摘要1978年,Tingley提出著名的Tingley问题(等距延拓问题),受到许多****的重视.遗憾的是到目前为止,即使对于二维Banach空间,这个问题仍是一个开问题.目前的研究主要集中在同类型或不同类型的经典Banach空间之间,并得到了肯定的回答.本文对复Banach空间?p(Γ)(1 ≤ p < ∞)与复Banach空间E之间的Tingley问题给出了肯定的回答,即复Banach空间?p(Γ)(1 ≤ p < ∞)满足Mazur-Ulam性质. | | 服务 | | | 加入引用管理器 | | E-mail Alert | | RSS | 收稿日期: 2020-03-20 | | 基金资助:国家自然科学基金资助项目(11301384,11371201,11201337,11201338)
| 作者简介: 王瑞东,E-mail:wangruidong@tjut.edu.cn;周文乔,E-mail:763868160@qq.com |
[1] Alonso J., Benítez C., Some characteristic and non-characteristic properties of inner product spaces, J. Approx. Theory, 1988, 55:318-325. [2] Becerra Guerrero J., Cueto-Avellaneda M., Fernández-Polo F. J., et al., On the extension of isometries between the unit spheres of a JBW*-triple and a Banach space, to appear in J. Inst. Math. Jussieu., doi:10.1017/S1474748019000173, arXiv:1808.01460. [3] Boyko K., Kadets V., Martín M., et al., Properties of lush spaces and applications to Banach spaces with numerical index 1, Studia. Math., 2009, 190:117-133. [4] Cabello Sánchez J., A reflection on Tingley's problem and some applications, J. Math. Anal. Appl., 2019, 476(2):319-336. [5] Cheng L. X., Dong Y. B., On a generalized Mazur-Ulam question:extension of isometries between unit spheres of Banach spaces, J. Math. Anal. Appl., 2011, 377:464-470. [6] Cueto-Avellaneda M., Peralta A. M., The Mazur-Ulam property for commutative von Neumann algebras, Linear and Multilinear Algebra, 2020, 68(2):337-362. [7] Ding G. G., The 1-Lipschitz mapping between the unit spheres of two Hilbert spaces can be extended to a real linear isometry of the whole space, Sci. China Ser. A, 2002, 45(4):479-483. [8] Ding G. G., The isometric extension problem in the unit spheres of ?p(Γ) (p > 1) type spaces, Sci. China Ser. A, 2003, 46:333-338. [9] Ding G. G., The isometric extension of the into mapping from a l∞(Γ)-type space to some Banach space, Illinois J. Math., 2007, 51:445-453. [10] Ding G. G., On isometric extension problem between two unit spheres, Sci. China. Ser. A., 2009, 52:2069-2083. [11] Dixmier J., Sur certains espaces considérés par M. H. Stone, Summa. Brasil. Math., 1951, 2:151-182. [12] Fang X. N., Wang J. H., On extension of isometries between the unit spheres of normed space E and C(Ω), Acta. Math. Sin. Endl. Ser., 2006, 22:1819-1824. [13] Fang X. N., Wang J. H., Extension of isometries between unit spheres of normed space E and ?1(Ω), Acta. Math. Sinica China Ser., 2008, 51(1):24-28. [14] Fang X. N., Wang J. H., Extension of isometries on the unit sphere of ?p(Γ) space, Sci. China Math., 2010, 53:1085-1096. [15] Fernández-Polo F. J., Jordá E., Peralta A. M., Tingley's problem for p-Schatten von Neumann classes, to appear in J. Spectr. Theory, arXiv:1803.00763. [16] Fernández-Polo F. J., Peralta A. M., On the facial structure of the unit ball in the dual space of a JB*-triple, Math. Ann., 2010, 348:1019-1032. [17] Fernández-Polo F. J., Peralta A. M., Low rank compact operators and Tingley's problem, Adv. Math., 2018, 338:1-40. [18] Fernández-Polo F. J., Peralta A. M., On the extension of isometries between the unit spheres of a C*-algebra and B(H), Trans. Amer. Math. Soc. Ser. B, 2018, 5:63-80. [19] Gehér Gy P., A contribution to the Aleksandrov conservative distance problem in two dimensions, Linear Algebra Appl., 2015, 481:280-287. [20] Jiménez-Vargas A., Morales-Campoy A., Peralta A. M., et al., The Mazur-Ulam property for the space of complex null sequences, Linear and Multilinear Algebra, 2019, 67(4):799-816. [21] Kadets V., Martín M., Extension of isometries between unit spheres of finite-dimensional polyhedral Banach spaces, J. Math. Anal. Appl., 2012, 396:441-447. [22] Liu R., On extension of isometries between unit spheres of ?