975, 212:315-331. [12] Coifman R. R., Meyer Y., Commutateurs d'intégrales singulières et opérateurs multilinéaires, Ann. Inst. Fourier (Grenoble), 1978, 28:177-202. [13] Cruz-Uribe D. V., Fiorenza A., Variable Lebesgue Spaces, Foundations and Harmonic Analysis, Applied and Numerical Harmonic Analysis, Birkhäuser, Springer, Heidelberg, 2013. [14] Diening L., Harjulehto P., Hästö P., et al., Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, Vol. 2017, Springer, Heidelberg, 2011. [15] Grafakos L., Torres R., Discrete decompositions for bilinear operators and almost diagonal conditions, Trans. Amer. Math. Soc., 2002, 354:1153-1176. [16] Ková?ik O., Rákosník J., On spaces Lp(x) and Wk,p(x), Czechoslovak Math. J., 1991, 41:592-618. [17] Leopold H. G., On Besov spaces of variable order of differentiation, Z. Anal. Anwend., 1989, 8:69-82. [18] Leopold H. G., Embedding of function spaces of variable order of differentiation in function spaces of variable order of integration, Czech. Math. J., 1999, 49:633-644. [19] Liu Y., Hu G. E., Zhao J. M., The boundedness of bilinear Fourier multiplier operators on Triebel-Lizorkin and Besov spaces, Acta Math. Sin. Chinese Series, 2017, 60:369-382. [20] Liu Y., Zhao J. M., Abstract Hardy spaces with variable exponents, Nonlinear Anal., 2018, 167:29-50. [21] Liu Y., Zhao J. M., Bilinear Fourier multiplier operators on Variable Exponent Triebel-Lizorkin spaces, Math. Inequal. Appl., 2019, 22:677-690. [22] Luxemburg W., Banach Function Spaces, Thesis, Technische Hogeschool te Delft, 1955. [23] Naibo V., On the bilinear Hörmander classes in the scales of Triebel-Lizorkin and Besov spaces, J. Fourier Anal. Appl., 2015, 21:1077-1104. [24] Nakai E., Sawano Y., Hardy spaces with variable exponents and generalized Campanato spaces, J. Funct. Anal., 2012, 262:3665-3748. [25] Nakano H., Modulared Semi-ordered Linear Spaces, Maruzen Co., Ltd., Tokyo, 1950. [26] Nakano H., Topology of Linear Topological Spaces, Maruzen Co., Ltd., Tokyo, 1951. [27] Noi T., Fourier multiplier theorems for Besov and Triebel-Lizorkin spaces with variable exponents, Math. Inequal. Appl., 2014, 17:49-74. [28] Noi T., Trace and extension operators for Besov spaces and Triebel-Lizorkin spaces with variable exponents, Rev. Mat. Complut., 2016, 29:341-404. [29] Triebel H., Theory of Function Spaces, Birkhäuser Verlag, Basel, 1983. [30] Xu J. S., Variable Besov and Triebel-Lizorkin spaces, Ann. Acad. Sci. Fenn.-Math., 2008, 33:511-522. [31] Xu J. S., The relation between variable Bessel potential spaces and Triebel-Lizorkin spaces, Integr. Transf. Spec. F., 2008, 19:599-605. [32] Yang D. C., Zhuo C. Q., Yuan W., Besov-type spaces with variable smoothness and integrability, J. Funct. Anal., 2015, 269:1840-1898. [33] Yuan W., Sickel W., Yang D. C., Morrey and Campanato Meet Besov, Lizorkin and Triebel, Lecture Notes in Mathematics, Vol. 2005, Springer-Verlag, Berlin, 2010.
|
[1] | 王盛荣, 徐景实. 加权变指标Herz-Morrey空间上的双线性Hardy算子的交换子[J]. 数学学报, 2021, 64(1): 123-138. | [2] | 王定怀, 刘宗光, 周疆, 滕志东. 变指标中心BMO空间[J]. 数学学报, 2018, 61(4): 641-650. | [3] | 刘茵, 胡国恩, 赵纪满. 双线性Fourier乘子在Triebel-Lizorkin和Besov空间的有界性[J]. 数学学报, 2017, 60(3): 369-382. | [4] | 檀健, 刘宗光. 齐次分数次积分算子在变指标函数空间上的有界性[J]. Acta Mathematica Sinica, English Series, 2015, 58(2): 309-320. |
|
PDF全文下载地址:
http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23827
复Banach空间?p()(1p<)的Mazur-Ulam性质王瑞东,周文乔天津理工大学理学院天津300384TheMazurUlamPropertyforComplexBanachSpace?p()(1p<)Ru ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Fock空间上对偶Toeplitz算子的交换性黄穗,王伟重庆师范大学数学科学学院重庆401331CommutingDualToeplitzOperatorsontheOrthogonalComplementoftheFockSpaceSuiHUANG,WeiWANGSchoolofMathemati ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Banach空间中渐近非扩张映射的广义粘性隐式双中点法则王元恒,李参参浙江师范大学数学与计算机科学学院金华321004TheGeneralizedViscosityImplicitDoubleMidpointRuleforAsymptoticallyNon-expansiveMappingsinBa ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27积分估计与正规权Dirichlet空间上的Cesro型算子唐鹏程,吕睿昕,张学军湖南师范大学数学与统计学院长沙410006AnIntegralEstimateandCesroTypeOperatorsonNormalWeightDirichletSpacesPengC ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27四元数Hilbert空间中近似对偶与对偶标架张伟1,李云章21.河南财经政法大学数学与信息科学学院郑州450046;2.北京工业大学理学部数学学院北京100124ApproximatelyDualandDualFramesinQuaternionicHilbertSpacesWeiZHANG1,Yu ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27指数权Bergman空间Ap和A间的算子何忠华1,王晓峰2,刘柚岐21.广东金融学院金融数学与统计学院广州510521;2.广州大学数学与信息科学学院广东高等学校交叉学科实验室广州510006ToeplitzOperatorsBetweenBergmanSpaces ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27圆环的加正规权Bergman空间上正符号Toeplitz算子何忠华1,夏锦2,王晓峰21.广东金融学院金融数学与统计学院广州510521;2.广州大学数学与信息科学学院广州510006PositiveToeplitzOperatorsonBergmanSpaceofAnnularInducedbyR ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Frchet空间上集值微分方程初值问题解的高阶收敛性王培光,邢珍钰,吴曦冉河北大学数学与信息科学学院保定071002Higher-OrderConvergenceofSolutionsofInitialValueProblemforSetDifferentialEquationsin ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Banach空间中正则非退化异宿环的Lipschitz扰动陈员龙,骆世广广东金融学院金融数学与统计学院广州510521TheLipschitzPerturbationsofRegularNondegenrateHeteroclinicCyclesinBanachSpacesYuanLongCHEN, ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27带有对数非线性项的回火分数p-Laplace系统的驻波解王国涛1,2,侯文文1,张丽红1,RaviP.AGARWAL3,21.山西师范大学数学与计算机科学学院临汾041004;2.NonlinearAnalysisandAppliedMathematics(NAAM)ResearchGroup,De ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|