删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

复Banach空间?p(Γ)(1 ≤ p < ∞)的Mazur-Ulam性质

本站小编 Free考研考试/2021-12-27

复Banach空间?p(Γ)(1 ≤ p < ∞)的Mazur-Ulam性质 王瑞东, 周文乔天津理工大学理学院 天津 300384 The Mazur–Ulam Property for Complex Banach Space ?p(Γ) (1 ≤ p < ∞) Rui Dong WANG, Wen Qiao ZHOUScience of College, Tianjin University of Technology, Tianjin 300384, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(501 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要1978年,Tingley提出著名的Tingley问题(等距延拓问题),受到许多****的重视.遗憾的是到目前为止,即使对于二维Banach空间,这个问题仍是一个开问题.目前的研究主要集中在同类型或不同类型的经典Banach空间之间,并得到了肯定的回答.本文对复Banach空间?p(Γ)(1 ≤ p < ∞)与复Banach空间E之间的Tingley问题给出了肯定的回答,即复Banach空间?p(Γ)(1 ≤ p < ∞)满足Mazur-Ulam性质.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2020-03-20
MR (2010):O177.2
基金资助:国家自然科学基金资助项目(11301384,11371201,11201337,11201338)
作者简介: 王瑞东,E-mail:wangruidong@tjut.edu.cn;周文乔,E-mail:763868160@qq.com
引用本文:
王瑞东, 周文乔. 复Banach空间?p(Γ)(1 ≤ p < ∞)的Mazur-Ulam性质[J]. 数学学报, 2021, 64(4): 529-544. Rui Dong WANG, Wen Qiao ZHOU. The Mazur–Ulam Property for Complex Banach Space ?p(Γ) (1 ≤ p < ∞). Acta Mathematica Sinica, Chinese Series, 2021, 64(4): 529-544.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2021/V64/I4/529


