删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

双线性Fourier乘子在变指标Besov空间的有界性

本站小编 Free考研考试/2021-12-27

双线性Fourier乘子在变指标Besov空间的有界性 刘茵南阳师范学院数学与统计学院 南阳 473061 The Boundedness of Bilinear Fourier Multiplier Operators on Variable Exponent Besov Spaces Yin LIUSchool of Mathematics and Statistics, Nanyang Normal University, Nanyang 473061, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(416 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要利用Fourier变换、逆变换和Littlewood—Paley分解等方法,本文研究了双线性Fourier乘子在变指标Besov空间的有界性.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2020-05-23
MR (2010):O174.2
基金资助:河南省自然科学基金资助项目(202300410300);南阳师范学院博士基金项目(2019ZX034)
作者简介: 刘茵,E-mail:201531130007@mail.bnu.edu.cn
引用本文:
刘茵. 双线性Fourier乘子在变指标Besov空间的有界性[J]. 数学学报, 2021, 64(5): 865-874. Yin LIU. The Boundedness of Bilinear Fourier Multiplier Operators on Variable Exponent Besov Spaces. Acta Mathematica Sinica, Chinese Series, 2021, 64(5): 865-874.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2021/V64/I5/865


[1] Acerbi E., Mingione G., Gradient estimates for the p(x)-Laplacean system, J. Reine Angew. Math., 2005, 584:117-148.
[2] Almeida A., António C., Variable Exponent Besov-Morrey Spaces, J. Fourier Anal. Appl., 2020, 26:1-42.
[3] Almeida A., Hästö P., Besov spaces with variable smoothness and integrability, J. Funct. Anal., 2010, 258:1628-1655.
[4] Baroni P., Colombo M., Mingione G., Harnack inequalities for double phase functionals, Nonlinear Anal., 2015, 121:206-222.
[5] Bernicot F., Germain P., Bilinear oscillatory integrals and boundedness for new bilinear multipliers, Adv. Math., 2010, 225:1739-1785.
[6] Besov O. V., Equivalent normings of spaces of functions of variable smoothness, P. Steklov I. Math., 2003, 4:80-88.
[7] Besov O. V., Interpolation, embedding, and extension of spaces of functions of variable smoothness, P. Steklov I. Math., 2005, 1:47-58.
[8] Birnbaum Z., Orlicz W., Über die Verallgemeinerung des Begriffes der zueinander konjugierten Potenzen, Stud. Math., 1931, 3:1-67.
[9] Chen J. C., Fan D. S., Zhao F. Y., Littlewood-Paley functions and Sobolev spaces, Nonlinear Anal., 2019, 184:273-297.
[10] Chen L., Lu G. Z., Luo X., Boundedness of multi-parameter Fourier multiplier operators on Triebel-Lizorkin and Besov-Lipschitz spaces, Nonlinear Anal., 2016, 134:55-69.
[11] Coifman R. R., Meyer Y., On commutators of singular integrals and bilinear singular integrals, Trans. Amer. Math. Soc., 1975, 212:315-331.
[12] Coifman R. R., Meyer Y., Commutateurs d'intégrales singulières et opérateurs multilinéaires, Ann. Inst. Fourier (Grenoble), 1978, 28:177-202.
[13] Cruz-Uribe D. V., Fiorenza A., Variable Lebesgue Spaces, Foundations and Harmonic Analysis, Applied and Numerical Harmonic Analysis, Birkhäuser, Springer, Heidelberg, 2013.
[14] Diening L., Harjulehto P., Hästö P., et al., Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, Vol. 2017, Springer, Heidelberg, 2011.
[15] Grafakos L., Torres R., Discrete decompositions for bilinear operators and almost diagonal conditions, Trans. Amer. Math. Soc., 2002, 354:1153-1176.
[16] Ková?ik O., Rákosník J., On spaces Lp(x) and Wk,p(x), Czechoslovak Math. J., 1991, 41:592-618.
[17] Leopold H. G., On Besov spaces of variable order of differentiation, Z. Anal. Anwend., 1989, 8:69-82.
[18] Leopold H. G., Embedding of function spaces of variable order of differentiation in function spaces of variable order of integration, Czech. Math. J., 1999, 49:633-644.
[19] Liu Y., Hu G. E., Zhao J. M., The boundedness of bilinear Fourier multiplier operators on Triebel-Lizorkin and Besov spaces, Acta Math. Sin. Chinese Series, 2017, 60:369-382.
[20] Liu Y., Zhao J. M., Abstract Hardy spaces with variable exponents, Nonlinear Anal., 2018, 167:29-50.
[21] Liu Y., Zhao J. M., Bilinear Fourier multiplier operators on Variable Exponent Triebel-Lizorkin spaces, Math. Inequal. Appl., 2019, 22:677-690.
[22] Luxemburg W., Banach Function Spaces, Thesis, Technische Hogeschool te Delft, 1955.
[23] Naibo V., On the bilinear Hörmander classes in the scales of Triebel-Lizorkin and Besov spaces, J. Fourier Anal. Appl., 2015, 21:1077-1104.
[24] Nakai E., Sawano Y., Hardy spaces with variable exponents and generalized Campanato spaces, J. Funct. Anal., 2012, 262:3665-3748.
[25] Nakano H., Modulared Semi-ordered Linear Spaces, Maruzen Co., Ltd., Tokyo, 1950.
[26] Nakano H., Topology of Linear Topological Spaces, Maruzen Co., Ltd., Tokyo, 1951.
[27] Noi T., Fourier multiplier theorems for Besov and Triebel-Lizorkin spaces with variable exponents, Math. Inequal. Appl., 2014, 17:49-74.
[28] Noi T., Trace and extension operators for Besov spaces and Triebel-Lizorkin spaces with variable exponents, Rev. Mat. Complut., 2016, 29:341-404.
[29] Triebel H., Theory of Function Spaces, Birkhäuser Verlag, Basel, 1983.
[30] Xu J. S., Variable Besov and Triebel-Lizorkin spaces, Ann. Acad. Sci. Fenn.-Math., 2008, 33:511-522.
[31] Xu J. S., The relation between variable Bessel potential spaces and Triebel-Lizorkin spaces, Integr. Transf. Spec. F., 2008, 19:599-605.
[32] Yang D. C., Zhuo C. Q., Yuan W., Besov-type spaces with variable smoothness and integrability, J. Funct. Anal., 2015, 269:1840-1898.
[33] Yuan W., Sickel W., Yang D. C., Morrey and Campanato Meet Besov, Lizorkin and Triebel, Lecture Notes in Mathematics, Vol. 2005, Springer-Verlag, Berlin, 2010.

[1]王盛荣, 徐景实. 加权变指标Herz-Morrey空间上的双线性Hardy算子的交换子[J]. 数学学报, 2021, 64(1): 123-138.
[2]王定怀, 刘宗光, 周疆, 滕志东. 变指标中心BMO空间[J]. 数学学报, 2018, 61(4): 641-650.
[3]刘茵, 胡国恩, 赵纪满. 双线性Fourier乘子在Triebel-Lizorkin和Besov空间的有界性[J]. 数学学报, 2017, 60(3): 369-382.
[4]檀健, 刘宗光. 齐次分数次积分算子在变指标函数空间上的有界性[J]. Acta Mathematica Sinica, English Series, 2015, 58(2): 309-320.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23827
相关话题/空间 指标 数学 南阳师范学院 分数