∞(Γ)-type space and a Banach space E, J. Math. Anal. Appl., 2007, 333:959-970. [23] Liu R., Zhang L., On extension of isometries and approximate isometries between unit spheres, J. Math. Anal. Appl., 2009, 352:749-761. [24] Mankiewicz P., On extension of isometries in normed linear spaces, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 1972, 20:367-371. [25] Mazur S., Ulam S., Sur less transformations isométriques despaces vectoriels normés, C. R. Acad. Sci. Paris, 1932, 194:946-948. [26] Mori M., Ozawa N., Mankiewicz's theorem and the Mazur-Ulam property for C*-algebras, Studia Math., 2020, 250(3):265-281. [27] Peralta A. M., Extending surjective isometries defined on the unit sphere of ?∞(Γ), Revista Matemática Complutense, 2019, 32:99-114. [28] Ryotaro T., Tingley's problem on symmetric absolute normalized norms on R2, Acta. Math. Sin. Endl. Ser., 2014, 30:1324-1340. [29] Sakai S., C*-and W*-algebras, Springer-Verlag, Berlin, New York, 1971. [30] Tan D. N., Extension of isometries on unit sphere of L∞, Taiwanese J. Math., 2011, 15:819-827. [31] Tan D. N., On extension of isometries on the unit spheres of Lp spaces for 0< p ≤ 1, Nonlinear Anal., 2011, 74:6981-6987. [32] Tan D. N., Extension of isometries on the unit sphere of Lp-spaces, Acta. Math. Sin. Endl. Ser., 2012, 28:1197-1208. [33] Tan D. N., Huang X. J., Liu R., Generalized-Lush spaces and the Mazur-Ulam property, Studia Math., 2013, 219:139-153. [34] Tan D. N., Liu R., A note on the Mazur-Ulam property of almost-CL-spaces, J. Math. Anal. Appl., 2013, 405:336-341. [35] Tingley D., Isometries of the unit spheres, Geom. Dedicata, 1987, 22:371-387. [36] Wang R. D., Isometries between normed spaces which are surjective on a sphere, Illinois J. Math., 2009, 53(2):575-580. [37] Wang R. D., On linear extension of 1-Lipschitz mapping from Hilbert space into a normed space, Acta Mathematica Scientia, 2010, 30B(1):161-165. [38] Wang R. D., Huang X. J., Isometries and additive mapping on the unit spheres of normed spaces, Acta Math. Sin. Endl. Ser., 2017, 33(10):1431-1442. [39] Wang R. D., Huang X. J., The Mazur-Ulam property for two-dimensional somewhere-flat spaces, Linear Algebra Appl., 2019, 562:55-62. [40] Yang X. Z., On extension of isometries between unit spheres of Lp(μ) and Lp(ν, H) (1< p =2, H is a Hilbert space), J. Math. Anal. Appl., 2006, 322:985-992. [41] Yang X. Z., Zhao X. P., On the extension problems of isometric and nonexpansive mappings, In:Mathematics Without Boundaries, Edited by Themistocles Rassias M and Pardalos Panos M., Springer, New York, 2014:725-748. [42] Yi J. J., Wang R. D., Wang X. X., Extension of isometries between the unit spheres of complex ?p(Γ) (p > 1) spaces, Acta Mathematica Scientia, 2014, 34B(5):1540-1550.