[1] Alonso J., Benítez C., Some characteristic and non-characteristic properties of inner product spaces, J. Approx. Theory, 1988, 55:318-325.
[2] Becerra Guerrero J., Cueto-Avellaneda M., Fernández-Polo F. J., et al., On the extension of isometries between the unit spheres of a JBW*-triple and a Banach space, to appear in J. Inst. Math. Jussieu., doi:10.1017/S1474748019000173, arXiv:1808.01460.
[3] Boyko K., Kadets V., Martín M., et al., Properties of lush spaces and applications to Banach spaces with numerical index 1, Studia. Math., 2009, 190:117-133.
[4] Cabello Sánchez J., A reflection on Tingley's problem and some applications, J. Math. Anal. Appl., 2019, 476(2):319-336.
[5] Cheng L. X., Dong Y. B., On a generalized Mazur-Ulam question:extension of isometries between unit spheres of Banach spaces, J. Math. Anal. Appl., 2011, 377:464-470.
[6] Cueto-Avellaneda M., Peralta A. M., The Mazur-Ulam property for commutative von Neumann algebras, Linear and Multilinear Algebra, 2020, 68(2):337-362.
[7] Ding G. G., The 1-Lipschitz mapping between the unit spheres of two Hilbert spaces can be extended to a real linear isometry of the whole space, Sci. China Ser. A, 2002, 45(4):479-483.
[8] Ding G. G., The isometric extension problem in the unit spheres of ?p(Γ) (p > 1) type spaces, Sci. China Ser. A, 2003, 46:333-338.
[9] Ding G. G., The isometric extension of the into mapping from a l(Γ)-type space to some Banach space, Illinois J. Math., 2007, 51:445-453.
[10] Ding G. G., On isometric extension problem between two unit spheres, Sci. China. Ser. A., 2009, 52:2069-2083.
[11] Dixmier J., Sur certains espaces considérés par M. H. Stone, Summa. Brasil. Math., 1951, 2:151-182.
[12] Fang X. N., Wang J. H., On extension of isometries between the unit spheres of normed space E and C(Ω), Acta. Math. Sin. Endl. Ser., 2006, 22:1819-1824.
[13] Fang X. N., Wang J. H., Extension of isometries between unit spheres of normed space E and ?1(Ω), Acta. Math. Sinica China Ser., 2008, 51(1):24-28.
[14] Fang X. N., Wang J. H., Extension of isometries on the unit sphere of ?p(Γ) space, Sci. China Math., 2010, 53:1085-1096.
[15] Fernández-Polo F. J., Jordá E., Peralta A. M., Tingley's problem for p-Schatten von Neumann classes, to appear in J. Spectr. Theory, arXiv:1803.00763.
[16] Fernández-Polo F. J., Peralta A. M., On the facial structure of the unit ball in the dual space of a JB*-triple, Math. Ann., 2010, 348:1019-1032.
[17] Fernández-Polo F. J., Peralta A. M., Low rank compact operators and Tingley's problem, Adv. Math., 2018, 338:1-40.
[18] Fernández-Polo F. J., Peralta A. M., On the extension of isometries between the unit spheres of a C*-algebra and B(H), Trans. Amer. Math. Soc. Ser. B, 2018, 5:63-80.
[19] Gehér Gy P., A contribution to the Aleksandrov conservative distance problem in two dimensions, Linear Algebra Appl., 2015, 481:280-287.
[20] Jiménez-Vargas A., Morales-Campoy A., Peralta A. M., et al., The Mazur-Ulam property for the space of complex null sequences, Linear and Multilinear Algebra, 2019, 67(4):799-816.
[21] Kadets V., Martín M., Extension of isometries between unit spheres of finite-dimensional polyhedral Banach spaces, J. Math. Anal. Appl., 2012, 396:441-447.
[22] Liu R., On extension of isometries between unit spheres of ?(Γ)-type space and a Banach space E, J. Math. Anal. Appl., 2007, 333:959-970.
[23] Liu R., Zhang L., On extension of isometries and approximate isometries between unit spheres, J. Math. Anal. Appl., 2009, 352:749-761.
[24] Mankiewicz P., On extension of isometries in normed linear spaces, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 1972, 20:367-371.
[25] Mazur S., Ulam S., Sur less transformations isométriques despaces vectoriels normés, C. R. Acad. Sci. Paris, 1932, 194:946-948.
[26] Mori M., Ozawa N., Mankiewicz's theorem and the Mazur-Ulam property for C*-algebras, Studia Math., 2020, 250(3):265-281.
[27] Peralta A. M., Extending surjective isometries defined on the unit sphere of ?(Γ), Revista Matemática Complutense, 2019, 32:99-114.
[28] Ryotaro T., Tingley's problem on symmetric absolute normalized norms on R2, Acta. Math. Sin. Endl. Ser., 2014, 30:1324-1340.
[29] Sakai S., C*-and W*-algebras, Springer-Verlag, Berlin, New York, 1971.
[30] Tan D. N., Extension of isometries on unit sphere of L, Taiwanese J. Math., 2011, 15:819-827.
[31] Tan D. N., On extension of isometries on the unit spheres of Lp spaces for 0< p ≤ 1, Nonlinear Anal., 2011, 74:6981-6987.
[32] Tan D. N., Extension of isometries on the unit sphere of Lp-spaces, Acta. Math. Sin. Endl. Ser., 2012, 28:1197-1208.
[33] Tan D. N., Huang X. J., Liu R., Generalized-Lush spaces and the Mazur-Ulam property, Studia Math., 2013, 219:139-153.
[34] Tan D. N., Liu R., A note on the Mazur-Ulam property of almost-CL-spaces, J. Math. Anal. Appl., 2013, 405:336-341.
[35] Tingley D., Isometries of the unit spheres, Geom. Dedicata, 1987, 22:371-387.
[36] Wang R. D., Isometries between normed spaces which are surjective on a sphere, Illinois J. Math., 2009, 53(2):575-580.
[37] Wang R. D., On linear extension of 1-Lipschitz mapping from Hilbert space into a normed space, Acta Mathematica Scientia, 2010, 30B(1):161-165.
[38] Wang R. D., Huang X. J., Isometries and additive mapping on the unit spheres of normed spaces, Acta Math. Sin. Endl. Ser., 2017, 33(10):1431-1442.
[39] Wang R. D., Huang X. J., The Mazur-Ulam property for two-dimensional somewhere-flat spaces, Linear Algebra Appl., 2019, 562:55-62.
[40] Yang X. Z., On extension of isometries between unit spheres of Lp(μ) and Lp(ν, H) (1< p =2, H is a Hilbert space), J. Math. Anal. Appl., 2006, 322:985-992.
[41] Yang X. Z., Zhao X. P., On the extension problems of isometric and nonexpansive mappings, In:Mathematics Without Boundaries, Edited by Themistocles Rassias M and Pardalos Panos M., Springer, New York, 2014:725-748.
[42] Yi J. J., Wang R. D., Wang X. X., Extension of isometries between the unit spheres of complex ?p(Γ) (p > 1) spaces, Acta Mathematica Scientia, 2014, 34B(5):1540-1550.

[1]Ze Chun HU, Wei SUN. Hunt's Hypothesis (H) for Markov Processes: Survey and Beyond[J]. Acta Mathematica Sinica, English Series, 2021, 37(3): 491-508.
[2]王瑞东, 王普. bp(2)空间中的等距映射[J]. 数学学报, 2021, 64(1): 155-166.
[3]Yuan Feng JIN, Choonkil PARK, Michael Th. RASSIAS. Hom-derivations in C*-ternary Algebras[J]. Acta Mathematica Sinica, English Series, 2020, 36(9): 1025-1038.
[4]Mahdeyeh IRANMANESH, Morteza JAFARPOUR, Hossien AGHABOZORGI, Jian Ming ZHAN. Classification of Krasner Hyperfields of Order 4[J]. Acta Mathematica Sinica, English Series, 2020, 36(8): 889-902.
[5]Si Zhong ZHOU, Zhi Ren SUN. Some Existence Theorems on Path Factors with Given Properties in Graphs[J]. Acta Mathematica Sinica, English Series, 2020, 36(8): 917-928.
[6]陈海波, 赖丹丹, 刘东. 李代数W(2,2)上的Hom-李代数结构[J]. 数学学报, 2020, 63(4): 403-408.
[7]Ke Xiang XU, Kinkar Chandra DAS, Xiao Qian GU. Comparison and Extremal Results on Three Eccentricity-based Invariants of Graphs[J]. Acta Mathematica Sinica, English Series, 2020, 36(1): 40-54.
[8]马鑫, 杨晓燕. 相对于子范畴的同伦分解的存在性[J]. 数学学报, 2020, 63(1): 77-88.
[9]Meng Fai LIM. A Note on Asymptotic Class Number Upper Bounds in p-adic Lie Extensions[J]. Acta Mathematica Sinica, English Series, 2019, 35(9): 1481-1490.
[10]Wei GAO, Juan L. G. GUIRAO, Yao Jun CHEN. A Toughness Condition for Fractional (k, m)-deleted Graphs Revisited[J]. Acta Mathematica Sinica, English Series, 2019, 35(7): 1227-1237.
[11]文娅琼, 李姣芬, 黎稳. 线性矩阵方程组AX=B,YA=D的最小二乘(R,Sσ)-交换解[J]. 数学学报, 2019, 62(6): 833-852.
[12]Yu Feng GAO, Yan Xun CHANG, Tao FENG. Simple Minimum (K4-e)-coverings of Complete Multipartite Graphs[J]. Acta Mathematica Sinica, English Series, 2019, 35(5): 632-648.
[13]程新跃, 黄勤荣, 吴莎莎. 对偶平坦(α,β)-度量的共形不变性[J]. 数学学报, 2019, 62(3): 397-408.
[14]Guang Yu AN, Jun HE. Characterizations of (m, n)-Jordan Derivations and (m, n)-Jordan Derivable Mappings on Some Algebras[J]. Acta Mathematica Sinica, English Series, 2019, 35(3): 378-390.
[15]陶双平, 逯光辉. Morrey空间上Marcinkiewicz积分与R[J]. 数学学报, 2019, 62(2): 269-278.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23791
相关话题/空间 数学 代数 结构 天津