|
[1] | Ze Chun HU, Wei SUN. Hunt's Hypothesis (H) for Markov Processes: Survey and Beyond[J]. Acta Mathematica Sinica, English Series, 2021, 37(3): 491-508. | [2] | 王瑞东, 王普. bp(2)空间中的等距映射[J]. 数学学报, 2021, 64(1): 155-166. | [3] | Yuan Feng JIN, Choonkil PARK, Michael Th. RASSIAS. Hom-derivations in C*-ternary Algebras[J]. Acta Mathematica Sinica, English Series, 2020, 36(9): 1025-1038. | [4] | Mahdeyeh IRANMANESH, Morteza JAFARPOUR, Hossien AGHABOZORGI, Jian Ming ZHAN. Classification of Krasner Hyperfields of Order 4[J]. Acta Mathematica Sinica, English Series, 2020, 36(8): 889-902. | [5] | Si Zhong ZHOU, Zhi Ren SUN. Some Existence Theorems on Path Factors with Given Properties in Graphs[J]. Acta Mathematica Sinica, English Series, 2020, 36(8): 917-928. | [6] | 陈海波, 赖丹丹, 刘东. 李代数W(2,2)上的Hom-李代数结构[J]. 数学学报, 2020, 63(4): 403-408. | [7] | Ke Xiang XU, Kinkar Chandra DAS, Xiao Qian GU. Comparison and Extremal Results on Three Eccentricity-based Invariants of Graphs[J]. Acta Mathematica Sinica, English Series, 2020, 36(1): 40-54. | [8] | 马鑫, 杨晓燕. 相对于子范畴的同伦分解的存在性[J]. 数学学报, 2020, 63(1): 77-88. | [9] | Meng Fai LIM. A Note on Asymptotic Class Number Upper Bounds in p-adic Lie Extensions[J]. Acta Mathematica Sinica, English Series, 2019, 35(9): 1481-1490. | [10] | Wei GAO, Juan L. G. GUIRAO, Yao Jun CHEN. A Toughness Condition for Fractional (k, m)-deleted Graphs Revisited[J]. Acta Mathematica Sinica, English Series, 2019, 35(7): 1227-1237. | [11] | 文娅琼, 李姣芬, 黎稳. 线性矩阵方程组AX=B,YA=D的最小二乘(R,Sσ)-交换解[J]. 数学学报, 2019, 62(6): 833-852. | [12] | Yu Feng GAO, Yan Xun CHANG, Tao FENG. Simple Minimum (K4-e)-coverings of Complete Multipartite Graphs[J]. Acta Mathematica Sinica, English Series, 2019, 35(5): 632-648. | [13] | 程新跃, 黄勤荣, 吴莎莎. 对偶平坦(α,β)-度量的共形不变性[J]. 数学学报, 2019, 62(3): 397-408. | [14] | Guang Yu AN, Jun HE. Characterizations of (m, n)-Jordan Derivations and (m, n)-Jordan Derivable Mappings on Some Algebras[J]. Acta Mathematica Sinica, English Series, 2019, 35(3): 378-390. | [15] | 陶双平, 逯光辉. Morrey空间上Marcinkiewicz积分与R[J]. 数学学报, 2019, 62(2): 269-278. |
|
PDF全文下载地址:
http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23791
C*-代数上强保k-skew交换性的映射安润玲,高永兰太原理工大学数学学院太原030024Strongk-skewCommutativityPreservingMapsonC*-algebrasRunLingAN,YongLanGAOCollegeofMathematics,TaiyuanUnive ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Fock空间上对偶Toeplitz算子的交换性黄穗,王伟重庆师范大学数学科学学院重庆401331CommutingDualToeplitzOperatorsontheOrthogonalComplementoftheFockSpaceSuiHUANG,WeiWANGSchoolofMathemati ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Banach空间中渐近非扩张映射的广义粘性隐式双中点法则王元恒,李参参浙江师范大学数学与计算机科学学院金华321004TheGeneralizedViscosityImplicitDoubleMidpointRuleforAsymptoticallyNon-expansiveMappingsinBa ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27积分估计与正规权Dirichlet空间上的Cesro型算子唐鹏程,吕睿昕,张学军湖南师范大学数学与统计学院长沙410006AnIntegralEstimateandCesroTypeOperatorsonNormalWeightDirichletSpacesPengC ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27四元数Hilbert空间中近似对偶与对偶标架张伟1,李云章21.河南财经政法大学数学与信息科学学院郑州450046;2.北京工业大学理学部数学学院北京100124ApproximatelyDualandDualFramesinQuaternionicHilbertSpacesWeiZHANG1,Yu ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27指数权Bergman空间Ap和A间的算子何忠华1,王晓峰2,刘柚岐21.广东金融学院金融数学与统计学院广州510521;2.广州大学数学与信息科学学院广东高等学校交叉学科实验室广州510006ToeplitzOperatorsBetweenBergmanSpaces ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27弦上同调的Hodge结构杜承勇1,李体耀21.四川师范大学数学科学学院&洛朗拉福格数学研究中心成都610068;2.重庆师范大学数学科学学院重庆401331HodgeStructureonStringyCohomologyChengYongDU1,TiYaoLI21.Schoolof ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27圆环的加正规权Bergman空间上正符号Toeplitz算子何忠华1,夏锦2,王晓峰21.广东金融学院金融数学与统计学院广州510521;2.广州大学数学与信息科学学院广州510006PositiveToeplitzOperatorsonBergmanSpaceofAnnularInducedbyR ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Frchet空间上集值微分方程初值问题解的高阶收敛性王培光,邢珍钰,吴曦冉河北大学数学与信息科学学院保定071002Higher-OrderConvergenceofSolutionsofInitialValueProblemforSetDifferentialEquationsin ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Banach空间中正则非退化异宿环的Lipschitz扰动陈员龙,骆世广广东金融学院金融数学与统计学院广州510521TheLipschitzPerturbationsofRegularNondegenrateHeteroclinicCyclesinBanachSpacesYuanLongCHEN, ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|